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Abstract
For a given alphabet A and length n, a de Bruijn sequence corresponds to a string
of length |A|n where every string of length n occurs as a consecutive substring (and
we allow the ends to wrap around). We consider the relaxation wherein the letters
of the substring are not consecutive but rather fixed by some pattern, called a comb.
We give several constructions showing how to construct some sequences for combs,
as well as give several ways to form combs without de Bruijn sequences.

1. Introduction

Given an alphabet A and a string length n, a de Bruijn sequence is a string of length
|A|n which contains each possible string of length n composed of letters from A as a
consecutive substring (with wraparound allowed at the ends). These sequences were
named after N. G. de Bruijn who studied them for large alphabets [1], though they
had been previously studied by Camille Flye Sainte-Marie in 1894 when A = {0, 1}.

Much of the research of de Bruijn sequences has focused on their construc-
tion, enumeration (van Aardenne-Ehrenfest and de Bruijn showed that there are
(|A|!)|A|n�1

/|A|n such sequences), or in establishing various extremal properties of
such sequences.

1Research partially supported by the Center for Advanced Mathematical Sciences, American
University of Beirut and CNRS, Lebanon ref. 01-01-13.
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11101000
OOO***** ! 111
*OOO**** ! 110
**OOO*** ! 101
***OOO** ! 010
****OOO* ! 100
*****OOO ! 000
O*****OO ! 001
OO*****O ! 011

11100100
OO**O*** ! 110
*OO**O** ! 111
**OO**O* ! 100
***OO**O ! 000
O***OO** ! 011
*O***OO* ! 101
**O***OO ! 001
O**O***O ! 010

11010100
O*O*O*** ! 100
*O*O*O** ! 111
**O*O*O* ! 000
***O*O*O ! 110
O***O*O* ! 001
*O***O*O ! 101
O*O***O* ! 010
*O*O***O ! 011

Table 1: Three examples of combs: OOO, OO**O, O*O*O.

In this note we will look at what happens when we relax the condition that the
letters in the substring occur consecutively. Namely, we will allow for a “comb”
which has some pattern of teeth (marked O) through which we can read entries in
the string and coverings (marked *) which we cannot read through. A de Bruijn
sequence for a given comb is then a string of length |A|n which contains each
possible string in some shift of the comb where again we allow for the comb to wrap
around at the ends. It is worth mentioning that de Bruijn sequences for a special
comb are implicitly used in the construction of the well known generalized feedback
shift register sequences (aka, GFSRs) out of regular linear feedback shift register
sequences (aka, LFSRs), see [6].

As a demonstration we show in Table 1 three de Bruijn sequences for A = {0, 1}
and n = 3, one for OOO (the original variation), one for OO**O, and one for O*O*O.

In this note we will look at some very basic results about some simple combs
for the case A = {0, 1}, as well as examining a comb in relation to the de Bruijn
sequences generated by linear feedback shift registers. Previous work for de Bruijn
combs can be found in Krahn [5] and Cooper and Graham [2], the latter of which
was highlighted by Diaconis and Graham [3, Chs. 2–3].

1.1. Combs

An alternative way to express a comb is to indicate which entries correspond to
teeth in some cyclic shift (where by convention we start at 0). So for example, the
combs illustrated above, OOO, OO**O, and O*O*O, are respectively [0, 1, 2], [0, 1, 4]
and [0, 2, 4].

Observation 1. Suppose we have a given comb [a1, a2, . . . , an] and a correspond-
ing de Bruijn sequence d1d2d3 . . . d|A|n for that comb. Then for any k, ` with
gcd(k, |A|) = 1 we have that [ka1 +`, ka2 +`, . . . , kan +`] is a comb for the sequence
dkd2kd3k . . . dk|A|n where the subscripts are taken modulo |A|n.
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This is easy to see since cyclic shifts of combs will not e↵ect the sequence (i.e.,
we are going to look at arbitrary cyclic shifts regardless), and then if we scale both
the entries of the comb and the relative locations of the sequence then we still have
the same strings (visited in the same order as before). Note that a reflection of a
comb can be achieved by scaling by �1 and then appropriately shifting.

In particular, this greatly reduces the number of combs that need to be examined.
For example, up to scaling and shifting there are four combs when |A| = 2 and
n = 3. In addition to the 3 given above, the comb OO*O= [0, 1, 3] has no de Bruijn
sequence.

The number of combs up to scaling and shifting for |A| = 2 for the first few
values of n are given in the table below.

n 2 3 4 5 6 7
number of combs 2 4 25 454 38494 3136831

More information about the combs and the corresponding number of such sequences
for n = 4, 5 can be found in the Appendix.

2. Combs in Arithmetic Progression

The easiest combs to work with are those whose teeth form an arithmetic progres-
sion. Given Observation 1 we can conclude that we only need to be concerned about
arithmetic progressions where the step size between teeth involves only factors from
|A| (i.e., all other factors can be “scaled out”). In the case of A = {0, 1} this means
we can limit ourselves to step sizes of the form 2k for some k. Note the case k = 0
is the original form of the de Bruijn sequences.

Let us start by considering the comb O*O*O, with the corresponding de Bruijn
sequence 11010100. We can split this sequence into two parts, i.e.,

11010100 ! 1
1
0
1
0
1
0
0 ! 1000 and 1110.

What we are doing is pulling out the two subsequences (two equals the step size
between teeth in our comb) which our comb will alternate between. In other words,
the comb O*O*O for the sequence 11010100 alternates between what the comb OOO
produces for the pair of sequences 1000 and 1110.

This has a simple interpretation via the de Bruijn graph. Given an alphabet A
and n, the de Bruijn graph is a directed graph whose vertices consist of strings of
length n � 1 from A and u ! v if the last n � 2 letters of u agree with the first
n� 2 letters of v. For example, the case for n = 3 and A = {0, 1} is shown on the
left in Figure 1.

Each edge in the de Bruijn graph is naturally associated with a string of length n
and walks correspond to sequences of strings which can occur consecutively. In par-
ticular, a de Bruijn sequence corresponds to an Eulerian circuit. In our case w here
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Figure 1: The de Bruijn graph for A = {0, 1} and n = 3, and a decomposition of
its edges into two circuits of length 4.

we have split our sequence into two parts, 1000 and 1110, each part corresponding
to a circuit in the graph. Namely the circuits

10 ! 00 ! 00 ! 01 ! 10 and 11 ! 11 ! 10 ! 01 ! 11,

illustrated on the right in Figure 1.
With the de Bruijn graph in hand we now have the following two observations.

Observation 2. Given a de Bruijn sequence for the comb [0, 2k, 2·2k, . . . , (n�1)·2k]
then there is a decomposition of the de Bruijn graph into 2k circuits of length 2n�k.
Namely, by forming the circuits corresponding to the substrings found by taking
the 2kth terms.

Observation 3. For each decomposition of the de Bruijn graph into 2k circuits of
length 2n�k, there are (2k�1)!·2(n�k)(2k�1) rotationally distinct de Bruijn sequences
for the comb [0, 2k, 2 · 2k, . . . , (n� 1) · 2k].

The latter observation simply follows by noting that we must interlace these 2k

circuits. We do this by simply fixing one of them and placing the rest relative to
that fixed circuit. In particular there are 2k � 1 circuits left to place which can be
put down in any order, and each one of those circuits has length 2n�k for which we
can choose any rotational shift. As an illustration of this last idea we can rotate
part of the de Bruijn sequence for O*O*O independently to derive another de Bruijn
sequence. This is shown below.

11010100 ! 1
1
0
1
0
1
0
0 ! 1

0
0
1
0
1
0
1 ! 10010101

The problem of finding a de Bruijn sequence for a given arithmetic progression
now has been reduced to finding a decomposition of the de Bruijn graph into cir-
cuits of equal length. Further, if we know the number of such decompositions the
preceding observations give us a precise count for the number of such sequences. By
computer search we have determined the number of such decompositions for some
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corresponding small combs:

comb decompostions
[0, 2, 4] 1
[0, 2, 4, 6] 3
[0, 2, 4, 6, 8] 112
[0, 4, 8, 12, 16] 1
[0, 4, 8, 12, 16, 20] 3260
[0, 8, 16, 24, 32, 40] 1
[0, 8, 16, 24, 32, 40, 48] 235290

This data indicates that for many cases there appears to be a large number of pos-
sible decompositions. We will prove something much weaker, namely the following
result.

Theorem 4. Given k and n so that 2n�k�1  n < 2n�k, there is a decomposition of
the de Bruijn graph for A = {0, 1} and n into circuits of length 2n�k, in particular
we have a de Bruijn sequence for the comb [0, 2k, 2 · 2k, . . . , (n� 1) · 2k].

Before giving the proof of the theorem we will need some basic facts about
binomial coe�cients and systems of equations.

Kummer’s Theorem. Given n � m � 0, and p a prime, the maximum k so that
pk divides

�n
m

�
is equal to the number of carries when m is added to n�m in base

p.

Lemma 5. If i, j < 2t then
�j

i

�
⌘

�j+2t

i

�
⌘

�j+2t

i+2t

�
(mod 2).

Proof. We claim a binomial coe�cient
�j

i

�
will only be odd if for each 1 in the binary

expansion of i the binary expansion of j will also have a 1 in the same position.
To show this, suppose i > j then comparing the leading binary digits we have

that the first digit where they di↵er will have a 1 in the digit for i and a 0 in the
digit for j establishing this case. Otherwise we can apply Kummer’s Theorem and
note that 2 will divide

�j
i

�
only if there is at least one carry when adding the binary

numbers j � i and i. If there is a 1 in the expansion of i without a corresponding 1
in the expansion of j then there had to have been a carry (i.e., we have a 1 in that
slot which needs to be added to something which gives a 0 in the slot; this could
only happen if a carry at some stage was involved).

Finally we note that
�j+2t

i

�
or

�j+2t

i+2t

�
will not change the existence of a 1 in the

bottom term with a 0 in the top term. This establishes the result.

Lemma 6. For 0  i < 2t and s 2 {0, 1}, let x0, . . . , x2t�1 satisfy the following
system of equations modulo 2,

2t�1X
j=0

✓
j

`

◆
xj =

⇢
0 if ` < i
s if ` = i.
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Then for any m we also have

2t�1X
j=0

✓
j

i

◆
xj+m = s

where the subscripts on the x terms are taken modulo 2t.

Proof. We proceed by induction on i. First note that for i = 0 we have the single
equation

x0 + x1 + · · · + x2t�1 = s

which has all coe�cients 1 and so is invariant under a cyclic shift of the indices.
Now suppose the statement holds up through i, and consider the statement for

i + 1. First we note that it su�ces to show that the result holds for m = �1, i.e.,

2t�1X
j=0

✓
j

i + 1

◆
xj�1 = s.

This follows since by the induction hypothesis we can shift all of the indices in the
first i equations by 1, then we simply repeat this shifting by 1 to the full set of
equations as many times as needed, and establish the result.

Finally, we note by combining the equations for ` = i + 1 and ` = i we have

s = 0 + s =
2t�1X
j=0

✓
j

i

◆
xj +

2t�1X
j=0

✓
j

i + 1

◆
xj =

2t�1X
j=0

✓✓
j

i

◆
+

✓
j

i + 1

◆◆
xj

=
2t�1X
j=0

✓
j + 1
i + 1

◆
xj =

2t�1X
j=0

✓
j

i + 1

◆
xj�1

In the last step we used Lemma 5 and 1  `  2t�1 to get
�2t

`

�
⌘

�0
`

�
⌘ 0 (mod 2),

which allows us to wrap the binomial coe�cient around.

Proof of Theorem 4. The desired decomposition will be formed by collecting all
sequences of the form x0x1 . . . x2n�k�1, where the xi satisfy the following system of
equations modulo 2:

2n�k�1X
j=0

✓
j

`

◆
xj =

⇢
0 if 0  ` < 2n�k � n� 1
1 if ` = 2n�k � n� 1.

Given any string a0a1 . . . an�1 we can set ai = x2n�k�n+i, this leaves us with a
total of 2n�k�n variables to determine with a linear system of 2n�k�n equations.
Further, this is an invertible system (written in matrix form this is an upper diagonal
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matrix with 1’s on the diagonal) so we can solve for the remaining xi. Therefore
we have that every string shows up at least once in our collection.

Further, by Lemma 6 once we specify the n entries of our string to appear
anywhere consecutively among the xi then the resulting solution will be the same
string up to a cyclic shift. Therefore if we group all the resulting sequences by those
equivalent under cyclic shifts and take a representative from each group, then each
string of length n will appear in precisely one of these representatives.

It remains to show that no string of length n appears twice in one of our repre-
sentatives. If a string did appear twice then by application of Lemma 6 we would
conclude that the resulting string was periodic. Since the length of our string is a
power of 2 then we must conclude that our solution is invariant under a shift by
the variables 2n�k�1, i.e., for 0  j < 2n�k�1 we have xj = xj+2n�k�1 . Combining
this with Lemma 5 we have

2n�k�1X
j=0

✓
j

2n�k � n� 1

◆
xj

=
2n�k�1�1X

j=0

✓✓
j

2n�k � n� 1

◆
xj +

✓
j + 2n�k�1

2n�k � n� 1

◆
xj+2n�k�1

◆

= 2
2n�k�1�1X

j=0

✓
j

2n�k � n� 1

◆
xj = 0 (mod 2).

which contradicts the set of equations. Therefore we can conclude that among our
representative solutions each string of length n appears precisely once, i.e., we have
our desired decomposition of the de Bruijn graph.

Examples of the construction from Theorem 4 are given in Table 2.
We note that this is only one decomposition and this technique will not capture

every decomposition. For example, the following is a decomposition of the de Bruijn
graph for n = 6 into 4 circuits which has circuits containing both an even and an
odd number of 1s, i.e., automatically fails the first equation:

1101100001000000
1110010010101000
1111011101001100
1111110001011010

Nevertheless, at one extreme this captures the unique decomposition.

Corollary 7. For the de Bruijn graph with A = {0, 1} and for strings of length
n = 2k � 1, the unique way to decompose the graph into circuits of length 2k is to
take all possible strings of length 2k (up to cyclic shifting) that have an odd number
of 1s.
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n and k equations decomposition

n = 6
k = 3

x0+x1+x2+x3+x4+x5+x6+x7= 0
x1 +x3 +x5 +x7= 1

11000000
01000010
11000101
01000111
11001010
01001101
11001111
11011011

n = 5
k = 2

x0+x1+x2+x3+x4+x5+x6+x7= 0
x1 +x3 +x5 +x7= 0

x2+x3 +x6+x7= 1

10100000
01100011
11100100
11101011

n = 4
k = 1

x0+x1+x2+x3+x4+x5+x6+x7= 0
x1 +x3 +x5 +x7= 0

x2+x3 +x6+x7= 0
x3 +x7= 1

11110000
11010010

Table 2: Examples of the construction from Theorem 4.

Proof. In Theorem 4 this corresponds to the situation where
P

xi = 1 (mod 2). We
know that this gives a decomposition. It remains to show that this decomposition
is unique.

This follows by combining several observations. First, the all zero string must
show up somewhere and so it can only be either 00 . . . 00 or 00 . . . 01, but the first
one is impossible in a de Bruijn decomposition as 00 . . . 0 would appear multiple
times. So we can conclude that 00 . . . 01 is one of our circuits in our decomposition.
Further, in any circuit knowing the edge that is used coming into a vertex and
out of that vertex will completely determine the circuit that it lies on, i.e., this
determines n = 2k consecutive terms in our circuit. Finally, in the de Bruijn graph
the in-degree and the out-degree at each vertex is 2.

Combining all of this we start with the one circuit which we know must be in the
sequence, then we simply look for any vertex it passed through, it has one remaining
edge coming in and out and we must use those in combination in another circuit
which in turn forces other circuits and repeating this we are forced in our selection
of circuits for the entire graph.

3. Combs Related to LFSR Sequences

One of the best known techniques for generating de Bruijn sequences is to use
linear feedback shift registers (see Golomb [4]). These are based o↵ of irreducible
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polynomials in the ring Z2[x] and using the polynomials to build a linear recursion.
So for example, x4 +x3 +1 is irreducible and this corresponds to the linear feedback
shift register xi = xi�3 + xi�4 where we work modulo 2 (note the powers in the
polynomial give the corresponding shifts of terms to examine). If we initiate the
sequence with 0001 then this will generate the sequence:

000100110101111| {z }
a near de Bruijn sequence

000100110101111000100110101111000100110101111. . .

In particular this will generate a pattern with period 15 that hits every string of
length 4 other than 0000. This can be easily fixed by taking the unique occurrence
of 000 and replacing it with 0000. We can also rearrange the terms of the recurrence
so that we can run it backwards, i.e., we also have xi�4 = xi�3 + xi (one of the
advantages of working modulo 2). This allows us to start with any initial seed and
repeatedly prepend the sequence. Using either approach we will generate the same
15-periodic sequence which can be corrected to form a de Bruijn sequence.

In general, given any irreducible polynomial the above procedure gives a de
Bruijn sequence. We will show that in some cases these irreducible polynomials can
produce other combs as well.

Theorem 8. Consider an irreducible polynomial of degree n � 3. Then exactly
one of x or xn�1 is in the polynomial if and only if the resulting de Bruijn sequence
constructed using the above technique will also work for the comb O*OO...O*O.

Proof. We start by establishing that if precisely one of x or xn�1 is in the polynomial
then the comb works. First we will show that the sequence we generate where we
do not correct for the missing 00 . . . 0 term hits all but one term using the comb.
We will then show that by making the needed correction we will hit the missing
term and still keep the appearance of every other term. We will work through the
case when the polynomial has xn�1 but not x (the other case is handled similarly).

Since the recurrence for xk has no term xk�1, the LFSR sends both yx1 . . . xn�2z
and yx1 . . . xn�2z respectively to x1 . . . xn�2zw and x1 . . . xn�2zw, where y, z, w
are 0-1 and z is the complement of z. This follows since the next term will be
independent of the value in the z (z) position.

This in turn implies that yx1 . . . xn�2z and yx1 . . . xn�2z respectively go to
x1 . . . xn�2zw and x1 . . . xn�2zw since the recurrence does involve the term xk�n.

We can also run the recurrence backward, and since our polynomial of degree
n has a term xn�1 then the term we prepend will depend on the current first
term. Doing so we get that yx1 . . . xn�2z and yx1 . . . xn�2z came respectively from
tyx1 . . . xn�2 and tyx1 . . . xn�2 for some 0-1 value t. So that yx1 . . . xn�2z and
yx1 . . . xn�2z come respectively from tyx1 . . . xn�2 and tyx1 . . . xn�2.
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Combining all the above we get the following occurring in our sequence

tyx1 . . . xn�2zw
tyx1 . . . xn�2zw
tyx1 . . . xn�2zw
tyx1 . . . xn�2zw.

Now if we apply the comb and observe that x1 . . . xn�2 occurs 4 times in the original
LFSR sequence (except for 00 . . . 0 that occurs three times), we see that every
pattern of size n now occurs once in this sequence; the only missing term is 00 . . . 0
(this would have come from the case when y = x1 = · · · = xn�2 = z = 0 which in
turn would give t = w = 0).

We now proceed to the second step, which is to show that we can insert the
0 into the sequence and the result will be to pick up the missing 00 . . . 0 term
without losing/gaining any other terms. To do this we note that we initially have
the following for some x and y:

. . . x11 00 . . . 0| {z }
n�1

10y . . . .

This follows by first noting that we must have the 100 . . . 01 term in our sequence
and then applying the recurrence to get the adjacent terms. If we now apply our
comb to this pattern we have:

. . . x1100. . .0010y . . .
O*OOO. . .*O*** ! x10 . . . 000
*O*OO. . .O*O** ! 100 . . . 001
**O*O. . .OO*O* ! 100 . . . 000
***O*. . .OOO*O ! 000 . . . 01y

Next we compare it to what happens after we add the missing 0 term.

. . . x11000. . .00010y . . .
O*OOOO. . .*O**** ! x10 . . . 000
*O*OOO. . .O*O*** ! 100 . . . 000
**O*OO. . .OO*O** ! 100 . . . 001
***O*O. . .OOO*O* ! 000 . . . 000
****O*. . .OOOO*O ! 000 . . . 01y

Note that no other shifted comb will be e↵ected by the insertion other than the
ones given above. Comparing the above two sequences we see that we have kept the
same patterns (though in di↵erent order) and we have now picked up the missing
all 0 pattern. In particular the resulting sequence has each possible occurrence once
in a shifted comb, as desired.

To establish the other direction we note that if both x and xn�1 occur in the
primitive polynomial then by following through on the first half of the above ar-
gument we will see that the following patterns all occur in the unaltered LFSR
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sequence:
tyx1 . . . xn�2zw
tyx1 . . . xn�2zw
tyx1 . . . xn�2zw
tyx1 . . . xn�2zw

Applying the comb O*OO...O*O will result in multiple double occurrences of words
in the sequence, which altering will only e↵ect a small number of and so we cannot
get a de Bruijn sequence.

On the other hand if both x and xn�1 do not occur in the primitive polynomial
then by following through on the second half of the above argument we see that the
location of the placement of the extra 0 will occur at the following:

. . . x01 00 . . . 0| {z }
n�1

10y . . . .

Now let us consider what happens after we add the missing 0 term.

. . . x01000. . .00010y . . .
O*OOOO. . .*O**** ! x10 . . . 000
*O*OOO. . .O*O*** ! 000 . . . 000
**O*OO. . .OO*O** ! 100 . . . 001
***O*O. . .OOO*O* ! 000 . . . 000
***O*O. . .OOOO*O ! 000 . . . 01y

This gives two occurrences of 00 . . . 0 and so the sequence cannot be de Bruijn for
the given comb.

Experimentation with de Bruijn sequences generated from small LFSRs have
some suggestive patterns for combs; see Table 3. In particular, it appears that the
combs generically fall into the class WOkW where W is a word in {O, *} and W is
the word formed by swapping O and *. There still remains a lot of work to do in
this direction in determining when a particular comb applies to a given LFSR.

Another option to consider when working with LFSRs is the placement of the
missing 0. In the original formation of the de Bruijn sequence from an LFSR we
have no freedom in our placement since there is only one location it can go into to
give us the missing all 0 term. However, when we are dealing with more general
combs, this no longer needs to be the case. A di↵erent placement might work for
a particular comb. While experimentation has not revealed anything satisfying, we
did come across the following interesting case which is based o↵ of the irreducible
polynomial x6 + x4 + x3 + x + 1:

0000011100000100100011011001011010111011110011000101010011111101
"

where we have marked the location of the added 0 into the sequence (note that
normally we would have placed it in the first block of 0s). This sequence has several
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Irreducible polynomial Some combs for the corresponding de Bruijn sequence
x2 + x + 1 OOO
x3 + x + 1 OOO, O*O*O
x4 + x + 1 OOOO, O*OO*O, OO*O**O, O**O*OO
x5 + x2 + 1 OOOOO
x5 + x3 + x2 + x + 1 OOOOO, O*OOO*O, OO*OO**O
x5 + x4 + x2 + x + 1 OOOOO
x6 + x + 1 OOOOOO, O*OOOO*O, OO*OOO**O, O**OOO*OO,

OOO*OO***O, OO**OO**OO, O*O*OO*O*O,
O***OO*OOO, OOOO*O****O, OOO**O***OO,
OO*O*O**O*O, O*OO*O*O**O, OO***O**OOO,
O*O**O*O*OO, O**O*O*OO*O, O****O*OOOO

x6 + x4 + x3 + x + 1 OOOOOO, O*OOOO*O

Table 3: Combs for some small value LFSRs.

combs that work including O**OO*OO**O, OO*OO**O**O, and O**O**OO*OO. Again,
what happens in general is an open question.

4. Impossible Combs

So far we have looked at ways to find sequences which work for various combs.
There is also the converse problem, namely to identify combs for which there are no
such sequences. As mentioned before the only comb which does not work for n = 3
is OO*O= [0, 1, 3] (and anything which can be found by scaling/shifting this comb).
The lists of all combs which do not have a sequence for n = 4, 5 are given in the
Appendix.

Some of these combs are easy to see for n = 4, namely [0, 4, 8, 12], [0, 2, 8, 10] and
[0, 1, 8, 9]. For these patterns suppose we had a de Bruijn sequence, then if we shift
by 8 our teeth in the comb will be lined up over the same slots, and so in particular
0000 will occur twice as we run through the possible shifts which contradicts the
sequence being de Bruijn.

More generally we have the following construction.

Construction 1. Let n = a2k + b with 0  b < k and let T be any pattern of
distributing a teeth in 2n�k entries. Construct the comb by dividing up 2n into
blocks of length 2n�k and in each block placing T (i.e., so any two occurrences of T
di↵er by a shift of some multiple of 2n�k) and then the remaining b terms arbitrary
to any remaining slots.

Verification that this does not have a de Bruijn sequence. Suppose that there were
a de Bruijn sequence for the comb. Then it would follow that there is some cyclic
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shift which has all 0s. From that shift now consider the 2k shifts where at each stage
we move 2n�k slots. The teeth in our comb which came from the equally spaced
occurrences of T would still remain 0, and hence the only entries which would vary
are the b remaining slots. However, these slots can only take on at most 2b values
and so if 2b < 2k then there must be a repetition that occurred in these cyclic shifts,
a contradiction.

So for example for n = 5 we can use this to rule out [0, 1, 8, 16, 24], [0, 2, 8, 16, 24],
and [0, 4, 8, 16, 24].

We can also bootstrap our way to larger combs by using smaller combs via the
following construction.

Construction 2. Let n = a2k+k and let C 2 {O, *}2k
be a comb with k teeth which

does not have a de Bruijn sequence. Further let T be any pattern of distributing a
teeth in 2n�k entries and let T 0 be T with one additional tooth added arbitrarily.
Construct a new comb by “blowing up” C, namely by replacing O with T 0 and *
with T .

Verification that this does not have a de Bruijn sequence. Suppose that there were
a de Bruijn sequence for the comb. Then it would follow that there is some cyclic
shift which has all 0s. From that shift now consider the 2k shifts where at each stage
we move 2n�k slots. If we now restrict our attention to the location of the extra slot
that was formed in T 0, this gives us a sequence of length 2k that the comb C will
go over. Further, we need to have all of these be distinct (since all other slots are
0’s) and therefore we need to have a de Bruijn sequence for C, a contradiction.

For example, starting with the forbidden comb OO*O**** for n = 3 we can form
the following forbidden comb for n = 11 (here T = O**... and T 0 = OO*...),

[0, 1, 256, 257, 512, 768, 769, 1024, 1280, 1536, 1792]

5. Concluding Comments

We have looked at some very specific combs and the corresponding de Bruijn se-
quences for our alphabet of A = {0, 1}. For combs in arithmetic progressions we
have some simple constructions which can produce some special combs, though this
construction is far from exhaustive and some more general techniques are still wait-
ing to be developed to handle finding all ways to decompose the de Bruijn graph
into equal length circuits. We note that the construction we gave in Section 2 works
for alphabets of prime size by similar arguments.

We have also looked at LFSRs and seen an example of how they can give non-
trivial combs. However these combs again appear to have a very restrictive structure
and constructions for more general combs would be of interest.
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One can also consider various problems related to the possible structure of such
sequences. For example, for normal de Bruijn sequences for strings of length n
there must be n consecutive 0’s and n consecutive 1’s but no longer consecutive
equal-valued strings. For general combs this no longer needs to hold (particularly
for combs in arithmetic progressions). For example, consider the following combs
and corresponding de Bruijn sequences where the first one has no four consecutive
identical terms, while the second one has eight consecutive ones:

[0, 1, 8, 9, 16] : 11100110011100011011001100100100
[0, 1, 7, 17, 23] : 11111111001001000101001010001100

Another extremal problem would be to focus on the possible 0-1 sequences and
determine which such sequence has the most combs for which it works.

The biggest open problem in this area concerns the determination of whether a
given comb has a de Bruijn sequence. We have given some simple constructions
that can rule out a few simple combs. However, there is currently no better method
than exhaustion at this point to rule out a generic comb (and exhaustion is very
exhausting considering the search space involved). While we have highlighted what
happens here for the small cases of n = 3, 4, 5 (where 1/4, 16/25, and 224/454 of
all combs do not have de Bruijn sequences), the general case remains elusive. In
particular it appears that most combs are very sensitive and have only one or two
de Bruijn sequences, or none at all (when the step sizes are all multiples of 2 or 4 the
high numbers can be misleading), this leads us to propose the following conjecture.

Conjecture. As n gets large almost all combs do not have a de Bruijn sequence,
i.e., the fraction of combs with a de Bruijn sequence goes to 0.

We can also change the problem to form sequences of length p · |A|n and then
insist that every string of length n occurs exactly p times as a substring. We have
considered the case when p = 1, and Krahn [5] considered the case when p = 2 (i.e.,
which has the interpretation that every edge in the de Bruijn graph is used exactly
twice).

In general, given a comb C = [0, a1, . . . , ak�1] where 0 < a1 < · · · < ak�1 we
will define the weight of C to be k and span of C to be ak�1 + 1 (i.e., the distance
between the two furthest teeth). If we let the index of C be the smallest possible p
so that there is a de Bruijn sequence where each substring appears exactly p times
then we have the following.

Fact 1. For any comb C we have index(C)  2span(C)�weight(C).

This follows by simply noting that we can form a de Bruijn sequence for n =
ak�1 + 1 and then each comb will appear precisely 2 raised to the power of the
number of times that we have non-windows in our pattern. In particular, for every
comb C there is some smallest p that works. We have already noted for the comb
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[0, 1, 3] that p > 1, and the above fact shows that p  2; the latter case can
be done by using a de Bruijn sequence, though other possibilities exist such as
1111100101001000. We note that every comb on four teeth has index(C)  2. It is
unknown if the index of a comb can be arbitrarily large.

We look forward to seeing more progress about de Bruijn sequences for combs.

Acknowledgements We thank Hal Fredricksen for helpful discussions and also for
pointing out several important references in the literature in regards to combs.
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Appendix: Combs of Length 4 and 5

In the table below is the list of every comb of length 4 which has a 0-1 de Bruijn
sequence corresponding to that comb, as well as all such sequences (up to cyclic
shifts and swapping 0 and 1).

[0, 2, 4, 6] 1111101100001000, 1111101100000100, 1111101000100100,
1111100100100010, 1111100100000110, 1111100010000110,
1111011100001000, 1111010100011000, 1111000110001010,
1111000100001110, 1110110100010010, 1110101100010100,
1110100100010110, 1110010100011010, 1101010100110010,
1101010100101100

[0, 1, 2, 3] 1111011001010000, 1111011000010100, 1111010110010000,
1111010011000010, 1111010010110000, 1111010000110010,
1111001011010000, 1111001010000110

[0, 1, 2, 7] 1111010100110000, 1111010010110000, 1111001101010000,
1111001011010000, 1111000101000110

[0, 1, 3, 14] 1111011001010000, 1111010110010000, 1111010010110000,
1111001011010000

[0, 1, 2, 6] 1111011010001000, 1111000101000110, 1111000100010110
[0, 1, 3, 8] 1111100010010100, 1111010000110010
[0, 1, 3, 4] 1111100101000100, 1111100100010100
[0, 1, 3, 7] 1111100101000100
[0, 1, 3, 9] 1111100100101000

The following combs of length 4 have no corresponding sequence for the de Bruijn
comb.

[0, 1, 2, 8] [0, 1, 2, 5] [0, 1, 3, 5] [0, 1, 4, 5] [0, 1, 7, 8] [0, 2, 6, 8]
[0, 2, 8, 10] [0, 1, 3, 12] [0, 4, 8, 12] [0, 1, 4, 8] [0, 2, 4, 10]
[0, 1, 2, 4] [0, 1, 2, 9] [0, 1, 4, 9] [0, 1, 8, 9] [0, 2, 4, 8]

In the table on the following pages is the list of every comb of length 5 which has
a 0-1 de Bruijn sequence corresponding for that comb, the number of such sequences
(up to cyclic shifts and swapping 0 and 1), and an example of one such sequence.2

2A complete list of all sequences for each comb of length 5 is available from the second author.
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[0, 4, 8, 16, 20] 3072 11111111100011001010110000100000
[0, 4, 8, 12, 20] 1536 11111110110110101010010010000000
[0, 4, 8, 12, 16] 1536 11111110110110101010010010000000
[0, 1, 2, 3, 4] 1024 11111011100110101100010100100000
[0, 2, 4, 6, 8] 912 11111110110100111001000001001000
[0, 2, 4, 8, 28] 304 11111110110100111000010010001000
[0, 2, 6, 16, 18] 192 11111111100001000100101100110000
[0, 2, 4, 16, 18] 192 11111111001010011001011001000000
[0, 1, 2, 16, 17] 192 11111101101100010110010000101000
[0, 1, 2, 4, 30] 144 11111011100110101100010100100000
[0, 2, 8, 10, 16] 128 11111110111001000011001000101000
[0, 2, 6, 10, 28] 128 11111110101100110000010010100100
[0, 2, 4, 8, 12] 112 11111110110001110000001100101000
[0, 2, 4, 6, 18] 112 11111111001010001001010010011000
[0, 2, 6, 10, 14] 112 11111110110001110000000100111000
[0, 2, 4, 8, 18] 96 11111110110001101001100010100000
[0, 1, 8, 9, 16] 96 11111110111000100101010001001000
[0, 1, 7, 16, 17] 88 11111110100101000011001001011000
[0, 2, 4, 8, 20] 80 11111110110001101001100010100000
[0, 2, 6, 10, 18] 80 11111110101011000011001001100000
[0, 2, 4, 8, 16] 80 11111110110001101001100010100000
[0, 2, 4, 8, 24] 80 11111110110001101001100010100000
[0, 2, 4, 12, 20] 80 11111110110000101001100010100100
[0, 2, 4, 12, 16] 80 11111110110000101001100010100100
[0, 2, 4, 14, 22] 64 11111110110010110000001000111000
[0, 2, 4, 6, 16] 64 11111111001001101001100101000000
[0, 2, 6, 14, 16] 64 11111110110001101001100010100000
[0, 2, 6, 8, 16] 64 11111110101100001000011011001000
[0, 2, 4, 12, 14] 64 11111110110010110000001000111000
[0, 2, 4, 12, 18] 64 11111110110000101001100010100100
[0, 2, 6, 10, 16] 64 11111110101011000011001001100000
[0, 1, 7, 17, 23] 48 11111111001001000101001010001100
[0, 1, 7, 8, 16] 48 11111110010110000011001010010100
[0, 2, 4, 14, 16] 48 11111111001001101001100101000000
[0, 2, 4, 8, 26] 48 11111110011101001000000110010100
[0, 2, 4, 14, 20] 48 11111111001001101001100101000000
[0, 1, 4, 8, 17] 34 11111110001011100101010010000100
[0, 1, 2, 3, 17] 32 11111011101011000011001010010000
[0, 1, 4, 12, 28] 32 11111110011010000101010011000010
[0, 2, 4, 6, 14] 32 11111110110001110000000100111000
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[0, 1, 4, 12, 17] 32 11111110011010000101010011000010
[0, 1, 4, 8, 16] 32 11111110001011100101010010000100
[0, 1, 4, 8, 24] 32 11111110001011100101010010000100
[0, 1, 5, 13, 16] 32 11111110110010100101010001100000
[0, 2, 4, 8, 22] 32 11111110110001110000000100111000
[0, 1, 4, 12, 16] 32 11111110011010000101010011000010
[0, 1, 4, 20, 28] 32 11111110011010000101010011000010
[0, 1, 4, 17, 28] 32 11111110011010000101010011000010
[0, 2, 4, 8, 10] 32 11111110011010001011100001001000
[0, 1, 4, 8, 20] 32 11111110001011100101010010000100
[0, 1, 2, 13, 21] 31 11111101100000110001011001010100
[0, 1, 4, 18, 19] 30 11111101001100100101011100010000
[0, 1, 2, 12, 13] 23 11111101101010011000100110100000
[0, 1, 2, 6, 28] 21 11111011010001101011100100000100
[0, 1, 2, 15, 19] 20 11111101011001001101100101000000
[0, 1, 3, 5, 30] 20 11111101100101010011100010010000
[0, 1, 2, 10, 11] 19 11111101100011001010001011000010
[0, 1, 2, 8, 9] 18 11111100011000110100010101011000
[0, 1, 2, 4, 18] 18 11111100101100010101100010000110
[0, 1, 2, 6, 7] 17 11111101100101001011000000100110
[0, 1, 4, 8, 28] 17 11111110001101101010100001001000
[0, 2, 4, 6, 12] 16 11111111001010010010001000110100
[0, 2, 4, 10, 12] 16 11111111001010010010001000110100
[0, 1, 2, 3, 5] 16 11111011100011010011001010000010
[0, 2, 4, 6, 10] 16 11111110100111000001000111000100
[0, 2, 6, 8, 18] 16 11111110010101100101001100000100
[0, 1, 2, 14, 15] 16 11111101011001001101100101000000
[0, 2, 4, 10, 16] 16 11111011101100001001110000101000
[0, 1, 2, 7, 8] 15 11111101100101001011000000100110
[0, 1, 4, 5, 9] 15 11111110010110000100011010100010
[0, 1, 4, 8, 12] 14 11111110101001110000010001010010
[0, 1, 4, 5, 8] 14 11111110010101100010110000100010
[0, 1, 4, 17, 20] 12 11111111000100011010100101001000
[0, 1, 4, 17, 18] 12 11111110010101100011010001001000
[0, 1, 2, 4, 5] 12 11111100110101100000011001010100
[0, 1, 4, 5, 17] 11 11111110101010010010011100001000
[0, 1, 2, 6, 12] 10 11110111011010001001011100001000
[0, 1, 4, 13, 29] 10 11111101110001011010100010010000
[0, 1, 2, 4, 19] 10 11111100110100110010101011000000
[0, 1, 2, 15, 16] 10 11111100000101100110001001011010
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[0, 1, 2, 4, 17] 10 11111100110100101010110000001100
[0, 1, 2, 4, 6] 10 11111010010100011000001011100110
[0, 1, 2, 4, 29] 10 11111100110101100000011001010100
[0, 1, 3, 4, 17] 9 11111011001001110001101010000010
[0, 1, 2, 9, 10] 9 11111101010011000100000101100110
[0, 1, 2, 10, 22] 9 11111100001010001000110110100110
[0, 1, 2, 4, 8] 9 11111100010110010000110001010110
[0, 1, 4, 5, 16] 8 11111001100100100101001100111000
[0, 1, 4, 16, 20] 8 11111101011000100001101000110010
[0, 1, 2, 4, 28] 8 11111100101100010001010110000110
[0, 1, 2, 8, 26] 8 11111101100101010110010000001100
[0, 1, 4, 16, 17] 8 11111101001010010011001110001000
[0, 1, 4, 13, 17] 8 11111101110001011010100010010000
[0, 1, 2, 13, 14] 7 11111100001011001101010001100010
[0, 1, 2, 5, 6] 7 11111100110101101100001010001000
[0, 1, 2, 6, 20] 7 11111011000100001110100100010110
[0, 1, 2, 11, 12] 7 11111101000110010100000110100110
[0, 1, 2, 12, 14] 7 11111000010001001011101101000110
[0, 1, 2, 14, 16] 7 11111011011010001000111001010000
[0, 1, 2, 3, 11] 7 11111011100101011010000100110000
[0, 1, 3, 4, 14] 7 11111100010011101010000100101100
[0, 1, 4, 15, 18] 7 11111100100110101110010100001000
[0, 1, 2, 3, 9] 6 11111010010100001011000011001110
[0, 1, 2, 4, 22] 6 11111001000101101110101100010000
[0, 1, 2, 4, 14] 6 11110111011010001001011100001000
[0, 1, 2, 4, 20] 6 11111011100100010101100000110100
[0, 1, 3, 17, 20] 6 11111100100010000110011101001010
[0, 1, 2, 7, 27] 6 11111100110000101100001101010100
[0, 1, 3, 5, 7] 6 11111101100010100011001011000010
[0, 1, 3, 5, 28] 5 11111101100101000001100101011000
[0, 1, 2, 3, 14] 5 11111011101000011001010010110000
[0, 1, 2, 3, 16] 5 11111011011000001010011100010100
[0, 1, 2, 3, 10] 5 11111010111010110001001100100000
[0, 1, 4, 5, 18] 5 11111100110001010110010110000100
[0, 1, 2, 6, 8] 5 11111101101010001100001001101000
[0, 1, 3, 4, 10] 5 11111100111010110000100010010100
[0, 1, 2, 11, 23] 4 11111011100001000110101100010100
[0, 1, 2, 3, 15] 4 11111011000001110101001011000100
[0, 1, 3, 7, 10] 4 11111011100101000110101100000100
[0, 1, 2, 3, 8] 4 11111011010100001110010010110000
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[0, 1, 4, 14, 18] 4 11111011010001001011001100011000
[0, 1, 2, 10, 12] 4 11111101100101101100010001010000
[0, 1, 2, 8, 20] 4 11111011100101101011001000100000
[0, 1, 4, 9, 28] 4 11111010110011011000110000010100
[0, 1, 2, 10, 23] 4 11111011100100001100001001010110
[0, 1, 2, 9, 24] 4 11111101001100001010110000110100
[0, 1, 5, 16, 19] 4 11111001100100011001101001011000
[0, 1, 4, 6, 8] 4 11111101101010001110001001001000
[0, 1, 2, 4, 11] 4 11111100110101010010110011000000
[0, 1, 3, 14, 19] 3 11111100001000101001100111010010
[0, 1, 3, 12, 30] 3 11110111010010001001011110001000
[0, 1, 2, 14, 18] 3 11110111011100010001011010010000
[0, 1, 2, 12, 21] 3 11111011011101001000011010000100
[0, 1, 3, 10, 26] 3 11111011010111000101100010000100
[0, 1, 3, 8, 11] 3 11111100101100001101010000110010
[0, 1, 3, 5, 8] 3 11111100110101100000101000110010
[0, 1, 3, 13, 23] 3 11111110001001010110010100110000
[0, 1, 3, 5, 23] 3 11111011001010011101011000100000
[0, 1, 3, 14, 30] 3 11111101001001010110000111000100
[0, 1, 2, 3, 13] 3 11111011100001010010100001101100
[0, 1, 4, 12, 29] 3 11111001011110110001000010100010
[0, 1, 2, 4, 16] 2 11110110100101110111000100010000
[0, 1, 3, 8, 9] 2 11111001011000011010110101100000
[0, 1, 2, 6, 10] 2 11110101111000100010100011011000
[0, 1, 3, 7, 8] 2 11111100010110010000110001010110
[0, 1, 3, 19, 21] 2 11111100010100011110010010100100
[0, 1, 2, 3, 6] 2 11111010101100001110010000100110
[0, 1, 2, 7, 26] 2 11111101100100000011010010100110
[0, 1, 2, 7, 10] 2 11111010100011001000100001110110
[0, 1, 3, 5, 16] 2 11111110001011000110010100100010
[0, 1, 4, 8, 13] 2 11111110010101100001000101100010
[0, 1, 3, 15, 19] 2 11110110100101110111000100010000
[0, 1, 3, 14, 16] 2 11111101001001010010110001110000
[0, 1, 3, 8, 25] 2 11111100101100001101010000110010
[0, 1, 2, 6, 18] 2 11111010101011000100111000011000
[0, 1, 3, 5, 14] 2 11110111010010001001011110001000
[0, 1, 3, 24, 25] 2 11111100101100001101010000110010
[0, 1, 2, 6, 27] 2 11111101010011000011010000100110
[0, 1, 2, 4, 13] 2 11111011100101100000110101000100
[0, 1, 3, 4, 8] 2 11111101011001001110001010000100
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[0, 1, 2, 14, 19] 2 11111011101000011001010010110000
[0, 1, 2, 8, 10] 2 11110111000101101001000101110000
[0, 1, 3, 12, 14] 2 11110111010010001001011110001000
[0, 1, 3, 14, 17] 2 11111100101001101011000101100000
[0, 1, 2, 9, 11] 2 11111101101101000110001000101000
[0, 1, 3, 13, 16] 2 11111100000101010010110011000110
[0, 1, 2, 7, 25] 2 11111101100001011000011001001010
[0, 1, 4, 8, 21] 2 11111110101001110000010001010010
[0, 1, 2, 5, 27] 2 11111101000011010001100010100110
[0, 1, 4, 9, 29] 2 11111011011000111000010010001010
[0, 1, 2, 5, 17] 2 11111101001100011011000101000010
[0, 1, 2, 5, 29] 2 11111011100001100100100001101010
[0, 1, 3, 21, 23] 2 11110111010010001001011110001000
[0, 1, 2, 4, 21] 2 11110111000010110111010010001000
[0, 1, 4, 12, 15] 2 11111001110010001001101101010000
[0, 1, 4, 6, 26] 2 11111011000101000110101100000110
[0, 1, 2, 12, 18] 2 11111010100011001110000011010010
[0, 1, 2, 10, 13] 2 11111100000101001010110110011000
[0, 1, 3, 12, 15] 2 11111101110000101001100101000100
[0, 1, 2, 13, 15] 2 11111011010000101110001100010100
[0, 1, 3, 9, 10] 1 11111001110110100000110010001010
[0, 1, 3, 7, 26] 1 11111001110110101000101100100000
[0, 1, 2, 6, 24] 1 11110101111000110110001010001000
[0, 1, 3, 21, 27] 1 11111100101010000011001011000110
[0, 1, 3, 8, 22] 1 11111010010110001000101100001110
[0, 1, 3, 14, 22] 1 11110110001011010001000011110010
[0, 1, 2, 7, 13] 1 11111100110110101100010100010000
[0, 1, 2, 8, 15] 1 11110111101000101100010110000100
[0, 1, 2, 7, 21] 1 11111010100110001011000111000010
[0, 1, 2, 11, 18] 1 11111100110110000010101101001000
[0, 1, 3, 25, 28] 1 11111100110001011010000011001010
[0, 1, 3, 7, 22] 1 11110111000011101000100010010110
[0, 1, 4, 5, 12] 1 11111000101000100000111011010110
[0, 1, 2, 5, 11] 1 11111101000011010001010011000110
[0, 1, 2, 6, 22] 1 11111010101011000100111000011000
[0, 1, 3, 13, 20] 1 11111101100100010100010111001000
[0, 1, 2, 4, 15] 1 11111001011000100111010100000110
[0, 1, 3, 10, 25] 1 11111101001010000011100101001100
[0, 1, 4, 8, 18] 1 11110110011000101101001100110000
[0, 1, 3, 19, 23] 1 11111011101001110000100010100100
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[0, 1, 2, 5, 23] 1 11111101000011010001010011000110
[0, 1, 2, 8, 14] 1 11111000011010101010000111001100
[0, 1, 2, 8, 22] 1 11111001101011000010111000010100
[0, 1, 2, 5, 12] 1 11111101010001100110000011010010
[0, 1, 2, 12, 16] 1 11111000110000111001000110101010
[0, 1, 2, 7, 9] 1 11111101001010011000000110100110
[0, 1, 4, 13, 23] 1 11110110011000010110011010011000
[0, 1, 2, 4, 10] 1 11111010110110010001110001000010
[0, 1, 2, 8, 11] 1 11111001101011010111000100100000
[0, 1, 3, 9, 19] 1 11111100100110100010111000010100
[0, 1, 2, 9, 12] 1 11111100000110101101010001100100
[0, 1, 3, 13, 17] 1 11110110100100010001011101110000
[0, 1, 4, 8, 9] 1 11111110001101101010100001001000
[0, 1, 4, 16, 19] 1 11111011001010000010101111000100
[0, 1, 2, 5, 10] 1 11111011100011001010011010000010
[0, 1, 3, 9, 11] 1 11111100100101101110001000101000
[0, 1, 2, 7, 16] 1 11110110001000101001110101110000
[0, 1, 5, 8, 13] 1 11111010001100010110000100101110
[0, 1, 3, 4, 13] 1 11111011101011000001100010100100
[0, 1, 2, 7, 18] 1 11111101001100001011001000010110
[0, 1, 3, 8, 28] 1 11111100100001010110001101100010
[0, 1, 2, 3, 7] 1 11111001000010100001101110101100
[0, 1, 2, 12, 20] 1 11111001011101100001101001010000
[0, 1, 3, 7, 28] 1 11111100100010100101000100111100
[0, 1, 3, 12, 17] 1 11111010001000010010111001110100
[0, 1, 2, 7, 17] 1 11111000010010000101101110101100
[0, 1, 2, 5, 28] 1 11111101000101001100001011000110
[0, 1, 3, 5, 19] 1 11111101001011100110010100010000
[0, 1, 4, 9, 12] 1 11111110001011001000110001010010
[0, 1, 2, 5, 18] 1 11111010101100001110010000100110

Below and on the next page are listed all combs of length 5 which have no corre-
sponding sequence for the de Bruijn comb.

[0, 1, 3, 13, 28] [0, 1, 3, 17, 21] [0, 1, 3, 7, 19] [0, 1, 3, 13, 22] [0, 1, 3, 4, 12]
[0, 1, 2, 9, 15] [0, 4, 8, 16, 24] [0, 1, 4, 17, 26] [0, 1, 4, 6, 14] [0, 1, 2, 6, 19]
[0, 2, 6, 18, 22] [0, 1, 2, 8, 18] [0, 1, 5, 7, 16] [0, 1, 3, 15, 27] [0, 1, 3, 23, 24]
[0, 1, 3, 8, 24] [0, 2, 4, 10, 14] [0, 1, 2, 7, 15] [0, 1, 3, 7, 27] [0, 1, 2, 5, 19]
[0, 1, 2, 6, 17] [0, 1, 2, 4, 27] [0, 1, 2, 10, 20] [0, 1, 3, 5, 26] [0, 1, 4, 6, 18]
[0, 1, 2, 6, 26] [0, 1, 3, 5, 13] [0, 1, 3, 12, 28] [0, 1, 3, 23, 27] [0, 2, 8, 16, 18]
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[0, 1, 2, 7, 14] [0, 1, 3, 7, 16] [0, 1, 2, 4, 26] [0, 1, 4, 14, 17] [0, 1, 4, 18, 26]
[0, 1, 3, 9, 13] [0, 1, 7, 15, 16] [0, 1, 3, 8, 14] [0, 1, 3, 7, 15] [0, 1, 3, 10, 12]
[0, 1, 3, 17, 23] [0, 1, 4, 9, 15] [0, 1, 2, 9, 17] [0, 1, 4, 9, 17] [0, 1, 3, 13, 27]
[0, 1, 3, 8, 12] [0, 1, 2, 9, 20] [0, 1, 2, 9, 19] [0, 1, 2, 5, 26] [0, 1, 3, 9, 26]
[0, 1, 2, 7, 11] [0, 1, 2, 9, 21] [0, 1, 2, 4, 9] [0, 1, 3, 16, 27] [0, 1, 4, 6, 20]
[0, 1, 3, 4, 9] [0, 1, 2, 5, 9] [0, 1, 3, 5, 9] [0, 1, 2, 6, 21] [0, 1, 3, 17, 19]
[0, 1, 4, 15, 28] [0, 1, 2, 9, 16] [0, 1, 3, 5, 15] [0, 1, 3, 7, 24] [0, 1, 2, 10, 15]
[0, 1, 3, 8, 16] [0, 1, 3, 10, 23] [0, 1, 2, 4, 23] [0, 1, 2, 7, 22] [0, 1, 3, 13, 21]
[0, 1, 2, 6, 25] [0, 1, 3, 8, 10] [0, 2, 4, 10, 24] [0, 1, 4, 12, 14] [0, 1, 2, 6, 9]
[0, 1, 3, 21, 25] [0, 1, 2, 11, 15] [0, 1, 2, 10, 16] [0, 1, 4, 15, 20] [0, 1, 2, 3, 12]
[0, 1, 2, 5, 13] [0, 1, 3, 19, 27] [0, 1, 3, 8, 17] [0, 1, 4, 13, 14] [0, 1, 2, 13, 20]
[0, 1, 3, 15, 16] [0, 1, 3, 5, 11] [0, 1, 3, 22, 25] [0, 1, 2, 12, 15] [0, 1, 2, 10, 17]
[0, 1, 2, 6, 14] [0, 1, 2, 8, 23] [0, 1, 3, 9, 25] [0, 1, 3, 12, 27] [0, 1, 7, 8, 17]
[0, 1, 3, 10, 15] [0, 1, 3, 7, 11] [0, 1, 3, 15, 28] [0, 1, 2, 16, 18] [0, 1, 3, 10, 13]
[0, 1, 2, 7, 23] [0, 1, 3, 5, 12] [0, 1, 2, 6, 23] [0, 1, 2, 4, 7] [0, 1, 7, 9, 15]
[0, 1, 3, 15, 21] [0, 1, 2, 11, 16] [0, 2, 4, 8, 14] [0, 1, 2, 13, 18] [0, 1, 3, 7, 9]
[0, 1, 3, 23, 25] [0, 1, 3, 20, 24] [0, 1, 2, 6, 11] [0, 1, 2, 10, 18] [0, 1, 2, 6, 15]
[0, 1, 4, 14, 28] [0, 1, 2, 8, 24] [0, 1, 2, 9, 13] [0, 1, 3, 15, 22] [0, 1, 2, 4, 24]
[0, 1, 3, 4, 11] [0, 1, 2, 5, 8] [0, 1, 3, 5, 17] [0, 1, 2, 8, 16] [0, 1, 3, 5, 25]
[0, 2, 4, 10, 18] [0, 1, 8, 16, 17] [0, 1, 3, 13, 25] [0, 1, 3, 16, 25] [0, 1, 3, 15, 23]
[0, 2, 8, 16, 24] [0, 1, 4, 6, 12] [0, 1, 2, 8, 19] [0, 1, 4, 15, 16] [0, 1, 4, 14, 29]
[0, 1, 3, 4, 16] [0, 1, 2, 5, 7] [0, 1, 3, 13, 15] [0, 1, 3, 7, 23] [0, 1, 3, 9, 28]
[0, 1, 6, 8, 17] [0, 1, 8, 16, 24] [0, 1, 2, 8, 17] [0, 1, 3, 7, 17] [0, 1, 3, 12, 13]
[0, 1, 3, 24, 28] [0, 2, 4, 16, 20] [0, 1, 4, 6, 17] [0, 1, 3, 9, 30] [0, 1, 3, 27, 28]
[0, 1, 2, 7, 19] [0, 1, 2, 5, 14] [0, 2, 4, 10, 26] [0, 1, 2, 9, 25] [0, 1, 3, 8, 20]
[0, 1, 3, 15, 20] [0, 1, 2, 10, 14] [0, 1, 3, 8, 19] [0, 1, 3, 22, 24] [0, 1, 4, 12, 18]
[0, 1, 2, 14, 17] [0, 1, 3, 16, 21] [0, 1, 5, 8, 16] [0, 1, 3, 12, 16] [0, 1, 3, 5, 24]
[0, 1, 2, 12, 19] [0, 1, 2, 15, 18] [0, 1, 2, 6, 13] [0, 1, 3, 9, 20] [0, 1, 2, 9, 14]
[0, 1, 2, 11, 13] [0, 1, 3, 5, 21] [0, 1, 2, 5, 25] [0, 1, 3, 21, 24] [0, 1, 2, 5, 24]
[0, 1, 4, 5, 13] [0, 1, 2, 11, 14] [0, 1, 2, 5, 15] [0, 1, 3, 9, 16] [0, 1, 3, 17, 27]
[0, 1, 7, 9, 16] [0, 1, 2, 5, 20] [0, 1, 3, 25, 27] [0, 1, 3, 5, 22] [0, 1, 3, 10, 30]
[0, 1, 2, 12, 17] [0, 1, 2, 5, 16] [0, 1, 4, 8, 23] [0, 1, 2, 9, 22] [0, 1, 3, 16, 19]
[0, 1, 3, 10, 20] [0, 1, 3, 14, 15] [0, 1, 3, 16, 17] [0, 1, 2, 5, 21] [0, 1, 3, 8, 23]
[0, 1, 3, 17, 25] [0, 1, 2, 8, 12] [0, 1, 4, 15, 23] [0, 1, 2, 4, 12] [0, 1, 3, 12, 24]
[0, 1, 3, 10, 16] [0, 1, 2, 11, 19] [0, 1, 2, 6, 16] [0, 1, 3, 16, 23] [0, 1, 4, 26, 28]
[0, 1, 3, 15, 25] [0, 1, 3, 7, 12] [0, 1, 2, 13, 16] [0, 1, 3, 4, 15] [0, 1, 3, 17, 28]
[0, 1, 3, 9, 17] [0, 1, 3, 7, 30] [0, 1, 3, 10, 14] [0, 1, 7, 9, 17] [0, 1, 4, 9, 16]
[0, 1, 2, 5, 22] [0, 1, 2, 7, 24] [0, 1, 3, 8, 21] [0, 1, 2, 8, 13] [0, 1, 2, 8, 25]
[0, 1, 4, 16, 26] [0, 1, 4, 9, 20] [0, 1, 2, 4, 25] [0, 1, 3, 12, 25]


