
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A02

A PARTITION OF THE NON-NEGATIVE INTEGERS,
WITH APPLICATIONS

Tom C. Brown

Received: 2/25/04, Revised: 6/22/04, Accepted: 10/20/04, Published: 9/1/05

Abstract

We describe a particular partition of the non-negative integers which consists of
infinitely many translates of an infinite set. This partition is used to show that a
certain van der Waerden-like theorem has no simple canonical version. The partition
is also used to give a lower bound for one of the classical van der Waerden functions,
namely w(3;m),the smallest positive integer such that every m-coloring of [1, w(3;m)]
produces a monochromatic 3-term arithmetic progression. Several open questions are
mentioned.

1 Introduction

Let S denote the set of all distinct sums of odd powers of 2, including 0 as the empty sum,
and let T denote the set of all distinct sums of even powers of 2, including 0 as the empty
sum. Then every non-negative integer can be written uniquely in the form s+ t, where s ∈ S
and t ∈ T . Thus {s + T : s ∈ S} is a partition of ω = {0, 1, 2, ...} into translates of T.

It is more convenient to describe this partition as a coloring f of ω. Thus for each n ∈ ω,
we write n = s + t, s ∈ S, t ∈ T, and define f(n) = s. In other words, if n =

∑
i odd 2i

+
∑

i even 2i, then f(n) =
∑

i odd 2i. For this coloring f, the set of colors is S, and for each
s ∈ S, f is constant on the “color class” s + T.

2 A van der Waerden-like theorem, and its canonical

version

We need the following definition.

Definition 1. If A = {a1 < a2 < · · · < an} ⊂ ω = {0, 1, 2, ...}, n ≥ 2, the gap size of A is
gs(A) = max{aj+1 − aj : 1 ≤ j ≤ n − 1}. If |A| = 1, gs(A) = 1.
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Theorem 1. If ω is finitely colored, there exist a fixed d ≥ 1 (d depends only on the
coloring) and arbitrarily large (finite) monochromatic sets A with gs(A) = d.

This fact first appeared in [3]. Various applications appear in [4, 6, 11, 13]. Theorem
1 is somewhat similar in form to van der Waerden’s theorem on arithmetic progressions
[15]. (Van der Waerden’s theorem says that for every k, every finite coloring of the positive
integers produces a monochromatic k-term arithmetic progression.) However, Theorem 1
differs in a number of ways: Van der Waerden’s theorem does not imply Theorem 1, since
the d in the conclusion of Theorem 1 is independent of the size of the monochromatic sets
A. Beck [1] showed the existence of a 2-coloring of ω such that if A is any monochromatic
arithmetic progression with common difference d, then |A| < 2 log d. Hence the presence
of large monochromatic arithmetic progressions, which is guaranteed by van der Waerden’s
theorem, is not enough to imply Theorem 1. Somewhat earlier, Justin [10] found an explicit
coloring such that if A is any monochromatic arithmetic progression with common difference
d, then |A| < h(d); in his example, the coloring is explicit but the function h(d) is not.
Theorem 1 (which has a simple proof) does not imply van der Waerden’s theorem in a simple
way. (In Chapter 14 of [8], Hindman and Strauss give a proof that Fact 1 does in fact imply
van der Waerden’s theorem - and at this point in their book, the proof does seem simple -
however, a fair amount of machinery has been developed by this point.) Theorem 1 does not
have a density version corresponding to Szemerédi’s theorem [14]. That is, there exists a set
X ⊂ ω with positive upper density for which there do not exist a fixed d ≥ 1 and arbitrarily
large sets A = {a1 < a2 < · · · < an} ⊂ X with max{aj+1 − aj : 1 ≤ j ≤ n − 1} = d.
For an example of such a set X, see [2]. Finally, no “canonical version” of this result is
known. The Erdős-Graham canonical version of van der Waerden’s theorem ([7]) states that
if g : ω → ω is an arbitrary coloring of ω (using finitely many or infinitely many colors) then
there exist arbitrarily large arithmetic progressions A such that either g is constant on A, i.
e. |g(A)| = 1, or g is one-to-one on A, i. e. |g(A)| = |A|. We show that there is no such
canonical version of Theorem 1. This is Corollary 1 below. A very brief sketch of an outline
of a proof of the following result has appeared in [5]. It seems worthwhile to fill in some of
the missing details.

Theorem 2. For every A ⊂ ω (with f as described in the introduction),

1

4

√
|A|/gs(A) < |f(A)| < 4

√
|A|gs(A).

Corollary 1. For the coloring f above, there do not exist a fixed d and arbitrarily large
sets A with gs(A) = d on which f is either constant or 1-1.

Proof of Corollary 1. If 16gs(A) ≤ |A|, then by Theorem 2, 1 < |f(A)| < |A|. To prove
Theorem 2, we need the following definition.

Definition 2. For k ≥ 0, an aligned block of size 4k is a set of 4k consecutive non-negative
integers whose smallest element is m4k, for some m ≥ 0.

Proof of Theorem 2. Note that the first aligned block of size 4k, namely [0, 4k−1] = [0, 22k−1],
is in 1-1 correspondence with the set of all binary sequences of length 2k. ¿From this we see
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(by the definition of f) that for n ∈ [0, 22k −1], there are 2k possible values of f(n), and each
value occurs exactly 2k times. It is easy to see (using the definition of f) that the same is
true for any aligned block [m4k, m4k + 4k − 1]. We express this more simply by saying that
“each aligned block of size 4k has 2k colors, each appearing exactly 2k times.” Now we can
establish the upper bound in Theorem 2. Let A = {a0 < a1 < a2 < · · · < an} ⊂ ω. Then
an ≤ a0 + n · gs(A) = a0 + (|A| − 1)gs(A), or

an − a0 < |A|gs(A).

Choose s minimal so that A is contained in the union of two adjacent aligned blocks of size
4s. (Two blocks are necessary in case A contains both m4s − 1 and m4s for some m.) Then

4s−1 < an − a0.

Since each aligned block of size 4s has 2s colors,

|f(A)| ≤ 2 · 2s.

Putting these three inequalities together gives

|f(A)| < 4
√
|A|gs(A).

Next, we establish the lower bound for |f(A)|, which requires a bit more care. We will use
the following Lemma.

Lemma 1. For each k ≥ 0, any two aligned blocks of size 4k (consecutive or not) are either
colored identically, or have no color in common.

Proof of Lemma 1. Consider the aligned blocks [p4k, p4k+4k−1] and [q4k, q4k+4k−1]. By the
definition of f (and since 4k is an even power of 2), f(p4k) = f(p)4k, so that f(p4k) = f(q4k)
if and only if f(p) = f(q). Also, for 0 ≤ j ≤ 4k − 1, f(p4k + j) = f(p4k) + f(j). This last
equality obviously holds if p = 0, and for p > 0 it holds since then each power of 2 which
occurs in j is less than each power of 2 which occurs in p4k. Thus the blocks [p4k, p4k +4k−1]
and [q4k, q4k + 4k − 1] are colored identically if f(p) = f(q), and have no color in common
if f(p) �= f(q). Proceeding with the lower bound in Theorem 2, we note that for k ≥ 1, the
colors of any aligned block of size 4k have the form UUV V, where U and V are blocks (of
colors) of size 4k−1. To see this, let the given aligned block be [m4k+1, m4k+1 + 4k+1 − 1],
where now k ≥ 0. Divide this block into four consecutive aligned blocks of size 4k, namely
those blocks of size 4k whose first elements are respectively m4k+1, m4k+1+4k, m4k+1+2 ·4k,
m4k+1+2·4k+4k. Since f(m4k+1) = f(m4k+1+4k) �= f(m4k+1+2·4k) = f(m4k+1+2·4k+4k),
Lemma 1 and its proof imply that the colors of these four blocks have the forms U, U, V,
V. Next, we note that any block of size 4k, aligned or not, contains at least 2kcolors. For
let A be any block of size 4k. Let the first element of A lie in the aligned block S of size
4k, and let T be the aligned block of size 4k which immediately succeeds S. If S and T are
colored identically, then the elements of f(A) are just a cyclic permutation of the elements
of f(S), and hence the block A contains exactly 2k colors. By Lemma 1, the remaining
case is when S, T have no color in common. In this case, by the preceding paragraph,
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f(S)f(T ) = UUV V XXY Y, where no two of U, V, X, Y have a color in common, and U,
V, X, Y are of size 4k−1. Then f(A), which has size 4k, contains either UV or V X or XY,
and so has at least 2k−1 + 2k−1 = 2k colors. Finally, we note that for s ≥ 1, k ≥ 1, every
set of 4s consecutive aligned blocks of size 4k contains at least 2s blocks of size 4k, no two of
which have a common color. This follows from the fact that these 4s blocks have the form
[p4k, p4k + 4k − 1], t ≤ p ≤ t + 4s − 1, for some t. The block f([t, t + 4s − 1]) has at least
2s colors, by the preceding paragraph. If f(p) �= f(q), where t ≤ p < q ≤ t + 4s − 1, then
f(p4k) �= f(q4k), so by Lemma 1 the two blocks [p4k, p4k + 4k − 1] and [q4k, q4k + 4k − 1]
have no color in common. Now let A ⊂ ω be given. Choose k so that 4k−1 ≤ gs(A) < 4k.
Choose t minimal so that A is contained in the union of t consecutive aligned blocks of size
4k. Then A meets each of these blocks (by the choice of k), and

|A| ≤ t4k.

Choose s so that 4s ≤ t < 4s+1. Then among the t consecutive aligned blocks of size 4k are
at least 2s blocks of size 4k, no two of which have a color in common. Since each of the t
blocks meets A, we have

2s ≤ |f(A)|.
Thus |A| ≤ t4k < 4 · 4s · 4 · 4k−1 ≤ 4|f(A)|2 · 4 · gs(A), so 1

4

√
|A|/gs(A) < |f(A)|.

3 A bound for a van der Waerden function

Definition 3. For m ≥ 1, let w(3; m) denote the smallest positive integer such that every
m-coloring of [1, w(3; m)] produces a monochromatic 3-term arithmetic progression.

Theorem 3. For all m ≥ 1, w(3; m) > 1
2
m2.

Proof. For k ≥ 1, the coloring f described in the introduction colors the interval [0, 22k+1 −
1] with 2k colors. The colors are the sums (including 0 as the empty sum) of distinct
elements of the set {21, 23, 25, ..., 22k−1}. The color classes are subsets of the translates (by
the 2k colors) of the set Sk of sums (including 0 as the empty sum) of distinct elements of
the set {20, 22, 24, ..., 22k} = {40, 41, 42, ..., 4k}. It is easy to see that Sk contains no 3-term
arithmetic progression. Hence, with respect to the coloring f, there is no monochromatic
3-term arithmetic progression in [0, 22k+1 − 1] . The coloring f shows that for k ≥ 1,
w(3; 2k) > 22k+1. For a general m, choose k so that 2k ≤ m < 2k+1. Then w(3; m) ≥
w(3; 2k) > 22k+1 = 1

2
22k+2 > 1

2
m2.

4 Remarks

1. The lower bound in Theorem 3 is not the best possible. Indeed, in the standard
reference Ramsey Theory (by R. L. Graham, B. L. Rothschild, and J. H. Spencer, 2nd
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edition, 1990, John Wiley & Sons, New York), the authors show that for some positive
constant c, w(3; m) > m(clogm).

2. It would be nice to be able to say something about general colorings along the lines of
Theorem 1. Perhaps the following is true: If g : ω → ω is an arbitrary coloring of ω,
then there exist a fixed d ≥ 1 and arbitrarily large (finite) sets A with gs(A) = d such

that either (a) at most
√
|A| distinct colors appear in g|A; or (b) each color appears

in g|A at most
√
|A| times. Note that for the particular coloring f, if we take d = 1,

and let A = [0, 4k − 1], then exactly
√
|A| distinct colors appear in f |A, and each color

appears in f |A exactly
√
|A| times.

3. We have used a particular partition of ω. We would get another partition of ω (into
infinitely many translates of an infinite set) by replacing the odds and evens by arbitrary
A and B, where {A, B} is any partition of {1, 2, 3, ...} into two infinite sets. Perhaps
it’s possible to describe all of the partitions of ω into infinitely many translates of an
infinite set.
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[11] Lallement, G. Semigroups and Combinatorial Applications, Wiley-Interscience, New York, 1979.

[12] Landman, B. M. and Robertson, A. Ramsey Theory on the Integers, AMS, 2004.

[13] Straubing, H. The Burnside problem for semigroups of matrices, in Combinatorics on Words, Progress
and Perspectives, Academic Press 1982, 279-295.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A02 6
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