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Abstract

We investigate the asymptotic uniqueness of the maximal order statistic of X1, X2, . . . , Xn,
i.i.d. positive integer random variables, by casting the problem in a balls in boxes setting. We
give a necessary and sufficient condition on the distribution of the Xi’s for the convergence of
the probability of uniqueness as n→∞. We describe the connection to an interesting problem
in number theory. The main techniques used are altering the sample to have random size,
specifically, Poisson(n), and Karamata’s Tauberian Theorem.

1. Introduction And Main Results

Let X1, X2, . . . , Xn be i.i.d. random variables taking values on the positive integers, with
P (X = i) = pi. Denote by ρn the probability that the largest value in the sample is unique,
which, in order statistics notation, reads

P (X(n) > X(n−1)).

What is the asymptotic behavior of ρn? The problem can be thought of in the following intuitive
manner: Let n balls be thrown independently into an infinite number of boxes, numbered
1, 2, 3, . . . according to the distribution {pi}∞i=1. Then ρn is the probability that the highest
non-empty box has exactly one ball in it. Denote by ρn,t the probability that t is the highest
box with a ball and that it has exactly one ball in it. Clearly,

ρn,t = npt(p1 + p2 + . . .+ pt−1)n−1

so that

ρn =
∞∑
t=1

ρn,t =
∞∑
t=1

npt(1− p̄t)n−1
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where

p̄t =
∞∑
j=t

pj = P (X ≥ t).

The question(s) we would like to answer is (are): What is limn→∞ ρn ? For what distri-
butions {pi}∞i=1 does the limit exist? The case pi = 2−i was investigated by Shuguang Li [2].
He showed that limn→∞ ρn does not exist in this case. Before we investigate the asymptotic
behaviour of ρn we consider a slight modification which illustrates the techniques that we use.
The modification is as follows: Instead of a sample of fixed size n, let our sample be of random
size, specifically, Poisson(n). Then the number of balls in the boxes become independent Pois-
son random variables with mean {npi}∞i=1 respectively (see Ross [3]). So denoting by ρ′n the
probability that the highest box has only one ball, we have:

ρ′n =
∞∑
t=1

npte
−np̄t .

Before stating our main theorem, we recall a key lemma: Karamata’s Tauberian Theorem,
as found, e.g., in Bingham et al. [1], pp. 37-8:

Lemma 1 Let U be non-decreasing on the reals, with U(x) = 0 for x < 0, and such that Û(s)
(the Laplace transform) < ∞ for all large s. Let l be a slowly varying function (i.e., for any
t > 0, limx→∞ l(tx)/l(x) = 1) and let c ≥ 0 and ρ ≥ 0 be constants. Then the following are
equivalent:

1. U(x) ∼ cxρl(1/x)/Γ(1 + ρ) as x→ 0+;

2. Û(s) ∼ cs−ρl(s) as s→∞.

If c = 0, the above result is to be interpreted to mean that U(x) = o(xρl(1/x)/Γ(1 + ρ)) as
x→ 0+ is equivalent to Û(s) = o(s−ρl(s)) as s→∞.

We now prove a theorem that illustrates the technique to be used in the proof of our main
theorem:

Theorem 1 The following are equivalent:

1. limn→∞ ρ′n exists;

2. limn→∞ ρ′n = 1;

3. limt→∞ pt/p̄t = 0.
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In our main theorem we show the result holds with ρ′n replaced by ρn.

Proof. We are interested in the behavior of

ρ′n =
∞∑
t=1

npte
−np̄t = nE(e−np̄X ) = nφ(n)

where φ(n) is the Laplace-Stieltjes transform of the cumulative distribution function of the
random variable p̄X , with X an random variable with distribution {pi}. For limn→∞ ρ′n to exist
and be positive, we would like to have

φ(n) ∼ l/n

as n → ∞, and with l > 0 as our limit. Now since φ is monotone (because it is the moment
generating function of p̄X), this is equivalent to φ(s) ∼ l/s as s → ∞ continuously. To get
an equivalent condition for this, we use our lemma, i.e., Karamata’s Tauberian Theorem with
l(x) = l, c = ρ = 1, and U(x) = Fp̄X , where Fp̄X is the cumulative distribution function of p̄X .
This gives us the following condition in terms of the original distribution function near zero:

Fp̄X (y) ∼ ly

as y → 0+. So we are interested in how

f(y) = Fp̄X (y)/y = P (p̄X ≤ y)/y

varies as y → 0. Let y approach 0 along the sequence {p̄t}. Clearly, P (p̄X ≤ p̄t) = P (X ≥ t) =
p̄t. So f(y) = 1 along this sequence. Thus, if a positive limit were to exist it would have to be
1. Note that this calculation also eliminates the case of the limit being 0, since if we took c = 0,
we could use our theorem to tell us that φ(s) = o(1/n) as n→∞ is equivalent to f(y) = o(1)
as y → 0+, which cannot happen since f(y) = 1 along the sequence {p̄t}.

Now suppose the limit existed, and thus was 1. Look at y ∈ [p̄t, p̄t−1). Then P (p̄X ≤ y) = p̄t.
So

1 ≥ f(y) ≥ p̄t/p̄t−1

and
lim

y→p̄−t−1

f(y) = p̄t/p̄t−1.

Thus for f(y)→ 1 as y → 0, p̄t/p̄t−1 must tend to 1. Now, p̄t/p̄t−1 = 1−pt−1/p̄t−1. So we must
have pt−1/p̄t−1 → 0. We finish by noting that if pt−1/p̄t−1 → 0, f(y) is squeezed and must go
to 1. 2

Theorem 2 Theorem 1 holds when we replace ρ′n with ρn.

Proof. To note that the result holds for ρn, we proceed in a similar vein. First we write:

ρn =
∞∑
t=1

npt(1− p̄t)n−1 =
∞∑
t=1

npte
(n−1) ln(1−p̄t) = nψ(n− 1),
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with ψ(n) representing the Laplace-Stieltjes transform of the cumulative distribution function
of the random variable − ln(1− p̄X). So for ρn we would like, as above with ρ′n and φ(n),

ψ(n) ∼ l/n

as n → ∞. As with φ(n), ψ(n) is a moment generating function and thus monotone, so going
to ∞ discretely is the same as going continuously.So we can again use the Tauberian theorem,
to give us that this is equivalent to:

F (y) ∼ ly

as y → 0+ with F the cumulative distribution function of − ln(1− p̄X). Now let us inspect F .
We have

F (y) = P (− ln(1− p̄X) ≤ y) = P (1− p̄X ≥ e−y)

= P (1− e−y ≥ p̄X) = Fp̄X (1− e−y).

Now, as y → 0+, the variable x = 1−e−y has x ∼ y. But we know about the behavior of Fp̄X (x)
as x→ 0+, in particular that its limit is 1 if it exists at all, and that it exists iff pt/p̄t → 0. So
our conditions are the same for ρn as for ρ′n. 2

2. The Number Theory Connection

How does this problem connect to number theory? Li’s original paper [2] considered the fol-
lowing problem: Let a and n be integers with (2a, n) = 1. Denote the order of a (mod n) by
en(a). Denote by λ(n) the Carmichael-λ function, which is the maximal order of any element
of the multiplicative group mod n. We would like to know when λ(n)/en(a) is odd.

To do this, we first classify the prime divisors of n into the classes p = 2j+1 (mod 2j+1) as j
runs through positive integers. This gives us the highest power of 2 dividing ϕ(p) = λ(p) = p−1.
It is known that the proportion of all primes in the jth class is asymptotically 2−j . Now, the
following can be proved easily:

Lemma 2 For λ(n)/en(a) to be odd, a must be a quadratic non-residue modulo at least one of
the prime factors of n which has maximal j.

So as n has more prime factors in the highest class, the more likely it is that λ(n)/en(a)
is odd. Asymptotic uniqueness would mean a small probability that λ(n)/en(a) is odd. So to
investigate the likelihood of λ(n)

en(a) being odd, we model a “balls in boxes” problem as above,
with the balls being the prime factors of n, the boxes being the j-classes, and pj = 2−j . In
this paper, we have adopted the more general approach with general pj and shown that lim ρj
exists if and only if limj→∞

pj∑
i≥j pi

= 0, in which case, the limit is 1. So we can see that our

condition is not satisfied in the special case under consideration by Li. It was shown by Li [2]
that ρj oscillates, and while our result does not give this precision, it is a nice application of
Tauberian theorems, and provides a general condition under which this limit does (not) exist.
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Note that most “standard” distributions on the integers such as the geometric, Poisson etc.
lead to the non-existence of the limit; a normalized zeta-function distribution would lead to the
limit existing. Our calculations for the geometric (pj = 2−j), show oscillations in the fourth
decimal place; other calculations have been done by Li [2].
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