
AN APPLICATION OF VAN DER WAERDEN’S THEOREM
IN ADDITIVE NUMBER THEORY

Lorenz Halbeisen1

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA
halbeis@math.berkeley.edu

Norbert Hungerbühler
Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

buhler@math.uab.edu

Received: 6/8/00, Revised: 6/28/00, Accepted: 7/1/00, Published: 7/12/00

Abstract

A sequence on a finite set of symbols is called strongly non-repetitive if no two adjacent (finite)
segments are permutations of each other. Replacing the finite set of symbols of a strongly
non-repetitive sequence by different prime numbers, one gets an infinite sequence on a finite set
of integers such that no two adjacent segments have the same product. It is known that there
are infinite strongly non-repetitive sequences on just four symbols. The aim of this paper is
to show that there is no infinite sequence on a finite set of integers such that no two adjacent
segments have the same sum. Thus, in the statement above, one cannot replace “product” by
“sum”. Further we suggest some strengthened versions of the notion of strongly non-repetitive.

0. Introduction

A finite set of one or more consecutive terms in a sequence is called a segment of the sequence.
A sequence on a finite set of symbols is called non-repetitive if no two adjacent segments
are identical, where adjacent means abutting but not overlapping. It is known that there are
infinite non-repetitive sequences on three symbols (see [Ple 70]), and on the other hand, it is
obvious that a non-repetitive sequence on two symbols is at most of length 3. Paul Erdős has
raised in [Erd 61] the question of the maximum length of a sequence on k symbols, such that
no two adjacent segments are permutations of each other. Such a sequence is called strongly
non-repetitive. Veikko Keränen has shown that four symbols are enough to construct an
infinite strongly non-repetitive sequence (see [Ker 92]). Replacing the finite set of symbols of
an infinite strongly non-repetitive sequence by different prime numbers, one gets an infinite
sequence on a finite set of integers such that no two adjacent segments have the same product.

It is natural to ask whether one can replace in the statement above “product” by “sum”.
1Supported by the Swiss National Science Foundation.
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This leads to the following question: Is it possible to construct an infinite sequence on a finite
set of integers such that no two adjacent segments have the same sum?

In the next section we will see that such a sequence does not exist. Moreover, in any infinite
sequence on a finite set of integers we always find arbitrary large finite sets of adjacent segments,
such that all these segments have the same sum.

1. An application of van der Waerden’s Theorem

Let Z denote the set of integers and let N denote the set of non-negative integers. The theorem
of van der Waerden states as follows (cf. [vdW 27]):

Van der Waerden’s Theorem. For any coloring of N with finitely many colors, and for each
l ∈ N, there is a monochromatic arithmetic progression of length l.

Before we state the main result of this paper, we introduce some notation.

Let S = 〈a1, a2, . . . , ai, . . .〉 be an infinite sequence of Z. By definition, a finite sequence of in-
tegers s is a segment of S, if and only if there is a positive i ∈ N such that s = 〈ai, ai+1, . . . , ai+k〉,
for some k ∈ N. A finite set s1, s2, . . . , sl of segments of S is called a set of adjacent seg-
ments, if sj and sj+1 are adjacent for each j with 1 ≤ j < l. For a segment s = 〈ai, . . . , ai+k〉
of S, let

∑
s :=

∑k
j=0 ai+j . A segment s of S of the form s = 〈a1, . . . , ak〉 is called the initial

segment of length k of S. Let
∑

(S) denote the infinite integer sequence 〈t1, t2, . . . , tk, . . .〉,
where tk :=

∑
sk and sk is the initial segment of length k of S. We call

∑
(S) the series of S.

The main result of this paper is the following:

Theorem. If SM is an infinite sequence of some non-empty finite set M ⊆ N, then for each
positive l ∈ N there is a set s1, s2, . . . , sl of adjacent segments of SM , such that∑

s1 =
∑

s2 = . . . =
∑

sl .

Proof. Without loss of generality we may assume that 0 /∈ M . Thus, the series of SM ,∑
(SM ) = 〈t1, t2, . . . , ti, . . .〉, is strictly increasing and hence an unbounded sequence of N.

Define the coloring π of N as follows:

π(n) is the least non-negative integer h such that n+ h = tj , for some j.

Because M is finite, it has a biggest element, and therefore, since the series of SM is unbounded,
the coloring π is a well-defined finite coloring of N. Now, by van der Waerden’s Theorem, for each
l ∈ N, there is a monochromatic arithmetic progression of length l. Let n1 < n2 < . . . < nl+1

be such a monochromatic arithmetic progression with increment d. Since n1, n2, . . . , nl+1 is
monochromatic, there is an h such that π(ni) = h (for 1 ≤ i ≤ l + 1). This implies that for
each 1 ≤ i ≤ l + 1 there is a ji such that ni + h = tji , and since the series of SM is strictly
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increasing, we have ji < ji+1 (for 1 ≤ i ≤ l). Hence, for SM = 〈a1, a2, . . . , ai, . . .〉, we get

j2∑
i=j1+1

ai =
j3∑

i=j2+1

ai = . . .

jl+1∑
i=jl+1

ai = d .

Thus, we find a set of size l of adjacent segments of SM such that all these segments have the
same sum, which completes the proof of the Theorem.

Using a modification of the arguments above we can prove the following:

Corollary. If SM is an infinite sequence of some non-empty finite set M ⊆ Z, then for each
positive l ∈ N there is a set s1, s2, . . . , sl of adjacent segments of SM , such that∑

s1 =
∑

s2 = . . . =
∑

sl .

Proof. Let SM = 〈a1, a2, . . . , ai, . . .〉. If the series of SM has a lower and an upper bound, then
we find an infinite set J ⊆ N and an integer c, such that for each j ∈ J , tj = c. Hence, for any
j, j′ ∈ J with j < j′ we get

∑j′

i=j+1 ai = 0, which completes the proof of the “bounded” case.
On the other hand, if the series of SM does not have a lower bound, then the series of −SM ,
where −SM = 〈−a1,−a2, . . . ,−ai, . . .〉, does not have an upper bound. Thus, without loss of
generality, we may assume that the series of SM does not have an upper bound, which implies
that

∑
(SM ) = 〈t1, t2, . . . , ti, . . .〉 does not have a maximal element. Now, let 〈τ1, τ2, . . . , τj , . . .〉

be the strictly increasing subsequence of
∑

(SM ) such that τj = tµ(j), where µ(j) = min{i : ti >
τj−1} with τ0 := −1. Define the coloring π of N by stipulating

π(n) is the least non-negative integer h such that n+ h = τj , for some j.

Again by van der Waerden’s Theorem, for each l ∈ N there is a monochromatic arithmetic
progression n1 < n2 < . . . < nl+1 of length l. Let ji be such that ni +π(ni) = τji = tµ(ji), then,
as in the proof of the Theorem, we get

µ(j2)∑
i=µ(j1)+1

ai =
µ(j3)∑

i=µ(j2)+1

ai = . . .

µ(jl+1)∑
i=µ(jl)+1

ai ,

which completes the proof of the “unbounded” case.

2. Stronger versions of “strongly non-repetitive”

One can strengthen the notion of strongly non-repetitive in different directions. For example,
one can consider more than two adjacent segments, or one can restrict the set of patterns which
may appear in the sequence.
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2.1. More than two adjacent segments

A sequence on k symbols is called a (k;n,m)-sequence if, and only if, in any set of n adjacent
segments of the same length we find no m segments which are permutations of each other.
Further, let η(k;n,m) denote the maximum length of a (k;n,m)-sequence. If there are (k;n,m)-
sequences of any length (for fixed k, n,m), then, by König’s Lemma, there is an infinite (k;n,m)-
sequence and we stipulate η(k;n,m) =∞.

First we consider the case when n = m. It is easy to see that each (k;n, n)-sequence is
also a (k + r;n − s, n − s)-sequence, where r, s ∈ N. Michel Dekking showed in [Dek 79] that
η(2; 4, 4) = η(3; 3, 3) = ∞, and, as mentioned above, Veikko Keränen showed in [Ker 92] that
η(4; 2, 2) =∞. On the other hand, concerning the non-trivial cases, it is not hard to check that
η(2; 3, 3) = 9, η(3; 2, 2) = 7 and η(2; 2, 2) = 3. Thus, all the values of η(k;n, n) are determined.

With the help of PROLOG, we investigated some of the cases where n > m. For example
we know that η(5; 5, 2) = 24, η(3; 5, 3) = 38, η(2; 5, 4) = 49, η(5; 4, 2) = 16 and η(4; 3, 2) = 13.
Further, with the results for n = m, it is easy to see that η(4; 5, 4) = η(4; 4, 3) = ∞. On the
other hand, we found long (3; 4, 3) and (4; 5, 3)-sequences, respectively. So, also η(3; 4, 3) and
η(4; 5, 3) might be infinite.

2.2. Restricted versions

Let us now restrict the set of patterns which may appear in the non-repetitive sequence.

If a symbol appears in a sequence twice in a row, then we call it a simple repetition.
A sequence on k symbols is called a (k;n,m)∗-sequence if it is a (k;n,m)-sequence without
simple repetitions. Again with the help of PROLOG, we know that the maximum length of a
(3; 4, 3)∗-sequence is 55. An example of a (3; 4, 3)∗-sequence of length 55 is given by 〈a, b, a, b,
a, c, a, c, a, b, a, b, c, b, c, b, a, b, a, c, a, c, a, b, a, b, c, b, c, b, a, b, a, c, a, c, a, b, a, b,
c, b, c, b, a, b, a, c, a, c, a, b, a, b, a〉.

Another restriction on the set of patterns which may appear in the sequence is given by
the following example. Let S be a sequence on four symbols, say a, b, c, d. We say that S
is separating the symbols a and b, if neither 〈a, b〉 nor 〈b, a〉 appears as a segment of S.
Surprisingly, we found quite long abcd-sequences separating a and b, which are even (4; 2, 2)-
sequences.

Finally, concerning the Theorem, we like to ask the following question: Is it possible to
construct an infinite sequence on a finite set of integers such that no two adjacent segments of
the same length have the same sum?
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