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The transfer-matrix method, like the Principle of Inclusion-Exclusion and the Möbius
inversion formula, has simple theoretical underpinnings but a very wide range of applicability.

– Richard P. Stanley ([S], p. 241)

Abstract

We describe Maple packages for the automatic generation of generating functions (and series
expansions) for three notoriously hard-to-count combinatorial objects that arise in statistical
physics: lattice animals (alias polyominoes), self-avoiding polygons, and self-avoiding walks,
in the two-dimensional square lattice, of bounded, but arbitrary width. The novelty of this
work is in its generality, reproducibility, explicitness of details, and availability. Our Maple
packages (complete with source code) are easy-to-use and downloadable free of charge. But
perhaps, most important, it is hoped that this work will illustrate by example an admittedly
crude and semi-amateurish, yet honest, attempt at a foundation for a work ethics and research
methodology, of what will soon be a major part of 3rd millennium mathematical research, and
that for lack of a better name we call mathematical engineering.

1. From Number-Crunching to Symbol-Crunching in Computational

Combinatorial Statistical Physics

Combinatorial Statistical Physics has several impossible problems that define it. For exam-
ple, the Ising model in a magnetic field, percolation, and the enumeration of lattice animals,

1 http://www.math.temple.edu/~zeilberg/. Supported in part by the NSF. This article is accompanied by seven

Maple packages, downloadable from http://www.math.temple.edu/~zeilberg/tm.html where sample input and

output files can also be found.
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self-avoiding walks and self-avoiding polygons. Even though they are (probably) impossible,
or at least intractable, there is a vast literature on them. One tries to find, both rigorously
and non-rigorously, both exactly and approximately, important numbers associated with these
problems, like connective constants, and more interestingly critical exponents. One also uses
number-crunching to find series expansions that enable estimates of these important numbers.
Another cottage industry is that of tractable toy models, that are subsets or supersets of the
‘impossible-to-count’ sets.

Even today there is a sharp dichotomy between ‘theoretical research’ that tries to find ana-
lytical solutions by pencil-and-paper human reasoning, and ‘computational research’ that uses
the computer to crank-out important numbers. The advent of computer-algebra has enabled
(e.g. the remarkable work of the Bordeux school [DV][B]) to use it as a tool for solving human-
derived equations. In this research mode the human uses human reasoning (possibly aided by
computers, but still with human guidance) to derive the equations for the desired quantities.
Once the equations are obtained, they are fed into the computer-algebra system (like Maple,
Mathematica, etc.), that solves them.

But even deriving the set of equations whose solution would produce the desired generating
function could be a very difficult, and often impossible, task for a mere human. The next
natural step is to ‘teach’ (i.e. program) the computer to find the equations, all by itself.

Indeed, in order to take full advantage of the computer revolution, WE MUST TEACH THE
COMPUTER HOW TO DO RESEARCH ON ITS OWN. The difficulty of this ‘idea crunching’
is that at present, Maple, Mathematica, and their likes are really only one notch above Fortran,
C, and their like. In principle we can do symbolic computation in C and even in Fortran (or
for that matter, even in machine language), after all, everything reduces to a Turing Machine,
and in fact the core of Maple is actually written in C! However, from the user’s interface point
of view this is very awkward.

The same difficulty faces us right now, when we try to do, essentially, ‘meta-symbolic com-
putation’, or, more accurately, ‘idea-crunching’ (idea-ics, for short). Doing ‘idea-ics’ in Maple
is the higher-level analog of doing symbolics in Fortran. I am sure that in a few years we
would have a Meta-Maple that would make the task of the present undertaking much easier.
Conversely, it is hoped that this effort, and efforts like it, would stimulate and guide future
system-developers.

Once this higher-level Maple (or Mathematica, etc.) will become available, it would be
possible to state, for example, the following command (in the appropriate formal language, and
perhaps even in English):
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Write a Maple program that inputs an integer k and a variable s and outputs the rational
function

∑∞
n=0 ak(n)sn, where ak(n) := the number of self-avoiding walks of length n that is

confined to the strip 0 ≤ y ≤ k.

We would also need to tell the computer what is a self avoiding walk but this can be done
in one line in any formal language.

Since this Meta-Maple is not yet available, I had to spend a month of my precious time
to write the program by hand, (which, incidentally, turned out to be more complicated than I
anticipated). Even though this is very crude compared to the future, it is definitely progress
compared to the previous efforts discussed below.

With the exception of Mikovsky’s remarkable thesis[M], in past work, both for number-
and symbol crunching, for example of the Australian (e.g. [BY], [CG]) and Bordelaise (e.g.
[DV],[B]) schools, one had to find the ‘alphabet’ and ‘grammar’ (or equivalently the ‘transfer
matrix’) by hand, for one k at a time (where k denotes the width of the counted creatures).
Also, the source-code was normally not published, nor made available upon request. With
the Maple packages accompanying this article, anybody with access to the web, and access
to Maple (that can be purchased for less than $100), can download, for example, my Maple
program SAW, go into Maple, and type, read SAW:, followed by say, GFW(5,s);, and after a
few minutes he or she would get the exact answer for the generating function for the sequence:
the number of n-step self-avoiding walks, on the two-dimensional square lattice such that the
largest y coordinates minus the smallest y coordinates is ≤ 5. He or she, can of course type
GFW(k,s), for any desired k. Even though, with current computers, it would be hopeless to get
GFW(100,s) or even GFW(12,s), it is very gratifying that in principle the program can do it.
Also he or she can read and enjoy the source-code, and later modify it for different problems.

There is very little ‘conceptual originality’ in this article. The transfer-matrix method is a
standard tool of the trade in this area, used in computational and theoretical work alike. So
the “traditionalist” (who is usually computer-illiterate and hence unable, and very often also
unwilling, to appreciate the effort that went into such an endeavor) might dismiss it as ‘trivial’,
something to be published in “lowly” “software-engineering journals”. To him I retort: don’t
be a theoretical snob! Don’t you know that: THE IMPLEMENTATION IS THE MESSAGE.

And believe me, it was not easy! Especially for the Self-Avoiding Walks program (SAW), I
had to think much harder than I did for my previous ‘human’ stuff! So here is another point I
am trying to make (already made in my Opinion 37 [Z1]): Programming to do a specific task
is difficult and important research! Much more important than proving, humanly, yet another
theorem. True, the programs of this project will be superseded and made obsolete by future
developments, (since, as I argued above, it would be enough to state the general problem to the
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computer, and it would write the program for you). But the proof of Fermat’s Last Theorem
will enjoy the same fate of obsolescence and ‘triviality’ as the present project. All current
math proofs (and computer programs) would be completely computer-generated in less than
fifty years. So, although Wiles’s proof and my Maple programs are both destined to become
obsolete in the not-too-distant future, I hold that, from a ‘future-history’ point of view, this
article, and articles like it, constitute a more significant contribution to mathematics than the
proof of Fermat’s Last Theorem (I conceded that from a ‘past-history’ viewpoint, Wiles’s proof
wins).

Indeed, Wiles’s proof does not contribute a iota to the really important problem that faces
21st-century mathematics: TEACH THE COMPUTER HOW TO DO RESEARCH. By con-
trast, my present effort is an admittedly modest, yet strictly positive, step in the right direction.
It teaches the computer how ‘to do research’, albeit very narrowly-focused, in the sense that it
does ‘theoretical research’ that goes beyond routine numeric and even symbolic computation. As
I have already mentioned above, the computer is used not just to solve the humanly-generated
or computer-aided set of equations, but it is used to generate the equations for an infinite family
of problems, ab initio.

I know that this is a tiny advance, but Rome was not built in a day, and as we know from our
experience of teaching human students, we have to teach, step-by-step, very gradually delegating
more responsibility and independence to them. One of the reasons the original efforts at AI
were such a flop was that we tried to teach the computer too much too soon, and also, in a
true species-centric way, we tried to make ‘artificial’ intelligence in our own image. As we get
to know the computer better, we would learn how to teach it better, and take advantage of its
strengths.

But enough of prophecy. Let me now describe the specific contents of this paper. A sub-
stantial part of it is an enhancement, correction, and extension of a large part of Anthony
Mikovsky’s thesis[M], so I’ll have to explain first why his work had to be redone.

2. A Critique of Anthony Mikovsky’s 1997 Ph.D. Thesis

In a very impressive Penn 1997 Ph.D. thesis [M], under the direction of Herb Wilf, Mikovsky
used Maple to derive generating functions for the enumeration of lattice animals and self-
avoiding walks, confined to a finite strip, as well as convex polyominoes (that we do not consider
here). The thesis is beautifully written, and the algorithms are described clearly both in English
and in Maple. It is indeed a pioneering effort in computer-generated research in combinatorial
statistical physics, but it has some weaknesses.
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The major weakness is ‘trivial’ but nevertheless VERY IMPORTANT. The source code,
while printed-out in full, is not available for download from the web! Much good does it do me!
Typing is not my idea of fun! I much rather write my own program. Even worse, Mikovsky’s
thesis was never published in a journal, and the only way to get it is by paying (like I did) more
than $40 to University Microfilms.

A second weakness is long-winded human rambling. After describing the ideas behind the
algorithms, he actually goes on to write down, in full detail, for each of the cases k = 1, 2, 3,
the ‘grammar’ and set of equations, thereby wasting many pages. I agree that for pedagogical
reasons it is a good idea to have the grammar and set of equations listed for the smallest
and second-smallest cases, but the rest should be reproducible by the reader (or rather by her
computer), if desired. We humans should learn not to micro-manage the computer too much, in
particular, not ask to see intermediate results, and trust it. Of course, only after the program
has been completely debugged.

A third weakness is the style of the Maple code. It does not use modularity, and has no
procedures (subroutines). It starts out with the line : rownum=?;, where the user is supposed
to fill-in the question-mark, rather than defining a procedure SAW:=proc(rownum) local ...,
and using smaller procedures. Mikovsky gives very few comments, and the code is very hard
to follow and verify.

Finally, at least for his Maple program on self-avoiding walks, Mikovsky failed to test the
output against independently generated, or readily available, data. While his output and mine
agree for lattice-animals, they disagree in the case of self-avoiding walks. According to his
corollary 5.5 (p. 163), half the number of self-avoiding walks with 4 steps and width ≤ 3 equals
57, while it is well-known, (and easy to find by direct counting) that there are only 100 such
walks altogether, and two of them have width 4, hence the true number is (100 − 2)/2 = 49
rather than 57. So his program must be flawed. By contrast, I know that my version (SAW), is
correctly implemented, since the output was compared to published tables, and independently
generated output from ‘empirical’ programs.

3. The Specific Goals and Results of This Work

In addition to the rather pompous ‘justification’ presented in the abstract, there are more
down-to-earth reasons for taking the trouble. Thanks to the Maple package ANIMALS one can
now compute the generating function for lattice-animals of width ≤ k, for arbitrary k (at present
it is feasible to go up to k = 6, but as computers get faster and bigger one should be able to go
beyond). If one is content with series expansions, i.e. the first 200 (or whatever) terms of the
generating functions, then one can go much further. Of course, in principle our programs can
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handle any integer k.

Thanks to the Maple package SAP one can now find generating functions, and series expan-
sions, for self-avoiding polygons of width ≤ k for any k.

Thanks to the Maple package SAW, one can do the same for self-avoiding walks of bounded
width.

4. Counting More Inclusive Classes of Creatures: Only Restricting the Width

of Individual ‘Letters’

Of course, the holy grail is the enumeration of the original ‘impossible-to-count’ objects, and
the purpose of the studied ‘toy models’ is to approximate, both numerically and conceptually,
the ‘real-thing’. I noticed that once the transfer-matrix method for counting creatures confined
to a strip is implemented correctly, then a slight modification of the ‘Transfer Matrix’ enables
us to count the much wider class of creatures in which we do not insist that the whole creature
should fit in a finite, fixed, strip, but only that each individual vertical cross-section has bounded
width. The matrices get smaller (since there are fewer letters), and the ‘connective constants’
for these subclasses (which imply lower bound for the ‘real’ connective constant) are higher than
their counterparts. In particular, we were able to improve the previous record of [WS] (see [F])
for the lower bound for ’Klarner’s constant’ (the connective constant for lattice-animals) from
3.791 (and its updated value using the extended series expansion, 3.8228, see [F]) to 3.8499.

The Maple packages enumerating these extended sets of creatures are freeANIMALS,freeSAP
and freeSAW.

5. Coming Up Soon: The Umbral Transfer Matrix Method

But the main reason for spending so much time developing Maple packages and implement-
ing seemingly minor enhancements of largely known algorithms is that we need it as a starting
point for the ‘Umbral Transfer Matrix Method’ [Z2]. Now, we no longer have a ‘finite alphabet’
but an ‘infinite alphabet’, and the ‘approximation’ both conceptually and computationally to
the ‘real things’ is much better. Hence the Maple packages presented in this article are not the
shortest possible, for the specified task. Rather they are written in a form that would facilitate
climbing from the (finite) Transfer-Matrix method to the (infinite) Umbral Transfer-Matrix
method.

In the present case we had a generalization in mind, but any project should be considered
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as a link in an infinite chain of consecutive generalizations, hence it should be written as clearly
and modularly, as possible, and carefully documented, so that future researchers can use it both
as a ‘black box’, or as a starting point for tweaking and modifying. Of course these precepts are
part of the practice of programming, (see e.g. the classic [KP]), the trite-but-true dos and donts
of the professional software engineer and developer. But even we, professional mathematicians
but as yet amateur programmers, would do well to adhere to them. Within reason, of course,
after all, we can’t spend all our time programming and documenting.

6.1. The Transfer-Matrix Method

There are several equivalent formulations of the Transfer-Matrix Method. One can talk
about ‘finite-automata’, a ‘Markov-Process’ , or a ‘type-3 grammar in normal form’, but the
most straightforward way is in terms of weighted counting of paths in a directed graph.

We will follow Stanley[S], but things will be even simpler for us, since we don’t have to know
any linear algebra, because Maple does. All we have to do is know how to set up the system of
equations.

Definition: A directed graph (V,E, init, fin), consists of a finite set of ”vertices”, V , a finite
set of ”directed edges”, E, and two functions init : E → V and fin : E → V .

For e ∈ E we say that e goes from vertex init(e) to vertex fin(e).

Definition: A path in a directed graph (V,E, init, fin) is a sequence

v1, e1, v2, . . . , vi, ei, vi+1, . . . , ek, vk+1

with vi ∈ V, (1 ≤ i ≤ k + 1), ei ∈ E, (1 ≤ i ≤ k), and init(ei) = vi, fin(ei) = vi+1, (1 ≤ i ≤ k).

Definition: A Combinatorial Markov Process is a 6-tuple, (V,E, init, fin, Start, F inish),
where (V,E, init, fin) is a directed graph defined above, and Start and Finish are subsets
of V .

Definition: A Vertex-Weighted (resp. Edge-Weighted) Combinatorial Markov Process is a
seven-tuple (V,E, init, fin, Start, F inish, wt), where (V,E, init, fin, Start, F inish) is a Com-
binatorial Markov Process and wt is a function from V (respectively E) to the positive integers.

Definition: The weight Wt(P ) of a path P = v1, e1, v2, e2, . . . , vi, ei, vi+1, . . . , vk, ek, vk+1, in
a Vertex-Weighted Markov Process is: Wt(P ) := wt(v1) + wt(v2) + . . .+ wt(vk) + wt(vk+1).

Definition: The weight of a path P = v1, e1, v2, e2, . . . , vi, ei, vi+1, . . . , vk, ek, vk+1, in an Edge-
Weighted Markov Process is: wt(e1) + wt(e2) + . . .+ wt(ek).
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Note that we could combine the two notions and put weight both on vertices and edges, but
this is unnecessary, since the weights of the vertices can always be incorporated by modifying
the weights of the edges. Please be warned that, unlike [S], weights of paths are additive, not
multiplicative.

Example: If V = {1, 2, 3}, E = {[1, 2]1, [1, 2]2, [2, 3], [3, 1]1, [3, 2]2}, Start = {1, 2}, Finish =
{2, 3}, where an edge [i, j]k goes from i to j, and if, wt(1) = 2, wt(2) = 5, wt(3) = 1, then the
weight of the path P = 1, [1, 2]2, 2, [2, 3], 3, [3, 1]2, 1, [1, 2]1, 2 in this Vertex-Weighted Markov-
Process is Wt(P ) = wt(1) + wt(2) + wt(3) + wt(1) + wt(2) = 2 + 5 + 1 + 2 + 5 = 15.

Another Example: Let V , E, Start, and Finish, be as above, but let’s make it into an
Edge-Weighted Markov-Process with the weight function defined by wt([1, 2]1) = 3, wt([1, 2]2) =
4, wt([2, 3]) = 1, wt([3, 1]1) = 4, wt([3, 2]2) = 2, then the weight of the above path P is Wt(P ) =
wt([1, 2]2) + wt([2, 3]) + wt([3, 1]2) + wt([1, 2]1) = 4 + 1 + 2 + 3 = 10.

Our goal is to compute the weight-enumerator (generating function)

F (t) =
∑
P

tWt(P ) ,

where the sum extends over the (usually infinite) set of paths in the directed graph that start
with a vertex of Start and ends with a vertex of Finish.

For any statement, [statement] equals 1 if it is true, 0 if it is false.

Let’s first consider the Vertex-Weighted Markov Process, and assume that there are no
multiple edges, i.e. there is at most one edge between any two vertices. For any v ∈ V , let
Fv(t) be the sum of tWt(P ), over all path P that start with v (even if v is not a member of Start),
and that end with a vertex in Finish. Let Followers(v) be the set of vertices v′ connected to
v by a single edge. We have

Fv(t) = [v ∈ Finish] · twt(v) + twt(v)
∑

v′∈Followers(v)

Fv′(t) . (Eq1)

This gives us a system of |V | equations for the |V | unknowns {Fv(t) | v ∈ V }. We are
guaranteed that it has a solution since we know that Fv(t) exists as a formal power series.
Once we (or rather Maple, or rather the computer) solves this system, we discard the Fv(t) for
which v 6∈ Start, and get the final result

F (t) =
∑

v∈Start
Fv(t) .

If we have multiple edges then the system of equations (Eq1) should be modified to read

Fv(t) = [v ∈ Finish] · twt(v) + twt(v)
∑

v′∈Followers(v)

a(v, v′)Fv′(t) , (Eq2)
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where a(v, v′) is the number of edges between v and v′.

For the Edge-Weighted Markov Process, we have the equation

Fv(t) = [v ∈ Finish] +
∑

e,init(e)=v

twt(e)Ffin(e)(t) . (Eq3)

6.2. Finding Series Expansions

Even though the system of equations (Eq1) can always be solved, it often happens that
the system is too big to be solved by Maple. It is then still possible to find what physicists
call ”series expansion” of the generating function F (t), i.e. the first L terms of its power-series
expansion: F (t) = a(0) + a(1)t+ a(2)t2 + . . .+ a(L)tL + . . ., where a(i) is the number of paths
in the Combinatorial Markov Process whose weight equals i. Let av(i) be the number of paths
of weight i that start with the vertex v. Then

a(i) =
∑

v∈Start
av(i) .

The system of linear equations (Eq1), for Vertex-Weighted simple Markov Processes is equiva-
lent to the recurrences:

av(i) = [wt(v) = i] · [v ∈ Finish] +
∑

v′∈Followers(v)

a′v(i− wt(v)) , i ≥ 0, (Eq1′)

with the initial conditions av(i) = 0, when i < 0. The recurrence counterparts of (Eq2) and
(Eq3) are similar.

6.3. Maple Representation of Combinatorial Markov Processes

In order to solve the system of equations (Eq1), (Eq2), or (Eq3) we really don’t need to
know the ‘nature’ of the edges, only how many they are of any given weight. This leads to the
notion of profile of a Weighted Combinatorial Markov Process.

Let’s call a vertex-weighted Combinatorial Markov Process, with no multiple edges, a
Markov Process of type I. Its profile is a list of length four:

[Start, F inish, ListOfOutgoingNeighbors, ListOfWeights].

The length of ListOfOutgoingNeighbors is the number of vertices, let’s call it N . We assume
that the vertices are labelled {1, 2, . . . , N}. Start and Finsih are subsets of {1, 2, . . . , N}. The



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A09 10

ith component of ListOfOutgoingNeighbors (i = 1, . . . , N) is the set of vertices j such that
there is an edge between i and j (recall that right now we assume that there is at most one
edge between vertex i and j, for 1 ≤ i, j ≤ N). Finally, ListOfWeights is a list of length N

whose ith component (i = 1, . . . , N) is the weight of the vertex labelled i.

For example
MC1 := [{1}, {1}, [{1}], [1]] ,

is a very simple example of the profile of a type I Markov Process. It has one vertex, of weight
1, and a single edge, going from that vertex to itself.

Let’s call a vertex-weighted Combinatorial Markov Process, with multiple edges, a Markov
Process of type II. Its profile is a list of length 4,

[Start, F inish, ListOfOutgoingNeighbors, ListOfWeights]

. The length of ListOfOutgoingNeighbors is the number of vertices, let’s call it N . We assume
that the vertices are labelled {1, 2, . . . , N}. Start and Finsih are subsets of {1, 2, . . . , N}. The
ith entry of ListOfOutgoingNeighbors (i = 1, . . . , N) is a multiset jm1

1 jm2
2 . . . jmkk represented

in the form {[j1,m1], . . . , [jk,mk]}, which means that out of the vertex labelled i there are m1

edges going to j1, m2 edges going to j2, etc. Finally, ListOfWeights is a list of length N whose
ith component (i = 1, . . . , N) is the weight of the vertex labelled i.

For example the Markov Process represented by MC1 can also be viewed as a type II
Markov Process with profile:

MC2 := [{1}, {1}, [{[1, 1]}], [1]] .

Let’s call a simple edge-weighted Combinatorial Markov Process, (i.e. without multiple
edges), a Markov Process of type III. Its profile, is a list of length 3,

[Start, F inish,WeightedListOfOutgoingNeighbors].

The length of the list WeightedListOfOutgoingNeighbors is the number of vertices, let’s call
it N . We assume that the vertices are labelled {1, 2, . . . , N}. Start and Finsih are subsets
of {1, 2, . . . , N}. The ith component of WeightedListOfOutgoingNeighbors (i = 1, . . . , N) is
the set of pairs [j, wti,j ] such that there is an edge between i and j and wti,j is the weight of
the edge connecting vertex i to vertex j.

For example the Markov Process

MC3 := [{1}, {1}, [{[1, 1]}]] ,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A09 11

is a very simple example of the profile of a type III Markov Process. It has one vertex and a
single edge, of weight 1, going from vertex 1 to itself.

For a slightly bigger example consider:

MC3a := [{1}, {1, 2}, [{[1, 3], [2, 4]}, {[1, 2], [2, 8]}]] ,

Here the underlying digraph has two vertices labelled 1 and 2. A path must start at the vertex
1, but may end at either 1 or 2. Out of 1 there is one edge, of weight 3 going into itself, and an
edge, of weights 4 going into 2. Out of 2 there an edge, of weight 2, going to 1, and an edge, of
weight 8, going back to 2.

Let’s call an edge-weighted Combinatorial Markov Process, with possibly multiple edges, a
Markov Process of type IV. Its profile, w.r.t. the variable t, is a list of length three,
[Start, F inish,WeightedListOfOutgoingNeighbors].

The length of WeightedListOfOutgoingNeighbors is the number of vertices, let’s call it
N . We assume that the vertices are labelled {1, 2, . . . , N}. Start and Finsih are subsets of
{1, 2, . . . , N}. The ith component of WeightedListOfOutgoingNeighbors (i = 1, . . . , N) is the
set of pairs [j, polyi,j(t)] such that there is at least one edge between i and j, and polyi,j(t) is
the weight-enumerator of the set of edges that go from i to j, i.e. the coeff. of tk in polyi,j(t)
is the number of edges from i to j that have weight k.

For example the Markov Process

MC4 := [{1}, {1}, [{[1, t]}]] ,

is a very simple example of the profile of a type IV Markov Process. It has one vertex and a
single edge, of weight 1, going from that vertex to itself.

For a slightly bigger example consider:

MC4a := [{1}, {1, 2}, [{[1, t], [2, t2 + t3]}, {[1, t2], [2, 3t5 + 2t7]}]] ,

Here the underlying digraph has two vertices labelled 1 and 2. A path must start at the vertex
1, but may end at either 1 or 2. Out of 1 there is one edge, of weight 1 going into itself, and
two edges, of weights 2 and 3 going into 2. Out of 2 there is one edge, of weight 2, going to 1,
and five edges, three of weight 5 and two of weight 7, going back to 2.

The Maple package MARKOV computers the generating functions that weight-enumerate paths
in Combinatorial Markov Processes of types I-IV.
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6.4. A User’s Manual for MARKOV

First you should go to my website, and download MARKOV. Assuming that you are still in
the same directory, go into Maple by typing: maple (or xmaple), followed by Enter, or click on
the Maple icon.

Once in Maple, type: read MARKOV; , and follow the instructions given there. The main
procedures are SolveMC1, SolveMC2, SolveMC3, SolveMC4, that find the generating functions
weight-enumerating paths in Combinatorial Markov Processes of type I, II, III, and IV respec-
tively.

For example, for the Markov Processes above, do SolveMC1(MC1,t);, SolveMC2(MC2,t);,
SolveMC3(MC3,t);, SolveMC4(MC4,t);, to get, in all cases, −t/(t− 1).

If the input Markov Processes are too big for SolveMC1 and its siblings to handle, try
SolveMC1series, etc. to find the first L (for a specified L) terms of the power-series expansion of
the corresponding generating function. For example SolveMC1series(MC1,10); should output
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

6.5. A Brief Explanation of the Nuts and Bolts of MARKOV

We will only describe SolveMC1, since the other procedures are straightforward modifica-
tions. Please refer to the source code of the package Markov.

SolveMC1(MC,s) inputs MC, the profile of a type I Markov Process, and a variable s. First
the program checks that s is indeed a variable, and MC is indeed a legal type I Markov Process,
using the procedure KosherMC1.

The line “LL:=MC[1]:RL:=MC[2]:Nei:=MC[3]:Wts:=MC[4]: ” unpacks, MC. LL is the set
vertices that we call Start, RL is the set of vertices Finish, Nei is the list of neighbor-sets and
Wts is the list of weights. The line “N:=nops(Wts):” finds the number of vertices. eq and var

are the set of equations and variables, respectively, that are initialized to the empty set. We
use the indexed variable A[i] for what we called above Fv, i.e. for the weight-enumerator of
paths that start at the vertex labelled i.

The program now do-loops over i from 1 to N, adding, one at a time, A[i] to var and
constructing eq1 the equation representing paths that start at the vertex labelled i. If i is a
member of RL (i.e. it belongs to Finish, i.e. the length-0 path that starts and ends at i and
has no edges, is to be counted), then eq1 is initialized to be s**(Wt[i]) , the weight of this
trivial path. Sakh is Nei[i], the set of neighbors of the vertex i. The inner do-loop, w.r.t j,
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sums A[Sakh[j]], over all outgoing neighbors , Sakh[j] of i. We call the result lu. Then
the current equation, eq1, is updated in the next line: eq1:=eq1-s**Wts[i]*lu:, and the new
equation, eq1, that considers all paths that start at vertex i, is added to the set of equations,
eq with the command: “eq:=eq union {eq1}:”. Exiting the i do-loop, equipped with the set
of linear equations, eq, and the set of unknowns, var, we ask Maple to solve the system with
the line: “var:=solve(eq,var):”. The last do-loop, w.r.t. i, sums the solved values for the
weight-enumerators of paths that start at one of the allowed starting points, the members of
Start, that is called LL in this program. The very last line normalizes the answer.

7.1. Counting Lattice Animals Confined to a Strip

A (2D site) lattice-animal (alias fixed polyomino, henceforth animal) is a connected set of
lattice points in the square lattice Z2.

Two animals are equivalent if they are translations of each other. The problem is to find
a(n), the number of equivalence classes (under translation) of animals with n cells. For example
a(1) = 1, a(2) = 2, a(3) = 6, a(4) = 19 etc. To date (see Steve Finch’s superb website [F]) a(n)
is known for n ≤ 28. It is probably hopeless to look for a ‘closed-form’ formula, or even for
a polynomial-time algorithm for computing a(n), so, one should be content, at present, with
counting interesting subsets and supersets, that yield as a bonus, lower and upper bounds, for
the so-called Klarner constant: µ := limn→∞ a(n)1/n. Klarner ([K1], see also [K2]) proved the
existence of his constant and that µ > 3.72. With Rivest ([KR]) he proved that µ < 4.65.

It was Read [R] who first proposed to use the transfer-matrix method to enumerate animals
confined to a strip of width k. This was nicely implemented by Mikovsky [M]. Here we will
use a different data structure, which logically is equivalent, but that would be amenable to the
generalization that I hope to present in [Z2].

For a given integer k, consider all animals S = {(x, y)}, with the restriction that for each
(x, y) ∈ S, x ≥ 0, 0 ≤ y < k, and min{x | (x, y) ∈ S} = 0. We can look, for x = 0, 1, . . ., at
the set of corresponding y coordinates with the specified x for which (x, y) ∈ S. This yields a
word in the alphabet consisting of the non-empty subsets of {0, 1, . . . , k − 1}. For example the
animal

{(0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (1, 5), (2, 0), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2)}

can be coded as the word

{1, 2, 4}, {0, 2, 4, 5}, {0, 2, 3, 4}, {0, 1, 2} .
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While this is an injection into the set of words in the alphabet whose letters are the 2k−1 non-
empty subsets of {0, . . . , k − 1}, it is impossible to construct a reasonable (type-3) ‘grammar’
describing this language. Following Read[R], we need a larger alphabet.

For an animal S, and for an integer i = 0, 1, 2, . . ., consider the subset of S, Si, obtained by
only retaining the points of S with x ≤ i:

Si := {(x, y) ∈ S | x ≤ i}

For example, for the animal above,

S0 = {(0, 1), (0, 2), (0, 4)} , S1 = {(0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (1, 5)} ,

S2 = {(0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (1, 5), (2, 0), (2, 2), (2, 3), (2, 4)} , and

S3 =

S = {(0, 1), (0, 2), (0, 4), (1, 0), (1, 2), (1, 4), (1, 5), (2, 0), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2)} .

Note that the Si do not have to be animals, since removing the points with x > i may
disconnect the animal S. For each vertical cross section x = i, the points of S for which x = i

can be partitioned into equivalence classes according to whether or not they belong to the same
component of Si. So the natural alphabet is not just subsets of {0, 1, . . . , k − 1} but certain
set-partitions. According to this coding, the animal S is coded as the ‘word’:

{{1, 2}, {4}}, {{0}, {2}, {4, 5}}, {{0}, {2, 3, 4}}, {{0, 1, 2}} .

It is easy to see that not all set-partitions show up. First, if (i, j) and (i, j+1) both belong to S
then they must belong to the same component. Hence it is more beneficial, both conceptually
and computationally, to abbreviate the set of j− i+1 consecutive integers {i, i+1, i+2, . . . , j−
1, j}, by the ”interval-notation”: [i, j]. So from now on we will denote sets of integers as
unions of such closed intervals. For example the set {1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 17, 19, 20, 22} will
be denoted by {[1, 3], [5, 5], [7, 9], [11, 13], [17, 17], [19, 20], [22, 22]}. Because of the observation
above, the kind of set-partitions that arise from lattice animals (in which all the members
of a closed interval must belong to the same component), can be written as set-partitions of
intervals. For example, in the new notation the animal S above is coded as the word:

{{[1, 2]}, {[4, 4]}}, {{[0, 0]}, {[2, 2]}, {[4, 5]}}, {{[0, 0]}, {[2, 4]}}, {{[0, 2]}} .

It is easy to see that the set-partitions that show up as letters coding lattice animals by
the above process are all non-crossing, but this fact is not needed, since the computer can
always find the complete alphabet, once it knows the ”left-alphabet”, i.e. the letters that may
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be starters, and how to compute the followers of a letter. So the next task is to decide who
is eligible to be a first (i.e. leftmost) letter, in an animal word. Two intervals [a, b] and [c, d]
belong to the same block in the set-partition that constitutes the (i+ 1)th letter of an animal-
word, if and only in the animal it came from, the set of lattice points {(i, a), (i, a+1), . . . , (i, b)}
is ”connected from the left” to the set of latticed points {(i, c), (i, c + 1), . . . , (i, d)}. In other
words, belong to the same component in the set obtained from the original animal by only
retaining the points with x ≤ i. When i = 0, then there is nothing to the left, and hence
the left-letters must be set-partitions of intervals each of whose blocks are singletons. For
example when k = 1 there is only one left-letter, {{[0, 0]}} . When k = 2 then we have
the three letters{{[0, 0]}}, {{[1, 1]}}, {{[0, 1]}}. When k = 3 then we have the seven letters
{{[0, 0]}}, {{[1, 1]}}, {{[0, 1]}}, {{[0, 2]}}, {{[1, 2]}}, {{[2, 2]}}, {{[0, 0]}, {[2, 2]}}.

In general there are 2k−1 left-letters corresponding to all non-empty subsets of {0, . . . , k−1},
written in interval notation, in which each participating interval forms its own singleton block
in the set-partition.

What animal-letters can be the last (rightmost) letter? Obviously, all the intervals in the
rightmost cross-section must belong to the same component, since there are no points to the
right to help them out. Hence the rightmost letters consist of set-partitions consisting of one
block. Their number again is 2k − 1. For example when k = 1 there is only one right-letter,
{{[0, 0]}} . When k = 2 then we have the three letters{{[0, 0]}}, {{[1, 1]}}, {{[0, 1]}}. When k =
3 then we have the seven letters {{[0, 0]}}, {{[1, 1]}}, {{[0, 1]}}, {{[0, 2]}}, {{[1, 2]}}, {{[2, 2]}},
{{[0, 0], [2, 2]}}.

Given a letter in the animal-alphabet, who can follow it? Let’s call a pre-letter any non-
empty subset of {0, 1, . . . , k − 1}, written in interval notation. Of course there are 2k − 1
pre-letters. As we saw above, the set-partitions all of whose blocks are singletons correspond to
leftmost letters, and the set-partitions having exactly one block correspond to rightmost letters.
So we must now answer the question: What pre-letters can follow a given letter?

Since the partial animals (obtained by only retaining the points to the left of the considered
vertical-cross section) must be all ”connected from the right”, we must make sure that each of
the components of the letter has non-empty intersection with the pre-letter that comes right
after it. For example, after the letter

{{[0, 1], [3, 3]}, {[5, 8], [15, 18], [21, 24]}, {[10, 13]}},

the pre-letter {[4, 8], [10, 26]} may not follow since the component {[0, 1], [3, 3]} has nothing to
hang on to. Also the pre-letter {[0, 4], [11, 14], [19, 20]} may not follow, since now the component
{[5, 8], [15, 18], [21, 24]} does not intersect this pre-letter. On the other hand the pre-letter
{[1, 1], [12, 12], [22, 22]} may follow, since each of the three components gets touched.
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Once we have a letter, and a legitimate pre-letter follower, the pre-letter becomes a letter
in a unique way. Indeed, given a letter, and a pre-letter following it, define an (undirected)
graph whose vertices are the intervals of the pre-letter and where there is an edge between
two such intervals if they both touch the same component. The set-partition induced from the
connected components of this graph is the desired follow-up letter. For example, the pre-letter
{[2, 6], [12, 16], [24, 24]} following the letter {{[0, 1], [3, 3]}, {[5, 8], [15, 18], [21, 24]}, {[10, 13]}}, be-
comes {{[2, 6], [12, 16], [24, 24]}}.

Now that we know how to find all the followers of any letter, we can dynamically construct
the table of followers of each letter that shows up, and at the same time keep track of our current
set of letters, and keep going until there are no new letters encountered. This is accomplished
by our Maple package ANIMALS described below.

7.2. A User’s Manual for ANIMALS

First download ANIMALS to your directory (either directly from INTEGERS or from my
website). Then go into Maple by typing: maple (or, if you prefer, xmaple) followed by Enter,
or click on the Maple icon. Then, once in Maple, type: read ANIMALS;, assuming you are still
in the same directory, or, e.g. read ‘research/animals/ANIMALS‘ ; (i.e. the full path-name
of the file ANIMAL) if you are not.) Then follow the on-line help. To see the names of the main
procedures type: ezra(); . To get help on a specific procedure type ezra(ProcName); . For
example, to get help on GF type ezra(GF); .

To find the generating function that enumerates animals of width ≤ 3, type GF(3,s); . To
get the number of animals with n cells, for 1 ≤ n ≤ L, type Khaya(L). I was able to get
Khaya(18), but Khaya(20) took too long.

7.3. A Brief Explanation of the Nuts and Bolts of ANIMALS

The procedure LeftLetters(a,b) outputs all set-partitions of {a, a+ 1, . . . , b} (written in
interval notation, see above) with one interval per block. The procedure Followers(n,LETTER)
finds all the possible followers of the letter LETTER, in the alphabet of animals confined to the
strip 0 ≤ y ≤ n − 1. It does that by testing each of the preletters (obtained from proce-
dure PreLeftLetters by calling PreLeftLetters(0,n-1)). If every component of LETTER is
touched by the tested pre-letter, mu1, it is approved, and it is made into a letter by procedure
PreLetToLet, by the call PreLetToLet(Let1,mu1).

Procedure PreLetToLet(Letter,PreLetter) inputs a letter Letter (a set-partition of in-
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tervals) and a pre-letter PreLetter (a set of intervals) and decides how to turn PreLetter into
a letter. It defines two tables T and S, defined on the blocks of the set-partition Letter and
the members of the set PreLetter respectively. At the end of the do-loop T[block] is the
set of members of PreLetter touching the block block, and S[member] is the set of blocks of
Letter touching the given member of PreLetter.

If any of the T[component] is empty then PreLetter is rejected by returning 0. Otherwise,
we construct a graph G whose vertex-set is the set of members of PreLetter. The graph is
given in terms of an adjacency table and the last double do-loop constructs the graph where
interval1 is adjacent to interval2 if they both touch at least one of the components of Letter,
i.e. if S[interval1] intersect S[interval2] is non-empty. Finally a call to the procedure
Comp, Comp(G,PreLetter), gives the induced set-partition of the set of intervals PreLetter, by
partitioning it according to the connected components of the graph G. The procedure Support

simply finds the support of a letter, for example Support({{[0, 2], [4, 5]}, {[7, 7]}}) should yield
{0, 1, 2, 4, 5, 7}.

Procedure FollowersS takes as input a set of letters, and outputs the union of all the
followers. Procedure Alphabet(n), starting with LeftLetters(0,n-1), applies FollowersS

iteratively until we get all letters. Since Followers is with option remember, by the time
Alphabet(n) is finished, Maple already knows all the followers of all the letters.

Procedure MarCha(n) constructs the profile of the type I Markov Process describing the
animals confined to the strip 0 ≤ y ≤ n − 1, in canonical, compact form. First a call to
Alphabet, gu:=Alphabet(n); , gets the alphabet. By this time Maple already knows all the
followers, but in terms of their long-winded set-partition names. To compactify it, the letters
are given integer names from 1 to N:=nops(gu), and the table T remembers the new names.
Then the set of left-letters, Left0 is found, and Left1 and Right1 become the set of left-letters
and right-letters using the new, abbreviated names. The list mu is the list of lists where the ith

term is the set of followers, using their new, abbreviated names, of the letter whose abbreviated
name is i. Finally Wts is the table of weights of the letters. The output is the type I Markov
Process profile [Left1,Right1,mu,Wts].

Procedure gf(n,s) uses SolveMC1 to find the generating function for all animals that live
in the strip 0 ≤ y ≤ n − 1, but what we are really interested in is the generating function for
all animals of width ≤ n, since, gf counts, for example both the animal {(0, 0)} and the animal
{(0, 1)} as distinct entities, even though they are equivalent. This is achieved by GF(n,s) which
is simply gf(n,s)-gf(n-1,s).

If you are interested in the generating function for animals with width exactly n, then use
Gf(n,s);, which is GF(n,s)-GF(n-1,s).
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Once n ≥ 6, it takes too long, at least for Shalosh, to compute GF(n,s) exactly, but one can
go much further with GFseries(n,L) which uses SolveMC1series to find the series expansion
up to L terms. GfseriesS(n,L,s) uses SolveMC1seriesS to find the series-expansion where
we also keep track of the length of the animal (alias the number of letters in the animal
word). In particular the coefficient of xi in the Lth entry of GfseriesS(n,L,x), let’s call
it A(L, n, i), is the number of animals with L cells, of width exactly n, and length exactly
i. Since width+length≤ L, by symmetry the total number of animals with L cells equals
A(L,L/2, L/2)[k ≡ 0 mod 2] plus twice the sum of A(L, n, i) with n < i ≤ L/2. This is how
Khaya(L) computes the first L terms of the notorious animal-series. Khaya(18) is fairly fast,
but Khaya(20) already takes too long.

8.1. More Animals For Less Money: Counting Locally-Skinny Animals

The Maple package ANIMALS counted animals that are globally skinny, i.e. the whole animal
can be fitted in a fixed strip. Let’s define, for x = 0, 1, . . .

M(x) := max{y|(x, y) ∈ S} , m(x) := min{y|(x, y) ∈ S} .

The package ANIMALS described above counts, for a given n, the number of animals such
that maxx(M(x))−minxm(x) ≤ n− 1.

By contrast, the Maple package FreeANIMALS, to be described in this section, counts the
much larger subset of animals such that M(x) − m(x) ≤ n − 1 for each x. For example the
‘staircase’ animal: {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (n−1, n−1), (n−1, n) . . .}
is not counted by GF(n,s) of ANIMALS, but is already counted by GF(2,s) of FreeANIMALS, since
each vertical cross-section, individually, had width ≤ 2.

The modification is straightforward. Now we have a normalized alphabet, where the lowest
member must be 0. So we have half as many left-letters for a given n. Unlike the previous
case, however, given a letter of width a, say, and a pre-letter of width b following it, the bottom
of the pre-letter is placed, in turn at y = −(b − 1),−(b − 2), . . . , 0, . . . , a − 1, and for each of
these vertical translates we determine whether it is a legal interface, and if yes, what is the
corresponding letter. For each of these resulting letters, we normalize them so that the bottom
is 0. So now, in general, every letter has a multi-set of followers, and we have to use the Type
II Markov Process Model.

Example: Consider the letter {{[0, 0]}, {[2, 2]}}, and the pre-letter {[0, 3]}. The translates
{[−3, 0]},{[−2, 1]}, {[1, 4]},{[2, 5]}, do not produce bona-fide followers, while {[−1, 2]}, {[0, 3]}
do both give rise to the letter {{[0, 3]}}. Hence in the digraph of this Markov Process, we have
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two edges between {{[0, 0]}, {[2, 2]}} and {{[0, 3]}}. On the other hand there are six edges be-
tween {{[0, 0], [2, 2]}} and {{[0, 3]}}, since all the translates {[−3, 0]},{[−2, 1]},{[−1, 2]},{[0, 3]},
{[1, 4]}, {[2, 5]}, are legal followings and all of them normalize to {{[0, 3]}}. In general the fol-
lowers that result from all the vertical translates of a pre-letter do not have to be the same.

8.2. A User’s Manual for the Maple Package FreeANIMALS

The main procedures are: gf, gfSeries, gfList, gfSeriesList .

For a positive integer n, and a variable s, typing gf(n,s); would give the generating
function

fn(s) :=
∞∑
i=1

an(i)si ,

where an(i) is the number of (2D site) animals such that for each vertical cross-section x = x0

the difference between the biggest y such that (x0, y) belongs to the animal and the smallest
such y is ≤ n− 1.

gf(n,s) works, on my computer, up to n = 6. Beyond that, you may wish to use gf-

Series(n,L), where L is also a positive integer, in order to get the first L coefficients of fn(s).

Both gf(n,s) and gfSeries(n,L) enumerate animals where each vertical cross-section has
width ≤ n. But we may want to consider more general sets of animals. Suppose that whenever
the ”letter” (i.e. vertical cross-section) has i boards, then it is allowed to have width ≤ Ri,
for a list [R1, R2, . . . , Rm], say. The corresponding generating functions are given by typing
gfList(List,s); and gfSeriesList(List,s);. For example gfList([5,3],s); would give
the generating function for animals whose vertical cross-sections with one interval (board)
have width ≤ 5 and vertical cross-sections with two intervals have width ≤ 3, or equivalently,
the ”free animal-language” that only uses the letters {{[0, 1]}}, {{[0, 2]}}, {{[0, 3]}}, {{[0, 4]}},
{{[0, 0], [2, 2]}}, {{[0, 0]}, {[2, 2]}}.

8.3. A Brief Explanation of the Nuts and Bolts of FreeANIMALS

Now Alphabet(n); gives the smaller set of normalized letters, where the smallest inte-
ger is always 0. MarCha(n) gives the Markov Process for the language of the kind of an-
imals considered here, but unlike ANIMALS it is what we called a Markov Process of type
II, i.e. the underlying graph is still vertex-weighted, but multiple edges are allowed. Con-
sequently, Followers(n,Letter) does not return a set but a list (that allows duplication).
Procedure ListToMultiSet simply converts from list to a mutliset. For example ListToMul-
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tiSet([1,2,2,1,2,1,1]); yields {[1, 4], [2, 3]}, since 1 shows up 4 times and 2 shows up 3
times.

9.1. Counting Skinny Self-Avoiding Polygons

We will only consider the two-dimensional square-lattice, but the approach can be adapted
to other plane lattices, and somewhat less obviously, to higher dimensions.

In the sequel we will use lower-case: vertices and edges, to talk about vertices and edges that
live in the two-dimensional square-lattice, i.e. the natural habitat where self avoiding polygons
roam. We will use Capitals: Vertices and Edges to talk about vertices and edges in the type
III Markov Process describing the structure of these self-avoiding-polygons.

A (vertex) lattice point will be denoted by an (ordered) pair of integers, [m,n], and, some-
what cumbersomely, but convenient for the computer implementation, an edge will be denoted
by the (unordered) pair consisting of its end-points. For example the horizontal edge that joins
[4, 5] and [5, 5] will be denoted by {[4, 5], [5, 5]}.

A self-avoiding polygon ( henceforth sap) in a lattice, is a simple closed ”curve” in the
lattice. Equivalently, a sap is a set of edges of the square-lattice such that, in the induced
graph, every vertex had degree exactly two, i.e. every vertex is adjacent to exactly two edges.
We are interested in the sequence a(n) := the number of saps with 2n edges, up to translation
equivalence. For example

{{[0, 0], [1, 0]}, {[1, 0], [1, 1]}, {[1, 1], [0, 1]}, {[0, 1], [0, 0]}}

is the only (up to trivial translation-equivalence) sap with 4 edges, while

{{[0, 0], [1, 0]}, {[1, 0], [2, 0]}, {[2, 0], [2, 1]}, {[2, 1], [1, 1]}, {[1, 1], [1, 0]}, {[1, 0], [0, 0]}}

and

{{[0, 0], [1, 0]}, {[1, 0], [1, 1]}, {[1, 1], [1, 2]}, {[1, 2], [0, 2]}, {[0, 2], [0, 1]}, {[0, 1], [0, 0]}}

are the only saps with 6 edges.

Let vert(S) denote the set of vertices (lattice-points) that participate in a the sap S. For
example

vert({{[0, 0], [1, 0]}, {[1, 0], [1, 1]}, {[1, 1], [0, 1]}, {[0, 1], [0, 0]}}) = {[0, 0], [1, 0], [0, 1], [1, 1]}
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Let’s standardize, and take, from each translation-equivalence class, the unique sap S, such
that minx{(x, y) ∈ S} = 0 and miny{(x, y) ∈ S} = 0. In other words we place it such that its
”left-most walls” lie on the y-axis and its ”bottom floors” lie on the x-axis.

For any integer K, we would like to find the generating function

fK(s) :=
∞∑
n=0

aK(n)s2n ,

where aK(n) is the number of ”skinny” saps with 2n edges, i.e. standardized saps such that
maxy{(x, y) ∈ vert(S)} ≤ K.

It is possible to code any (standardized) sap S, as a ”word” in its vertical cross-sections, i.e.
for k = 1, 2, . . ., write it as A0A1A2 . . ., where the kth letter is the subset of the horizontal edges
of the sap that form {[k−1, y], [k, y]}. Since k is predetermined, it is enough to list it as a word
in the alphabet consisting of the non-empty subsets of {0, 1, . . . ,K}. Also the vertical edges
are implied, even though the ”letters” only list the horizontal edges. However, it is impossible
to describe a reasonable ”grammar”, definitely not a type-3, Markovian one, on the language
obtained from all skinny saps. Hence, just as with animals, we have to extend the alphabet to
contain more information.

Looking at the vertical cross-section obtained by intersecting the sap with {k− 1 ≤ x ≤ k},
i.e. at the above set of horizontal edges, lets’s call it Hk, Hk := {{[k−1, y], [k, y]}}, we see that
every member of Hk has a unique ”mate”, within Hk, such that it is possible to walk counter-
clockwise, from the lower one to the upper one, along the sap, such that all the intermediate
vertices are to the left of the vertical line y = k − 1. It is also obvious, on geometrical grounds
(the discrete Jordan Curve Theorem), that these pairings form a legal bracketing. Thus the size
of the alphabet is

[(K+1)/2]∑
i=1

(
K + 1

2i

)
Ci ,

where Ci :=
(

2i
i

)
/(i+ 1) are the Catalan numbers.

We will describe legal bracketings by using the letters L and R, to denote “left bracket”
and “right bracket” respectively. The only legal bracketing of length 2 is [L,R]. The two
legal bracketings of length 4 are [L,R,L,R] and [L,L,R,R], etc. Recall that the set of legal
bracketing consists of the empty word and all words in the alphabet {L,R}, that may be written
as Lw1Rw2, where w1, w2 are shorter legal bracketings.

A typical, say, kth ”letter”, in the sap-alphabet consists of a pair of lists of the same
length, that length being an even integer. The second list is the increasing sequence of integers
[i1, . . . , i2r] indicating which horizontal edges join the vertical lines x = k − 1 and x = k, i.e.
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the edges {[k − 1, i1], [k, i1]}, {[k − 1, i2], [k, i2]}, . . . , {[k − 1, i2r], [k, i2r]}. The first list is the
corresponding legal-bracketing, indicating the pairing according to ”accessibility from the left”.
So if in is an ”L”, and its R-mate is im, then it is possible to walk along the sap, between edge
{[k − 1, in], [k, in]} and {[k − 1, im], [k, im]}, without ever venturing to the right of the vertical
line x = k − 1.

For example, the alphabet for saps confined to the horizontal strip 0 ≤ y ≤ 4, (i.e. K = 4
above), consists of the following

(
5
2

)
C1 +

(
5
4

)
C2 = 20 letters:

{[[L,R], [0, 1]], [[L,R], [0, 2]], [[L,R], [1, 2]], [[L,R], [0, 3]], [[L,R], [2, 3]], [[L,R], [1, 3]],

[[L,R,L,R], [0, 1, 2, 3]], [[L,L,R,R], [0, 1, 2, 3]], [[L,R,L,R], [0, 1, 2, 4]],

[[L,R,L,R], [0, 1, 3, 4]], [[L,R,L,R], [0, 2, 3, 4]], [[L,R,L,R], [1, 2, 3, 4]], [[L,L,R,R], [0, 1, 2, 4]],

[[L,L,R,R], [0, 1, 3, 4]], [[L,L,R,R], [0, 2, 3, 4]], [[L,L,R,R], [1, 2, 3, 4]], [[L,R], [0, 4]],

[[L,R], [2, 4]], [[L,R], [3, 4]], [[L,R], [1, 4]]} .

The leftmost letters, in a sap-word are not arbitrary, but necessarily must have its first list
be of the form [(L,R)r], for r = 1, . . . , [(K + 1)/2]. Hence there are exactly

[(K+1)/2]∑
i=1

(
K + 1

2i

)
,

letters that may be starters.

For example amongst the 20 letters above only the following
(

5
2

)
· 1 +

(
5
4

)
· 1 = 15 may start

a sap word:

{[[L,R], [0, 1]], [[L,R], [0, 2]], [[L,R], [1, 2]], [[L,R], [0, 3]], [[L,R], [2, 3]], [[L,R], [1, 3]],

[[L,R,L,R], [0, 1, 2, 3]], [[L,R,L,R], [0, 1, 2, 4]],

[[L,R,L,R], [0, 1, 3, 4]], [[L,R,L,R], [0, 2, 3, 4]], [[L,R,L,R], [1, 2, 3, 4]],

[[L,R], [0, 4]], [[L,R], [2, 4]], [[L,R], [3, 4]], [[L,R], [1, 4]]} .

The rightmost letters, in a sap-word are not arbitrary either, but necessarily must have its
first list, irreducible, i.e. of the form [L, φ,R], where φ is legal. In other words the mate of the
first L must be the last R.

Hence there are exactly
[(K+1)/2]∑

i=1

(
K + 1

2i

)
Ci−1 ,
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letters that may be finishers. For example amongst the 20 letters above only the following(
5
2

)
· C0 +

(
5
4

)
· C1 = 15 may end a sap word:

{[[L,R], [0, 1]], [[L,R], [0, 2]], [[L,R], [1, 2]], [[L,R], [0, 3]], [[L,R], [2, 3]], [[L,R], [1, 3]],

[[L,L,R,R], [0, 1, 2, 3]], [[L,L,R,R], [0, 1, 2, 4]],

[[L,L,R,R], [0, 1, 3, 4]], [[L,L,R,R], [0, 2, 3, 4]], [[L,L,R,R], [1, 2, 3, 4]], [[L,R], [0, 4]],

[[L,R], [2, 4]], [[L,R], [3, 4]], [[L,R], [1, 4]]} .

The next item on the agenda is: ”Which letters can follow a given letter?”. This will be
accomplished in three stages. First we have to find the pre-pre-followers of the given letter,
then the pre-followers and finally the followers. The pre-pre-followers indicate the possible
ways of continuing our sap (viewed globally) from x < k into x ≤ k, by adding vertical edges
joining the “loose ends”, thereby possibly tying some of them to each other, which results in
their disappearance. The pre-followers are obtained by deciding what to do with the surviving
open ends. Going from pre-pre-followers to pre-followers does not change the first component
of the pre-pre-letter. Finally the followers are obtained from the pre-followers by inserting new
adjacent L,R’s in the underlying legal bracketing, using the free space that is left. In every
phase, we also keep track of the number of edges (of the sap, not of the Markov Process!) that
are used, that contribute to the weight of the Edge (of the Markov Process, not of the original
sap!).

Let’s first describe the first phase, of determining the pre-pre-followers. Let’s consider a
typical sap, and cut it at the vertical line x = k. As we saw above, the horizontal edges between
x = k−1 and x = k define a certain letter, the first part describing the induced legal bracketing,
and the second part listing the y coordinates. So let’s look only at the part of the sap that lies
to the left of x = k. Suppose that the second part of kth letter is [i1, . . . , i2r]. This means that
there are 2r ”open ends” waiting to be extended beyond the ”longitude” x = k. First note
that we are allowed to add vertical edges on x = k, and in the process change the underlying
legal bracketing. For a very simple example, suppose the letter is of the form [[L,R], [i1, i2]].
Then we can close the partial sap by adding the i2 − i1 edges joining [k, i1] and [k, i2] on
x = k, and finish up, adding a final letter ”Period”, to indicate that we are finished. Another
example is [[L,L,R,R], [i1, i2, i3, i4]]. We can add the i2− i1 vertical edges joining [k, i1] and
[k, i2], thereby making the i3 an ”L”, turning it effectively into [[L,R], [i3, i4]]. Another option
is to add the i4 − i3 edges joining [k, i3] and [k, i4], thereby making the i2 an ”R”, turning it
effectively into [[L,R], [i1, i2]]. We could also do both, eliminating the bracketing altogether,
which signals that we are done, so we only add the last letter, the Period.

In general, we can iterate this process of ”shrinking the bracketing”, but every time we create
new vertical edges, we lose territory, so that we have to keep track of the ”open space” left.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A09 24

In addition, since we want to determine the type III Combinatorial Markov Process (in which
the edges are assigned weights), we also have to have another variable, extw, that describes
the length of the portion of the underlying sap corresponding to the transition from the region
x < k to x ≤ k, in the first phase, and from x ≤ k to x < k+ 1 in the second and third phases.

So we are now ready to formally define the set of pre-pre-followers of a letter LET =
[[w1, . . . , w2r], [i1, . . . , i2r]], where [w1, . . . , w2r] is a legal bracketing, and 0 ≤ i1 < . . . < i2r ≤ K.
To this end, we need to define the notion of pre-pre-letter.

A pre-pre-letter is a triple [LET, FS, extw], where LET is a letter, FS is a subset of
{0, 1, 2, . . . ,K}, and exwt is an integer denoting the extra-weight acquired so far in the tran-
sition from x < k to x < k + 1. At the beginning FS = FS0 := {0, 1, 2, . . . ,K}\{i1, . . . , i2r},
and extw = 0.

Initially the set of pre-pre-followers only has one element: the triple [LET, FS0, 0]. We keep
enlarging it by iteratively applying three ”legal moves” to the present members of this set of
pre-pre-followers of LET , until no new members can be inducted.

The three possible legal moves are RR, LL, and RL. We will now describe them in turn.

9.2 RR move

An ”RR move” is obtained by joining two adjacent Rs, erasing them both and making the
widow of the lower deceased R, formerly an L, into an R. More precisely, an RR move can be
performed whenever there is a b between 1 and 2r − 1 such that wb = wb+1 = R. Letting the
L-mate of wb+1 be wa1(= L) and that of wb be wa2(= L), (of course we must have a1 < a2),
we erase the two R’s, wb and wb+1, from the first component of LET , changing wa2 from L

to R. We also erase ib and ib+1. The new extw, of the derived pre-pre-letter, is the old extw

plus ib+1 − ib (the extra length of the sap, corresponding to performing this particular RR
move), and the new set of free-space, FS, is the old FS minus {ib + 1, ib + 2, . . . , ib+1 − 1},
corresponding to the set of lattice points {[k, ib + 1], [k, ib + 2], . . . , [k, ib+1 − 1]} taken-up by
this particular RR move.

In short, given a pre-pre-letter [LET, FS, extw], where LET = [[w1, . . . , w2r], [i1, . . . , i2r]],
then whenever there are two consecutive Rs in w1 . . . w2r, say, wb = wb+1 = R, applying the
RR-move at b, consists of the following operation, where a1 is the location of the L-mate of
wb+1(= R) and a2 is the location of the L-mate of wb(= R).

[[[w1, . . . , wa1−1, L, wa1+1, . . . , wa2−1, L, wa2+1, . . . , wb−1, R,R,wb+2, . . . , w2r], [i1, . . . , i2r]],

FS, extw]→
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[[[w1, wa1−1, L, wa1+1, . . . , wa2−1, R,wa2+1, . . . , wb−1, wb+2, . . . , w2r], [i1, . . . , ib−1, ib+2, . . . i2r]],

FS\{ib + 1, . . . , ib+1 − 1}, extw + ib+1 − ib]

9.3 LL move

An ”LL move” is obtained by joining two adjacent Ls, erasing them both and making the
widower of the upper deceased L, formerly an R, into an L. More precisely, an LL move can be
performed whenever there is an a between 1 and 2r− 1 such that wa = wa+1 = L. Letting the
R-mate of wa+1 be wb1(= R) and that of wa be wb2(= R), (of course we must have b1 < b2),
we erase the 2 L’s wa and wa+1, from the first component of LET , and change wb1 from R

to L. We also erase ia and ia+1. The new extw, of the derived pre-pre-letter, is the old extw

plus ia+1 − ia (the extra length of the sap, corresponding to performing this particular RR
move), and the new set of free-space, FS, is the old FS minus {ia + 1, ia + 2, . . . , ia+1 − 1},
corresponding to the set of lattice points {[k, ia + 1], [k, ia + 2], . . . , [k, ia+1 − 1]} taken-up by
this particular RR move.

In short, given a pre-pre-letter [LET, FS, extw], where LET = [[w1, . . . , w2r], [i1, . . . , i2r]],
then whenever there are two consecutive L’s in w1 . . . w2r, wa = wa+1 = L, applying the
LL-move at a, consists of the following operation, where b1 is the location of the R-mate of
wa+1(= L) and b2 is the location of the R-mate of wa(= L).

[[[w1, . . . , wa−1, L, L,wa+2, . . . , wb1−1, R,wb1+1, . . . , wb2−1, R,wb2+1, . . . w2r], [i1, . . . , i2r]],

FS, extw]→

[[[w1, . . . , wa−1, wa+2, . . . , wb1−1, L, wb1+1, . . . , wb2−1, R,wb2+1, . . . w2r],

[i1, . . . , ia−1, ia+2, . . . i2r]], FS\{ia + 1, . . . , ia+1 − 1}, extw + ia+1 − ia]

9.4 RL move

An ”RL move” may be obtained whenever an L immediately follows an R, and erasing them
both, and leaving the widowers unchanged, thereby making them marry each other (luckily they
are of the same sex now, so that the ”sex-change operation” required for one of the survivors
of the RR and LL moves, so that they can marry each other, is no longer necessary). More
precisely, an RL move can be performed whenever there is an a between 1 and 2r − 1 such
that wa = R and wa+1 = L. The new extw, of the derived pre-pre-letter, is the old extw

plus ia+1 − ia (the extra length of the sap, corresponding to performing this particular RR
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move), and the new set of free-space, FS, is the old FS minus {ia + 1, ia + 2, . . . , ia+1 − 1},
corresponding to the set of lattice points {[k, ia + 1], [k, ia + 2], . . . , [k, ia+1 − 1]} taken-up by
this particular RR move.

In short, given a pre-pre-letter [LET, FS, extw], where LET = [[w1, . . . , w2r], [i1, . . . , i2r]],
then whenever there is an L immediately following an R in w1 . . . w2r, say: wa = R,wa+1 = L;
applying the RL-move at a, consists of the following operation,

[[[w1, . . . , wa−1, R, L,wa+2, . . . , w2r], [i1, . . . , i2r]], FS, extw]→

[[[w1, . . . , wa−1, wa+2, . . . , w2r], [i1, . . . , ia−1, ia+2, . . . i2r]],

FS\{ia + 1, . . . , ia+1 − 1}, extw + ia+1 − ia]

9.5. From Pre-Pre-Followers to Pre-Followers

The set of pre-pre-followers of any given letter LET might contain a pre-letter that has the
form [[[], []], FS, extw], i.e. where the underlying letter shrunk to nothing, which means that
the sap has been closed, and can’t be continued. This means that there is an Edge between
LET to the final letter ”FINISH”. So the set of followers of LET , Followers(LET), starts out
with [FINISH, extw]. If the pre-pre-follower is not empty, then, if it is [LET1, FS, extw],
where LET1 = [[w1, . . . , w2s], [i1, . . . , i2s]], then we have 2s open ends, and we have to decide
how to continue them along the vertical line x = k, before they venture into a horizontal edge
connecting the vertical lines x = k and x = k+ 1. Of course, for the vertical edges, we can only
use vertices on x = k whose y coordinates belong to FS. Also, for each of these decisions where
to extend the 2s free ends, we keep track of the extra weight, and modify the free-space set,
FS. For example, in the language for saps confined to [0, 11] (i.e. K = 11), consider the letter
[[L,R,L,R], [1, 5, 7, 10]]. Its only pre-pre-follower is obtained by performing an RL-move at the
second and third places, resulting in the pre-letter [[[L,R], [1, 10]], {0, 2, 3, 4, 7, 8, 9, 11, 12}, 2].
Now we have two free ends to worry about. The one at [k, 1] corresponding to the L has the
option either to go down one unit, to [k, 0] before going to [k+1, 0], or to ”cross the river” right
way, straight to [k + 1, 1], or to go up one unit, to [k, 2] (and then to [k + 1, 2]), or go up two
units, to [k, 3] (and then to [k+ 1, 3]), or go up three units, to [k, 4] (and then to [k+ 1, 4]). Of
course it may not go up four units, since [k, 5] is not free. Similarly the free end that is now at
[k, 10] may go one or two units up, to [k, 11], or [k, 12], respectively, before crossing the river to
[k + 1, 11], [k + 1, 12] respectively, or it may decide to go to [k + 1, 10] straight away, or it may
decide to go down to [k, 9], or [k, 8], or [k, 7], before crossing horizontally to [k+ 1, 9],[k+ 1, 8],
[k+ 1, 7], respectively. So the open end at [k, 1] has 4 options, while the open end at [k, 10] has
6 options. These are independent (in this case, sometimes the options of each of the individual
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free ends conflict with each other), so in this case there are 4× 6 = 24 pre-followers that follow
the pre-pre-follower [[[L,R], [1, 10]], {0, 2, 3, 4, 7, 8, 9, 11, 12}, 3] considered here. For example one
of them, obtained when we decide to make the L go down one unit and the R go up two units,
results in the following pre-follower [[[L,R], [0, 11]], {2, 3, 4, 7, 8, 9, 12}, 7].

9.6. From Pre-Followers to Followers

Each pre-follower is automatically a follower, but in addition, there are many other kinds
of followers. These are obtained by inserting pairs LR in the free-space set FS, just like we did
for the Left-Letters above, individually for each consecutive stretch of free-space. For example,
the pre-letter above [[[L,R], [0, 11]], {2, 3, 4, 8, 9, 12}, 7], may be followed, by itself, of course (i.e.
do nothing extra), or by [[[L,L,R,R], [0, 2, 3, 11]], {4, 8, 9, 12}, 10], or [[[L,L,R,R], [0, 8, 9, 11]],
{2, 3, 4, 12}, 10]. Every time we insert a pair L,R in a stretch of free space, say that we place L
at location a and R at location b, the resulting new pre-letter has its extw increased by b−a+2.

9.7. Constructing the type III Combinatorial Markov-Process for SAPS

Recall that in order not to confuse edges of the original sap, that live on the 2D square-
lattice, with edges of the combinatorial Markov Process describing them, we are calling the
latter kind Edges.

To create the Type III (i.e. Edge-weighted) Combinatorial Markov Process describing saps
confined to 0 ≤ y ≤ K, we create two extra letters, let’s call them START , and FINISH.
The followers of the letter START are all the left-letters described above, i.e. all letters of the
form [[L,R,L,R, . . . , L,R], [i1, . . . , i2r]], for r = 1, 2, . . . , [(K + 1)/2], and 0 ≤ i1 < i2 < . . . <

i2r ≤ K. So we have one Edge between START and each one of these left-letters, and we
assign the weight

r∑
a=1

(i2a − i2a−1 + 2) ,

to that Edge, because these are the number of edges that live in 0 ≤ x < 1.

For each letter, we find its followers, as described above, getting followers that are pre-letters
of the form [LET1, FS, extw]. FS is no longer needed, but extw is the weight of the Edge
connecting LET and LET1. Also, if one of the pre-pre-followers is of the form [[], []], FS, extw],
then we make FINISH one of the followers of LET , and the weight of the Edge connecting
LET and FINISH is extw, and FS is discarded.

In the resulting type III Combinatorial Markov Process, [Start, F inish, ListOfNeighbors],
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the set Start consists of the singleton {START}, the set Finish consists of the singleton
{FINISH}, and the list of outgoing neighbors is constructed as above.

9.8. A User’s Manual for the Maple Package SAP

You must first download the package SAP, saving it as SAP, either from my website, or
directly from INTEGERS. To use it, stay in the same directory, get into Maple, and type:
read SAP; Then follow the on-line help. In particular, to get a list of the main procedures,
type: ezra(); .

The main procedures are: GF, GFSeries , SAPseries , gfBatchelorYung .

For a positive integer n, and a variable s, typing GF(n,s); would give the generating
function

fn(s) :=
∞∑
i=1

an(i)s2i ,

where an(i) is the number of self-avoiding polygons in the two-dimensional square lattice whose
perimeter has 2i edges, and whose width (the difference between the largest and smallest y
coordinates) is ≤ n.

GF(n,s) works, on my computer, up to n = 6. Beyond that, you may wish to use GF-

Series(n,L), where L is also a positive integer, in order to get the first L coefficients of fn(s).

In order to get the first L terms in the sequence enumerating all self-avoiding polygons (with
unrestricted width), type SAPseries(L); .

Finally gfBatchelorYung(n,t); gives the generating function for enumerating self-avoiding
walks immersed in the strip [0, n] and such that the leftmost wall touches the x-axis (i.e. contains
the origin). It gives the quantity described in M.T. Batchelor, and C.M. Yung’s paper [BY]
(the denominators on p. 4059 and 4066 and the numerators on p. 4064).

9.9. A Brief Explanation of the Nuts and Bolts of SAP

gf(n,t) is the generating function for SAPS immersed in [0, n], and it is obtained by
calling procedure SolveMC3, borrowed from the package MARKOV, that solves the type III Markov
Process obtained via MarCha(n). MarCha(n) follows the outline given above for constructing
the Markov Process describing saps confined to [0, n]. Since gf(n,t) counts all saps immersed
in [0, n], not only those that lie on the x-axis, and what we really want are only those that do
lie (in other words we only want every sap to be counted once up to translation), we have to
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find gf(n, t)− gf(n− 1, t). This is done by GF(n,t), the main procedure.

SAPseries is designed in an analogous way to KHAYA.

gfBatchelorYung(n,t) uses a slight modification of the Markov Process, obtained from
MarChaBY(n), so that to count the set of self-avoiding walks counted by [BY].

10.1. More SAPs For Less Money: Counting Locally-Skinny SAPs

The Maple package SAP counts globally skinny saps, i.e., for any given positive integer n, it
counts the saps for which the difference between the largest y coordinate of any of the vertices,
and the smallest y coordinate, is less than n. The package FreeSAP counts the larger set of saps
in which we only demand that the difference between the largest and smallest y coordinate, for
each specific vertical slice x = k, is smaller than ≤ n.

To go from SAP to FreeSAP, we use the same methodology that was employed in going
from ANIMALS to FreeANIMALS. For the details, see the source code of the Maple package
FreeSAP.

10.2. A User’s Manual for the Maple Package FreeSAP

You must first download the package FreeSAP, saving it as FreeSAP, either from my website,
or directly from INTEGERS. To use it, stay in the same directory, get into Maple, and type:
read FreeSAP; Then follow the on-line help. In particular, to get a list of the main procedures,
type: ezra(); .

The main procedures are gff and gffSeries.

For a positive integer n, and a variable s, typing gff(n,s); would give the generating
function

gn(s) :=
∞∑
i=1

bn(i)s2i ,

where bn(i) is the number of self-avoiding polygons in the two-dimensional square lattice whose
perimeter has 2i edges, and such that for any vertical cross-section, x = k, the difference
between the largest y such that (k, y) belong to the sap, and the smallest such y, is ≤ n.

gff(n,s) works, on my computer, up to n = 6. Beyond that, you may wish to use gff-

Series(n,L), where L is also a positive integer, in order to get the first L coefficients of gn(s).
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10.3. A Brief Explanation of the Nuts and Bolts of FreeSAP

The underlying Combinatorial Markov Process is of type IV. MarChaf(n,t); constructs
it, using the machinery of SAP, but introducing multiple edges as necessary (corresponding to
various interfaces). Then SolveMC4, borrowed from the package MARKOV, described above, finds
the weight-enumerator, in procedure gff(n,t) . SolveMC4series, also borrowed from MARKOV,
is used to find the series expansion in gffSeries(n,L).

11.1. Counting Skinny Self-Avoiding Walks

The methodology is the same as for counting self-avoiding polygons, but the details are more
complicated. The reader is invited to study the source-code of the Maple package SAW in detail.
Here we will only briefly sketch how to adapt the algorithm for counting skinny self-avoiding
polygons to that of counting skinny self-avoiding walks.

The vertical cross-sections look a little different, since in addition to L − R pairs, we may
have zero, one, or two ”loners” that do not connect, from the left, to any other horizontal edge.
Let’s denote these loners by the letter A. So now the alphabet still contains the same letters
as in the SAP alphabet, but each of these letters give rise to several more letters, obtained by
inserting either one or two A’s in any available slot.

For example, if the strip is 0 ≤ y ≤ 5, then the letter [[L,R], [0, 3]] also gives rise to the
letters [[L,A,R], [0, 1, 3]], [L,A,R,A], [0, 1, 3, 5]] and eight others (altogether

(
4
1

)
+
(

4
2

)
= 10).

The pre-left-letters are obtained from those of the SAP case by sticking 0, 1, or 2 A’s. To
get the pre-pre-followers of a letter, we have, in addition to RR, LL, and RL moves, also the
following four moves.

AL move: in which the lonely A connects to an L residing right above it, making L’s ex-R-mate
into a lonely A.

LA move: in which the lonely A connects to an L residing right under it, making L’s ex-R-mate
into a lonely A.

AR move: in which the lonely A connects to an R residing right above it, making R’s ex-L-
mate into a lonely A.

RA move: in which the lonely A connects to an R residing right under it, making R’s ex-L-
mate into a lonely A.

The phase of going from pre-pre-followers to pre-followers is similar, it preserves the L−R−A



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A09 31

part, i.e. the first component of the letter, but changes the second part, as well as the available
free space.

Finally, the phase between pre-followers to followers is also similar, except that in addition
we may stick-in one or two A’s up to a total of two A’s.

We also have two special letters START and FINISH, to denote the beginning and end.
Every time it is possible to end the walk, i.e. there are only (one or two) As left (possibly after
doing AbortL or AbortR, which means that an L or R, formerly paired, decides to ”commit
suicide”, thereby leaving its mate a lonely A.

To fully understand what’s going on, you must study SAW carefully.

11.2. A User’s Manual for the Maple Package SAW

The main functions are GFW, GFSeriesW, and SAWseries.

GFW(n,t); would give the (ordinary) generating function, in the variable t, that enumerates
(undirected) saws whose (global) width is ≤ n. In other words, the rational function

Wn(t) =
∞∑
i=0

an(i)ti ,

where an(i) is the number of i-step self-avoiding walks (divided by 2), whose width is ≤ n.

GFW(n,t) works, on my computer, up to n = 4. Beyond that, you may wish to use GF-

SeriesW(n,M), where M is also a positive integer, in order to get the first M coefficients of
Wn(t).

Finally, if you want to find the first L terms in the notorious enumerating sequence for (all,
unrestricted) saws (in the 2D square-lattice), type SAWseries(L). Of course, it can’t compete
with the very efficient computations of Conway and Guttmann [CG], but its agreement, up
to L = 24, with the published data, is the best proof for us, of the validity of our approach.
If Mikowsky[M] would have done it, he would have found his mistake right away (his output
starts to disagree at L = 4).

11.3 A Very Brief Explanation of the Nuts and Bolts of SAW

MarChaW finds the type IV Combinatorial Markov Process that describes the language of
saws of bounded width. Please note that we use a slightly different representation than the one



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A09 32

used in MARKOV, using lists rather sets and generating polynomials. Likewise, SolveMarCha is
a version of MARKOV’s SolveMC4 that handles the present representation. gf(n,t); gives the
generating function for all saws confined to the strip 0 ≤ y ≤ n, which over-counts saws of width
< n. In order to get the right count, we use GF(n,t);, which is simply gf(n, t)− gf(n− 1, t).

12.1. More SAWs For Less Money: Counting Locally-Skinny SAWs

The Maple package SAW counted globally skinny saws, i.e., for the given positive integer n,
it counted saps for which the difference between the largest y coordinate of any of the vertices,
and the smallest y coordinate, is ≤ n. The package FreeSAW counts the larger set of saws in
which we only demand that the difference between the largest and smallest y coordinate, for
each specific vertical slice x = k, is ≤ n.

To go from SAW to FreeSAW, we use the same methodology that was employed in going
from ANIMALS to FreeANIMALS, and from SAP to FreeSAP. We refer the reader is to the
source code of the Maple package FreeSAW.

12.2. A User’s Manual for the Maple Package FreeSAW

You must first download the package FreeSAW, saving it as FreeSAW, either from my website,
or directly from INTEGERS. To use it, stay in the same directory, get into Maple, and type:
read FreeSAW; . Then follow the on-line help. In particular, to get a list of the main procedures,
type: ezra(); . The main procedures are gfWf and gfSeriesWf.

For a positive integer n, and a variable s, typing gfWf(n,s); would give the generating
function

fn(s) :=
∞∑
i=1

bn(i)si ,

where bn(i) is the number of i-step self-avoiding walks in the two-dimensional square lattice
such that for any vertical cross-section, x = k, the difference between the largest y such that
(k, y) belong to the saw, and the smallest such y, is ≤ n.

gfWf(n,s) works, on my computer, up to n = 5. Beyond that, you may want to use
gfSeriesWf(n,L), where L is also a positive integer, in order to get the first L coefficients of
fn(s).
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12.3. A Very Brief Explanation of the Nuts and Bolts of FreeSAW

The underlying Combinatorial Markov Process is of type IV. MarChaWf(n,t); constructs
it, using the machinery of SAW, but introducing even more multiple edges as necessary (corre-
sponding to various interfaces). Then SolveMarCha solves it to give gfWf(n,t).

13. Conclusion

We have described seven Maple packages: MARKOV, ANIMALS, FreeANIMALS, SAP, FreeSAP,

SAW and FreeSAW. The first of these, MARKOV is of very general scope, and should be useful in
many other situations where the Transfer-Matrix method is employable. The other packages
enumerate ”skinny” lattice-animals, self-avoiding polygons and self-avoiding walks, with two
definitions of skinniness: global, where the object has to fit completely within a prescribed
horizontal strip, and local, where the whole object has unbounded width, but each vertical
cross-section has bounded width.

We hope that in the future, similar treatment would be given for other venerable models
of statistical physics, like the Ising model (in two and three dimensions, with magnetic field),
Percolation, and the Monomer-Dimer problem. This methodology should also be useful in the
study of plane and solid partitions.

Most important, the systematic, careful and lucid “software engineering” of this project
should make it easier for me to implement the Umbral Transfer-Matrix Method [Z2].
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