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Abstract

We show that there is a set X ⊂ N with density O(log n) such that every sufficiently
large natural number can be represented as sum of two elements from X and a prime.
The density is a log1/2 n factor off being best possible.

1. Introduction

A central notion in additive number theory is that of bases. A subset X of N is a basis
of order k if every sufficiently large number n ∈ N can be represented as a sum of k
elements of X. Here and later N denotes the set of natural numbers.

In this note, we are working with a related notion of complementary bases. Given a
set A ⊂ N, a set X ⊂ N is a complementary basis of order k of A if every sufficiently
large natural number can be written as a sum of an element in A and k elements in X.
All asymptotic notations are used under the assumption that n → ∞. The logarithms
have natural base.

Consider the set P of primes. Since P has density n/ log n, it is clear by the pigeon
hole principle that a complementary basis of order k of P should have density Ω(log1/k n).
As far as we know, it is still an open question to determine, even for the case k = 1,
that whether there is a complementary basis of P with density O(log1/k n). In [1], Erdős
shown that for k = 1, there is a complementary base of density O(log2 n). In a recent
paper, Ruzsa [5], improving a result of Kolountzakis [4], showed that there exists a set
X of density ω(n) log n, where ω(n) is a function tending to infinity arbitrarily slow in
n, such that the set X + P has density one (i.e., almost all natural numbers can be
represented as a sum of an element from X and a prime).
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In this note, we focus on the case k = 2. Our main theorem is

Theorem 1.1 P has a complementary basis of order 2 and density O(log n).

Corollary 1.2 For all k ≥ 2, P has a complementary basis of order k and density
O(log n).

We conjecture that

Conjecture. For any fixed k, P has a complementary basis of order k and density
O(log1+o(1))/k n).

The probabilistic method is the only effective approach so far to this type of problems.
It seems that to prove even the density O(log2/k n) for k ≥ 3 requires a new tool from
probability theory. Such a tool should surely be of independent interest. The first step
towards the conjecture might be to prove a bound with the exponent decreasing in k.

2. Proof of Theorem 1.1

We construct the claimed complementary basis X by the random method. For each
x ∈ N, choose x to be in X with probability px = c/x, where c is a positive constant to
be determined. Let tx be the binary random variable representing the choice of x (thus
tx = 1 with probability px and 0 with probability 1−px). We skip the fairly easy proof of
the fact that almost surely, X(m) = O(logm) for every m, i.e, X has the right density;
the interested readers might want to consider this as a warm-up exercise. Now let us
consider the number representations of n as sum of a prime and two elements from X.
This number is a random variable depending on the tj’s, j < n and can be expressed as
follows

Yn =
∑
p<n

∑
i+j=n−p

titj,

where in the second sum we do not count permutations. Here and later in a sum over
p we understand that p is a prime. We next show that there is a constant n0 such that
with probability at least 1/2, Yn ≥ 1 for all n ≥ n0. To achieve this goal, it suffices to
prove that for all sufficiently large n, Pr(Yn = 0) ≤ n−2 (notice that the sum

∑∞
n=n0

n−2

goes to 0 as n0 tends to infinity). It has turned out that it is much more convenient to
work with the following truncation of Yn

Y ′n =
∑

p≤n−2n2/3

∑
i+j=n−p; i,j≥n2/3

titj.
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In the following, we shall prove

Pr(Y ′ = 0) ≤ n−2. (1)

Central to the proof of (1) is the following

Lemma 2.3 For all sufficient large n

∑
p≤n−n2/3

1

n− p = Θ(1),

and

∑
p≤n−2n2/3

1

n− p = Θ(1).

Proof of Lemma 2.3. To verify the first equality, let us set n1 = n − n2/3 and nl =
nl−1 − n

2/3
l−1 for all l = 2, 3, 4, . . . , s where s is the first place where ns ≤ n/2. It is a

routine to show by induction that

n− ln2/3

2
≥ nl ≥ n− ln2/3. (2)

Let Pl denote the set of primes in the interval [nl, nl−1). It is clear, by (2), that for
all p ∈ Pl,

2

ln2/3
≥ 1

n− p ≥
1

ln2/3
. (3)

On the other hand, it is a well-known fact in number theory that the number of
primes in the interval [m−m2/3,m) is Θ(m2/3/ logm) for every sufficiently large m (see,
for instance, [2]). Thus

|Pl| = Θ(n
2/3
l−1/ log nl−1) = Θ(n2/3/ log n)

for all l. This and (3) yield

s∑
l=2

∑
p∈Pl

1

n− p = Θ(log−1 n
s∑
l=2

1/l) = Θ(log−1 n× log s) = Θ(1). (4)
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To complete the proof of the first equality, notice that
∑
p≥n/2 1/(n−p) ≤ ∑n

j=n/2 1/j =
O( n

logn
1
n
) = o(1). The second equality follows easily. Q.E .D

The second main ingredient of our proof is a large deviation bound, due to Janson
[3]. Let z1, . . . , zm be independent indicator random variables and consider a random
variable Y =

∑
α Iα where each Iα is the product of few zj’s. We write α ∼ β if there is

some zj which occurs in both Iα and Iβ. Furthermore, set ∆ =
∑
α∼β E(IαIβ). To this

end, E(A) denotes the expectation of the random variable A.

Theorem 2.4 (Janson) For any Y as above and any positive number ε

Pr(Y ≤ (1− ε)E(Y )) ≤ e−
(εE(Y ))2

2(E(Y )+∆) .

From Theorem 2.4, one can routinely derive the following lemma. For a pair 1 ≤
i, j ≤ m, we write i ∼ j if there is some α such that Iα contains both zi and zj.

Lemma 2.5 There is a positive constant r such that the following holds. If each term
Iα in Y is the product of exactly 2 random variables and for all m ≥ i ≥ 1, E(Y ) ≥
r log n

(
E(
∑
j∼i tj) + 1

)
, then

Pr(Y = 0) ≤ n−2.

We now apply Lemma 2.5 to Y ′n. Let us notice that in our setting, i ∼ j if and only
if there is a prime number p such that i+ j + p = n. Therefore,

E(
∑
j∼i

tj) =
∑

p≤n−i−n2/3

c

n− i− p ≤
∑

p≤m−m2/3

c

m− p,

where m = n − i. By Lemma 2.3, there is a constant a such that E(
∑
j∼i tj) ≤ ac.

Moreover, a simple calculation yields that

E(
∑

i+j=n−p,i,j≥n2/3

titj) = Ω(c2 log(n− p)
n− p ).

This and Lemma 2.3 together imply

E(Y ′) = Ω(
∑

p≤n−2n2/3

log(n− p)
n− p ) = Ω(c2 log n

∑
p≤n−2n2/3

1

n− p) = Ω(c2 log n). (5)
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(5) guarantees that there is a positive constant b such that E(Y ′) ≥ bc2 log n. Thus,
by increasing c, we can guarantee that the condition of Lemma 2.5 is met and this
completes the proof. Q.E .D

Acknowledgement. The author would like to thank Andrew Granville for a correction
concerning the result of Ruzsa quoted in the introduction.

References
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