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Abstract

A graph has a representation modulo n if there exists an injective map f : {V (G)} →
{0, 1, . . . , n − 1} such that vertices u and v are adjacent if and only if |f(u)− f(v)| is
relatively prime to n. The representation number is the smallest n such that G has a
representation modulo n. We seek the maximum value for the representation number
over graphs of a fixed order. Erdős and Evans provided an upper bound in their proof
that every finite graph can be represented modulo some positive integer. In this note
we improve this bound and show that the new bound is best possible.

1. Introduction

Let G be a finite graph with vertices {v1, . . . , vr}. A representation of G modulo n is an
assignment of distinct labels to the vertices such that the label ai assigned to vertex vi
is in {0, 1, . . . , n − 1} and such that |ai − aj| and n are relatively prime if and only if
(vi, vj) ∈ E(G). Erdős and Evans [1] showed that every finite graph can be represented
modulo some positive integer. The representation number of a graph G, denoted rep (G),
is the smallest n such that G has a representation modulo n.

Modular representations have received considerable attention in recent years as a
source of open problems (see [4] and [7]). Representation numbers for various classes of
graphs were determined in [2] and [3], but little is known for many families of graphs,
including bipartite graphs and trees.

The existence proof in [1] is elegant but gives an unnecessarily large upper bound for
the representation number. For a graph of order r, the value n is the product of r primes,

each greater than 3(r2). Our bound is the product of the first r − 1 primes greater than
or equal to r − 1. In fact we show that this significantly smaller bound is best possible
over all graphs of order r.
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We also mention a connection to a result involving orthogonal latin square graphs.
An orthogonal latin square graph is one whose vertices can be labeled with latin squares
of the same order and same symbols such that two vertices are adjacent if and only if the
corresponding latin squares are orthogonal. Lindner, E. Mendelsohn, N. S. Mendelsohn,
and Wolk [5] showed that every finite graph is an orthogonal latin square graph. A
shorter proof of this result was given by Erdős and Evans [1] after establishing that every
finite graph can be represented modulo some positive integer. An even more simple proof
of the theorem from [5] can be obtained using the upper bound found in this note.

2. Dimensions and representations

A product representation of length t assigns distinct vectors of length t to each vertex
so that vertices u and v are adjacent if and only if their vectors differ in every position.
The product dimension of a graph, denoted pdimG, is the minimum length of such a
representation of G.

As developed in [2] and [3], there is a close correspondence between product repre-
sentation and modular representation. From a representation of a graph G modulo a
product of primes q1, . . . , qt, we obtain a product representation of length t as follows.
The vector for vertex v is (v1, . . . , vt), where vi ≡ a(mod qi) and vi ∈ {0, . . . , qi−1} for
1 ≤ i ≤ t. If u has vector (u1, . . . , ut) and v has vector (v1, . . . , vt), then the modular
representation implies that u and v are adjacent if and only if ui 6= vi for all i, making
this assignment a product representation.

Conversely, given a product representation, a modular representation can be obtained
by choosing distinct primes for the coordinates, provided that the prime for each coordi-
nate is larger than the number of values used in that coordinate. The numbers assigned
to the vertices can then be obtained using the Chinese Remainder Theorem. The re-
sulting modular representation generated from the product representation is called the
coordinate representation.

We use pi to denote the ith prime, and for any prime pi we use pi+1, pi+2, . . . , pi+k to
denote the next k primes larger than pi. The seminal work on product dimension was
done by Lovász, Nešetřil, and Pultr [6]. We first restate one of their results and then a
result from [3] as Lemmas 1 and 2. The graph Kr−1 + K1 is the disjoint union of Kr−1

and K1.

Lemma 1 For r ≥ 3, the maximum product dimension of an r−vertex graph is r − 1,
achieved by Kr−1 +K1.

Lemma 2 Let ps be the smallest prime that is at least r − 1. Then rep (Kr−1 + K1) =
psps+1 · · · ps+r−2.
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By converting from product representations to modular representations, we show
that for all r ≥ 3, Kr−1 + K1 is the r-vertex graph with largest representation number.
For graphs with at most two vertices, it is straightforward to show that rep (K1) = 1,
rep (K2) = 2, and rep (2K1) = 4.

Theorem 3 For r ≥ 3, the maximum of rep (G) over graphs of order r is psps+1 · · · ps+r−2,
where ps is the smallest prime that is at least r − 1.

Proof. The sharpness of the upper bound follows from Lemma 2. To prove the upper
bound, let G have order r, and begin with a product representation of length r − 1
provided by Lemma 1. By relabeling if necessary, we may assume that the values used
in coordinate i are {0, 1, . . . , ci− 1} for some positive integer ci and that coordinates are
indexed such that c1 ≤ · · · ≤ cr−1.

If G is not complete, then c1 ≤ r − 1. Thus we may associate ps+i−1 with the
ith coordinate and the corresponding coordinate representation of G is a representation
modulo ps · · · ps+r−2. If G is complete, then rep (G) is the smallest prime that is at least
r, which is smaller than the claimed upper bound.

3. Conclusion

We note that the construction given in the proof of Theorem 3 will not always give
the representation number, since the representation number need not be a product of
distinct primes. The case mentioned earlier, rep(2K1) = 4, is one of infinitely many
examples. Therefore, finding the representation number of a graph is a different problem
from finding the product dimension of a graph. Since the representation number of a
graph depends upon the distribution of primes and prime powers, tools from number
theory may be valuable for future studies. There are many open problems involving
modular repesentations. Representation numbers have been determined for only a few
graph families (see [2] and [3]). Little is known about representation numbers for some
multipartite graphs, including the most basic cases involving trees and complete bipartite
graphs.
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