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Abstract

Consider two rational Beatty sequences {bp1/q1 +β1c : n ∈ Z} and {bp2/q2 +β2c : n ∈ Z}
where p1, p2, q1, q2 are integers. We set p = gcd(p1, p2), q = gcd(q1, q2), u1 = q1/q,
u2 = q2/q. In 1985 Morikawa showed that the sequences are disjoint for some β1 and β2

if and only if there exist positive integers x and y such that

xu1 + yu2 = p− 2u1u2(q − 1).

We give a new proof of this theorem. We also use intermediate results to obtain a
generating function for a Beatty sequence and relate this to Fraenkel’s conjecture about
disjoint covering systems of rational Beatty sequences.

We define a rational Beatty sequence to be a sequence

S(p/q, β) = {bpn/q + βc : n ∈ Z}, (1)

where p and q are positive integers, gcd(p, q) = 1 and β is real. We say p/q is the
modulus of the sequence. Such sequences have an extensive literature (see [4], [10],
[13]) and are the subject of a famous conjecture, postulated by Fraenkel ([4], [10], [6],
[12], [14]). A disjoint covering system of rational Beatty sequences is a set of
Beatty sequences {S(pi/qi, bi) : i = 1, . . . , n} which partitions the integers. Fraenkel’s
conjecture is:

Conjecture If the rational Beatty sequences {S(pi/qi, bi) : i = 1, . . . , n} form a disjoint
covering system, with n > 2 and p1/q1 < p2/q2 < · · · < pn/qn, then for i = 1, · · · , n

pi = 2n − 1, qi = 2n−i.

We will say something more about this conjecture at the end of the paper.
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Note that if we set q = 1 in (1) we get the arithmetic progression

{np+ bβc : n ∈ Z}.

The Chinese Remainder Theorem concerns the disjointness of pairs of such sequences.
In our notation one form of it is the following.

Chinese Remainder Theorem There exist numbers β1 and β2 such that the sequences
S(p1, β1) and S(p2, β2) are disjoint if and only if gcd(p1, p2) > 1.

The situation is considerably more complicated when we deal with rational Beatty
sequences with non-integral moduli. Ryozu Morikawa [8] has found necessary and suf-
ficient conditions for the existence of β1, β2, such that S(p1/q1, β1) and S(p2/q2, β2) are
disjoint. This is the “Japanese Remainder Theorem”. Morikawa’s proof is difficult and
because it was published in a little known journal is not as well known as it should be.
In this paper we present a simpler proof.

Thus we are interested in whether or not the Beatty sequences S(p1/q1, β1) and
S(p2/q2, β2) intersect. We begin with some results that simplify the question.

Lemma 1 Given a rational Beatty sequence S(p/q, β) there exist integers b1 and b2 such
that

S(p/q, β) = S(p/q, b1)

= S(p/q, b2/q)).

For a proof see Lemma 1 of [12], where a slightly more general result is given.

Remark 1 Since bp(n + q)/q + βc = bpn/q + βc + p the sequence S(p/q, β) coincides
with a set of residue classes modulo p. It follows that:

S(p/q, b′1) = S(p/q, b1),

S(p/q, b′2/q) = S(p/q, b2/q)

if and only if b′1 ≡ b1 mod p and b′2 ≡ b2 mod p. If b1 and b2 are as in Lemma 1 we have

S(p/q, b1q/q) = S(p/q, b2/q)

from which
b1q ≡ b2 (mod p). (2)

Theorem 2 Let p = gcd(p1, p2). Then

S(p1/q1, b1) ∩ S(p2/q2, b2) = ∅

if and only if
S(p/q1, b1) ∩ S(p/q2, b2) = ∅.
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Proof. The “if” part is immediate since S(pi/qi, bi) ⊆ S(p/qi, bi) for i = 1, 2. In the other
direction let

p1 = R1p, p2 = R2p

so that gcd(R1, R2) = 1. By Lemma 1 we may assume that b1 and b2 are integers. Suppose
there exist integers n1 and n2 such that

bn1p/q1c+ b1 = bn2p/q2c+ b2.

Then for any integer m,

b(n1 +mq1)p/q1c+ b1 = b(n2 +mq2)p/q2c+ b2. (3)

It is now sufficient to show that there exists m such that

R1|(n1 +mq1), R2|(n2 +mq2) (4)

for then the left and right sides of (3) are members, respectively, of S(p1/q1, b1) and
S(p2/q2, b2).

Since gcd(q1, R1) = 1. there exists m0 such that R1 divides n1 + m0q1. So for any
integer k,

R1|n1 + (m0 + kR1)q1.

Now consider the sequence

{n2 + (m0 + kR1)q2 : k ∈ Z}.

Since gcd(R1, R2) = 1 and gcd(R2, q2) = 1 there exists k0 such that

R2|n2 +m0q2 + k0R1q2,

so that (4) holds with m = m0 + k0R1. 2

This theorem means that when considering conditions for the disjointness of pairs of
Beatty sequences we may assume that the numerators of their moduli are equal. We shall
henceforth fix p to be this numerator. For this p and any integer q for which gcd(p, q) = 1
we let q be the least non-negative residue modulo p satisfying

qq ≡ −1 mod p.

Theorem 3 The sequence S(p/q, b), where b is an integer, coincides with the set of
residues

{qm+ b : m = 0, . . . , q − 1} mod p.
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Proof. For any n,

bpn/q + bc ≡ (pn− qbpn/qc)q + b (mod p).

The term in parentheses can take any value in the interval [0, q − 1]. Thus for any n
there exists m ∈ [0, q − 1] such that

bpn/q + bc ≡ mq + b (mod p).

Similarly, for any m ∈ [0, q − 1] there exists an n satisfying this relation. 2

The next theorem concerns the disjointness of two Beatty sequences in which the
denominator of the modulus of one divides the denominator of the modulus of the other.
This will be used as a lemma for the main theorem.

Theorem 4 Let u be a positive integer. Then the Beatty sequences S(p/q, b1/q) and
S(p/uq, b2/uq) have non-empty intersection if and only if b2 is congruent modulo p to
some integer n in the interval [(b1 − q + 1)u, (b1 + q)u− 1].

Proof. Using equation (2) in Remark 1, the two Beatty sequences are S(p/q,−b1q) and
S(p/uq,−b2uq). By Theorem 3 these intersect if and only if there exist integers i and j
with 0 ≤ i ≤ q − 1, 0 ≤ j ≤ uq − 1 such that,

iq − b1q ≡ juq − b2uq (mod p). (5)

Multiplying by uq and rearranging gives

b2 ≡ j + b1u− iu (mod p).

That is,

b2 ∈
q−1⋃
i=0

uq−1⋃
j=0

{j + b1u− iu}

≡
q−1⋃
i=0

[(b1 − i)u, (b1 + q − i)u− 1] (mod p).

This is the union of q blocks of uq consecutive residues modulo p, with starting points of
consecutive blocks differing by u. Thus it is the interval

[(b1 − q + 1)u, (b1 + q)u− 1] (mod p).

2

Corollary 5 There exist b1, b2 such that the Beatty sequences in Theorem 4 are disjoint
if and only if p > (2q − 1)u.
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Proof. The interval [(b1 − q + 1)u, (b1 + q)u − 1] contains (2q − 1)u integers. By the
theorem, the Beatty sequences can be made disjoint if and only if we can find b2 which
is not congruent modulo p to any integer in the interval. This occurs if and only if
p > (2q − 1)u. 2

We now consider the general case of two Beatty sequences S(p/q1, β1) and S(p/q2, β2).
From Remark 1 we may assume that β1 = 0, β2 = b/q2. The next theorem allows us to
apply Theorem 4 to this case. We let

q = gcd(q1, q2), q1 = u1q, q2 = u2q. (6)

Theorem 6

S(p/q1, 0) =
u1−1⋃
i=0

S(p/q, iu1/q).

Proof. Treating S(p/q1, 0) as a set of residues modulo p, we have, by Theorem 3,

S(p/q1, 0) =
q1−1⋃
m=0

{mq1} (mod p).

By (6) the right hand side is

u1q−1⋃
m=0

{mu1q} ≡
u1−1⋃
i=0

q−1⋃
j=0

{u1j + i}u1q (mod p).

It is easily checked that
u1q ≡ −u1q (mod p)

so that, using Theorem 3,

S(p/q, 0) ≡
u1−1⋃
i=0

q−1⋃
j=0

{−u1qu1j + iu1q}

≡
u1−1⋃
i=0

q−1⋃
j=0

{jq + iu1q}

≡
u1−1⋃
i=0

S(p/q, iu1q)

≡
u1−1⋃
i=0

S(p/q,−iu1qq/q)

≡
u1−1⋃
i=0

S(p/q, iu1/q) (mod p)

as required. 2
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For i = 0 to u1 − 1 we let Vi be the set of residues modulo p such that b ∈ Vi implies

S(p/q2, b/q2) ∩ S(p/q, iu1/q) 6= ∅.

Remark 2 It follows from Theorem 6 that there exists b such that S(p/q1, 0) and
S(p/q2, b/q2) are disjoint if and only if ∪u1−1

i=0 Vi is not a complete residue system modulo
p.

If we apply Theorem 4 with u2 in the role of u, b in the role of b2 and iu1 in the role
of b1 we obtain

Vi = [(iu1 − q + 1)u2, (iu1 + q)u2 − 1]

= [(−q + 1)u2, qu2 − 1] + iu1u2,

using an obvious notation. Our problem now is to decide whether the union of these
intervals is a complete residue system modulo p. To proceed we need some more notation.
Let x and y be integers such that

xu1 + yu2 = p− 2u1u2(q − 1) (7)

with
1 ≤ y ≤ u1. (8)

Since u1 and u2 are relatively prime by definition, (7) can always be satisfied, and (8)
ensures that x and y are uniquely defined. Now let

z = u1 − y. (9)

Recall that gcd(q1, p) = 1, hence gcd(u1, p) = 1, hence by (7) gcd(y, u1) = 1 and by (9)
gcd(z, u1) = 1.

Thus for each i ∈ [0, u1−1] there exists a unique integer r(i) satisfying r(i) ∈ [0, u1−1]
and i ≡ r(i)z mod u1. For r = 0, . . . , u1 let

M(r) = r(x+ (2q − 1)u2)− bzr/u1cu2.

We will use the functions r(i) and M(r) to obtain a reordering of the intervals Vi.

Lemma 7 For i ∈ [0, u1 − 1],

M(r(i)) ≡ −iu1u2 (mod p).

Proof. Fix i and consider u1(M(r(i))+iu1u2). Writing r for r(i) and using (7) this equals

u1r(x+ (2q − 1)u2)− u1bzr/u1cu2 + u1iu1u2

≡ r(xu1 + 2u1u2(q − 1) + u1u2)− u1u2bzr/u1c − iu2

≡ r(−yu2 + u1u2)− u1u2bzr/u1c − iu2

≡ u2((u1 − y)r − u1bzr/u1c − i)
≡ u2(zr − u1bzr/u1c − i) (mod p).
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Since zr ≡ i mod u1 and 0 ≤ i < u1 the term in parentheses equals zero. This,
together with the observation that gcd(u1, p) = 1, implies the result. 2

We can now prove our main result.

Theorem 8 Using the notation

p = gcd(p1, p2), q = gcd(q1, q2), q1 = u1q, q2 = u2q,

there exist β1, β2 such that the Beatty sequences S(p1/q1, β1) and S(p2/q2, β2) are disjoint
if and only if there exist positive integers x and y such that,

xu1 + yu2 = p− 2u1u2(q − 1). (10)

Proof. We can assume, as in (7) and (8) that we have x and y satisfying (10) with
1 ≤ y ≤ u1. We must show that disjointness is possible if and only if x > 0. By Remark
2 the Beatty sequences can be disjoint if and only if the union of the intervals Vi is not
a complete residue system modulo p. By Lemma 7 and the observation that as i takes
values from 0 to u1 − 1 so, in a different order, does r(i), this union is,

u1−1⋃
i=0

{[(−q + 1)u2, qu2 − 1] + iu1u2} =
u1−1⋃
r=0

{[(−q + 1)u2, qu2 − 1]−M(r)}.

This is the union of u1 blocks each containing (2q − 1)u2 consecutive residues modulo p.
The first member of the rth block is (−q + 1)u2 −M(r). Now

M(r + 1)−M(r) = x+ (2q − 1)u2 − u2(bz(r + 1)/u1c − bzr/u1c).

The term in parentheses takes the value 0 or 1, and as r increases from 0 to u1, bzr/u1c
increases from 0 to z. Thus this term will equal 1 for z values of r and 0 for u1 − z = y
values. Now y is positive by assumption so the maximum value of M(r + 1) − M(r)
is x + (2q − 1)u2. The question of whether the union of the intervals Vi is a complete
residue system modulo p is then equivalent to asking whether the block size is as big as
M(r+ 1)−M(r). That is, is (2q− 1)u2 ≥ x+ (2q− 1)u2? This is so if and only if x ≤ 0.
Thus it is possible to find β1, β2 such that the Beatty sequences are disjoint if and only
if x is strictly positive, which implies the statement of the theorem. 2

We have presented an analogue of part of the Chinese Remainder Theorem. That the-
orem also describes the shape of the intersection S(p1, b1)∩S(p2, b2) when it is non-empty:
it is an arithmetic progression with common difference equaling the lowest common mul-
tiple of p1 and p2. In the general case the situation is again more complicated. Fraenkel
and Holzman [5] have shown that the intersection of S(p1/q1, b1) and S(p2/q2, b2) can
have as many as min{q1, q2}+ 3 distinct differences between consecutive members.

We now return to Fraenkel’s conjecture Although this concerns sets of pairwise disjoint
Beatty sequences, Theorem 8 does not seem to help a great deal. However, we can use
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some of the earlier results to produce a generating function for the set of non-negative
members of a Beatty sequence. We remark that O’Bryant [9] has recently developed a
different technique for producing generating functions for Beatty sequences.

Theorem 9 The Beatty sequence S(p/q, b), where b is a non-negative integer, has gen-
erating function

f(x) = g(x) +
xb

1− xp
1− xqq
1− xq ,

where g(x) is a polynomial with all coefficients equalling 1.

Proof. By Theorem 3 and Remark 1 we see that the non-negative members of the Beatty
sequence S(p/q, b) form the set

{qm+ b+ np : 0 ≤ m < q, 0 ≤ n <∞}+G,

where G is a finite set made up of those members of the sequence which are non-negative
but correspond to negative values of n. Set G = {g1, . . . , gM}. The corresponding gener-
ating function is

f(x) = xb
q−1∑
m=0

xqm
∞∑
n=0

xnp + g(x)

where g(x) is the polynomial
∑M
i=1 x

gi . Taking the closed forms of the sums gives the
required formula. 2

Example The Beatty sequence S(7/4, 4) has non-negative terms 0, 2, 4, 5, 7, 9, 11, 12,
14, 16, 18, 19, 21,. . . We have p = 7, q = 4, b = 4 and q = 5. Then

x4

1− x7

1− x20

1− x5
= x4 + x9 + x11 + x14 + x16 + x18 + x19 + x21 + · · ·

To account for the missing terms we set g(x) = 1 + x2 + x5 + x7 + x12.

Corollary 10 If {S(pi/qi, bi) : i = 1, . . . , n} is a disjoint covering system then there
exists a polynomial g(x) whose coefficients all equal to 1 such that

g(x) +
n∑
i=1

xbi

1− xpi
1− xqiqi
1− xqi =

1

1− x. (11)

Proof. The generating function for the non-negative integers is 1/(1 − x). Since the
Beatty sequences partition the integers we get, using the notation of the theorem,

n∑
i=1

(gi(x) +
xbi

1− xpi
1− xqiqi
1− xqi ) =

1

1− x.

The result follows on writing g(x) =
∑n
i=1 gi(x). 2
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Example {S(7
1
, 4), S(7

2
, 6), S(7

4
, 0)} is a disjoint covering of Beatty sequences. The gen-

erating functions of the non-negative parts of the sequences are, respectively,

f1(x) =
x4

1− x7
,

f2(x) = x2 +
x6

1− x7

1− x6

1− x3
,

f3(x) = x+ x3 + x8 +
1

1− x7

1− x20

1− x5
,

so g(x) = x+ x2 + x3 + x8 and we have,

x+ x2 + x3 + x8 +
x4

1− x7
+

x6

1− x7

1− x6

1− x3
+

1

1− x7

1− x20

1− x5
=

1

1− x.

In 1950 Erdös reported the non-existence of disjoint coverings in which the quotients
of the moduli all equal 1 and the numerators are distinct, with a proof obtained, inde-
pendently, by Mirsky, Newman, Davenport, Rado (see [3]). This proof used a generating
function like ours. Combinatorial proofs were later given by other authors ([2], [7], [11]
and see [15]). We can use the corollary and their technique to give an alternative proof
of a known result [1] about disjoint covering systems.

Corollary 11 If {S(pi/qi, bi) : i = 1, . . . , n} is a disjoint covering system with p1 ≤ p2 ≤
· · · ≤ pn then pn−1 = pn.

Proof. Suppose that pn > pn−1 and let ζ be a primitive pnth root of unity. Now let x
approach ζ in equation (11). The absolute value of the term xbn

1−xpn
1−xqnqn
1−xqn goes to infinity,

but all other terms remain finite. This contradiction proves the result. 2
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