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Abstract
Abel’s identity
arby+agbat+ - - +amby = (bi+bat++ - +by)am+(bi+ - +bp1)(@m-1—am)+- - ~+bi(a1—as)

is used to give a refinement of a recent theorem of Sellers.

1. Introduction

Recently Sellers ([1], [2]) proved via partition analysis the following theorem.

Theorem 1. Let K = (ko, k3, k4, - -+ ) be an infinite vector of nonnegative integers with
ks > 1. Define p(n; K') as the number of partitions of n of the form p; + ps +ps+ps+---
with p1 > pas > p3 > py--- > 0 and py > kopy + kaps + kaps + -+ Then, for all n > 0,
p(n; K) equals the number of partitions of n whose parts must be 1’s or of the form
(>°", ki) + (m — 1) for some integer m > 2.

The main result of this note is a refinement of Sellers’s theorem. To state the theorem,
we will first introduce some notation.

Definition 1. Let j be a nonnegative integer and let K = (ko, ks, k4, - - - ) be a sequence
of nonnegative integers with ky > 1.

Define

(1) Ky :=0 and K,, := (ko, k3, -+ , ky,) for m > 2.

(2) Sj(n; K;) := the set of all partitions of n with exactly the part j,
and for m > 2
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Sj(n; Ky,) := the set of all partitions of n with n =p; +ps + -+ + P,
p1=p2 > 2 pn =1, and py = j + kopa + ksps + - + knpm.

(3) T;(n; K;) := the set of all partitions of n with 1 appearing exactly j times and with

largest part < 1,
and for m > 2

T;(n; K,y,) := the set of all partitions in which the only parts appeaing are 1, ko + 1,
ko +ks+2, -+, ko+ks+ -+ k,, +m — 1, the largest part equals
ko + ks + -+ k, +m —1, and 1 appears exactly j times.

T(n; Kp) Uj_onJ(”a Kon),
S(n; K) == Um21 T'(n; Kin),
T(n; K) := Um21T(n; K.).

(5) We will use the following notation for a partition p; fi + pafa + -+ + P fun of n:

n=pi-(f1) +p2-(f2) -+ Dm- (fn),

where f; denotes the multiplicity of the part p; and py > ps > --->p

- m-

With the notation in Definition 1, we can now state our main result:
Theorem 2. We have

|55 (n; Km)| = [T5(n; Ko ),
for integers j,m > 0 and m > 1.

Remark. Sellers’s Theorem 1 says that

ZZLS' (n; Ky,) ZZ (n; Kin)

7j>0 m>1
and this follows immediately from Theorem 2.

In Section 2, Abel’s transform will be defined. In Section 3, Abel’s transform will be
used to give a short proof of the main result. In Section 4, two examples will be given.
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2. Abel’s Identity, Abel’s Transform, and the Conjugation of Partitions

Abel’s identity states that, for a;, b; € R, one has

a1b1 + agbg + - ambm = (bl + bg + -+ bm)am + (bl + bQ + - -bm_l)(am_l — am) (1)
+bi(ar — ay),

which can be readily verified by induction.
Let p1 - (fi) +p2- (f2) + -+ + Pm - (fm) be a partition of n.
Define Abel’s transform « by

a:pr-(fi) +pe-(fo)+ A+ 0w (f) = (it fot o+ fn) (Pm) (2)
+(fi+fot o+ foe1) - (Pm—1 — Pm)
+-- 4 fi-(p1 —p2)

It follows from (1) that o? is the identity map. Hence « is a bijection. Indeed, « is the
conjugation of partitions. This bijection, together with other two, will provide a bijection
between the two sets S;(n; ky,) and Tj(n; k,,) in the next section.

3. Proof of Theorem 2

By use of Abel’s transform «, we are in a position to prove Theorem 2.

Proof of Theorem 2. Let n = p; + pas + -+ + pm be a partition in S;(n;k,,). Write
n=j+py-(ka+1)+ps-(ks+1)+ -+ pm- (kn +1). Combining the sequence of
bijections

n=j+py-(ke+1)+ps-(ks+1)+ - +pn-(kn+1)
— n—j=py-(ka+1)+p3-(ks+ 1)+ +pm- (kn+1)
S n—j=(kat kst thntm—1) pn+t (krtks+-+kn+(m—2))-
(Pm—1 —Dm) + -+ (k2 + 1) - (p2 — p3)
— n=(ke+ks+--+kn+(m—1) -pun+(kat+ks+ - +kna1+(m-—2)-

(Pm—1 = Pm) + -+ (k2 +1) - (p2 —p3) +1-(j),

we see that the last partition is in Tj(n; k,,,). Hence |S;(n; ky,)| = [T (n; k)| O
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4. Examples

Example 1. The case K = (2,1,1,1,---) and n = 12.
In this case, we have (kg + 1, ko + kg + 2, ko + ks + ks +3,---) = (3,5,7,9,11,- - -),

f12 3
1141,1042,9+3,8+4
104+1+1,94241.843+1,842+2

S(12K) = 9+1-(3),8+2+1+1,7+2+2+1 ’
8+1-(4),7+2+1-(3)
\7+1~(5) y,
and
(1.(12) ‘
3+1-(9),3+3+1-(6),3-(3)+1-(3),3-(4)
T2 gy =4 21 (D531 (1).5434341545+1+1
" TY T+1-(5),T+5,T+3+1+1
9+1-(3),9+3
[ 11+1 J

We have the following partition of S(12; K') and 7T'(12; K) into corresponding subsets.

{T(12;K1) {1-(12)},
S(12; Ky) = {11 + 1,10+ 2,9 + 3,8 + 4},
{T(12;K2) {3+1-(9),3+3+1-(6),3-(3)+1-(3),3-(4)},
S(12;K3) ={10+1+1,9+2+1,8+3+1,8+2+2},
{T(12;K3):{5+1-(7)5+3+1-(4),5+3+3+1,5+5+1+1},
S(12;K4) ={9+4+1-(3),84+2+1+1,7+2+2+1},
{ T(2;Ky) ={7+1-(5),7+5,7T+3+1+1},
S(12;K5) ={8+1-(4),7+2+1-(3)},
{ T(12; K5) ={9+1-(3),9+ 3},
{8(12;1@ {7+1-(5)},
T(12; Kg) = {11+ 1}.

We further partition these subsets. For example, in S(12; K3) and T(12; K3) we have

S;(12; K3) = {10+ 1+ 1}, T3(12;K3) ={5+1-(7)},

Si(12; K3) ={9+2+1}, Ty(12;K;)={5+3+1-(4)},
S1(12; K3) = {8+3+1}, Ti(12;K3) ={5+3+3+ 1},
So(12; K3) = {8+ 242}, Ty(12;K3) ={5+5+1+1}.

and all other S;(12; K3) and 7}(12; K3) are empty.
We demonstrate, for example, |S1(12; K3)| = |T1(12; K3)|. Take 12 = 8+3+1, a partition
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in S1(12; K3). Since 8=1+3-(2)+1- (1), we have

12=8+43+1=8+3-(1)+1-(1)=1+43-3)+1-(2) — 1

1=3-(3)4+1-(2)

4 11=(3+2)-1+3-(3-1)
=5-(1)+3-(2)

— 12=5-(1)+3-(2)+1-(1)
—54+3+3+1

The corresponding Ferrers graph is

| «

12=843+1=8+3-(1)+1-(1)=1+3-(3)+1-(2)
since8=1+3-(2)+1-(1)

11=3-(3)+1-(2)

11=5+3+3

12=5+3+3+1

Example 2. The case K = (1,1,1,--+) and n = 11.

In this case, we have

(ko + 1, ko +ks+2,ky+ ks +ks+3,---) =(2,4,6,8,---),
Ss(11, K3) = {7+ 3+ 1,7+2+ 2},

and

Ty(11,K3) ={4+4+1-(3),4+2+2+1-(3)}.
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We demonstrate |S5(11, K3)| = |T5(11, K3)|.
Since 7=3+3-(1)+ 1- (1), we have
H=7+3+1=7+3-(1)+1-(1)

343-(2)+1-(2)

— 8:3-(2)+1'(2)
% 8=(2+2)-1+2-(3-1)
=4-(1)+2-(2)
— 11=4-(1)+2-(2)+1-(3).
The corresponding Ferrers graph is
e o o 11=74+3+1=7+3-(1)+1-(1)=3+3-(2)+1-(2)
o since 7=3+3-(1)+1-(1)
l
e o o 8=3-(2)+1-(2)
e
o o 8=4-(1)+2-(2)
}
o o 11=4-(1)+2-(2)+1-(3)
Next, since 7=3+4+2- (1) + 2 (1), we have
11=7424+2=7+2-(1)+2-(1) = 34+2-(2)+2-(2)
— 8:2-(2)+2-(2)
5 8=(2+2)-(2)+2-(2-2)
1.2
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The corresponding Ferrers graph is

o o N=74+24+2=7+2-(1)+2-(1)=34+2-(2)+2-(2)
o0 since 7=3+2-(1)+2-(1)

o o 8=2-(2)+2-(2)

. 11=4-(2)+1-(3)

Therefore, |55(11, K3)| = |T3(11, K3)|.
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