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Abstract

Recently, Kitaev, Mansour and Vella introduced numbered polyomino patterns that gen-
eralize the concept of pattern avoidance from permutations and words to numbered poly-
ominoes. We study simultaneous avoidance of two or more right angled numbered poly-
omino patterns, which are 0-1 labellings of the essentially unique convex two-dimensional
polyomino shape with 3 tiles. It turns out that this study gives relations to several com-
binatorial structures.
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1. Introduction

In [6], the authors generalized the concept of pattern avoidance (see [5]) from permuta-

tions and words to numbered polyominoes. In particular, they considered avoidance of

binary right angled polyomino patterns, which are 0-1 labellings of the essentially unique

convex two-dimensional polyomino shape with 3 tiles.

As in [8] (resp. [1], [2], [3]), where the authors deal with multi-avoidance of classical

(resp. generalized) 3-patterns (see [5] for definitions), it is natural to study avoidance of

two or more right angled polyomino patterns. It turns out that this study gives relations

to several combinatorial structures (see Section ).

The paper is organized as follows. In Section we give all necessarily definitions. In

Section , we show the interest to study the multi-avoidance of right angled polyomino

patterns by giving relations to other combinatorial objects, such as certain permutations,

hypercubes, placing of nonattacking kings on certain boards, spanning trees and others.
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In Section (resp. ) we find the number of m × n matrices that avoid any combination

of two (resp. three or four) right angled polyomino patterns. We refer to [4] for the case

of avoidance of five or more of right angled polyomino patterns (out of seven), as well as

for all the missing proofs in this paper.

2. Preliminaries

We follow [6] to define our patterns. However, we refer to [6] and the references therein

for more details and examples.

A polyomino is a finite subset of Z2. The elements of a polyomino are called tiles.

Given an element p ∈ Z2, we denote by xp and yp the first and second coordinates of p

respectively. A column (resp. row) of a polyomino P is a maximal set of tiles of P all

having the same first (resp. second) coordinate.

Now let G be the graph with Z2 as vertex set, and with p, q adjacent if and only if

|xp − xq| + |yp − yq| = 1. Then G is a self-dual planar graph and a polyomino can be

thought of equivalently as a set of vertices of G or a set of faces of a square tessellation

of the plane, which is an embedding of G. The latter interpretation gives the intuition

behind the choice of the term “polyomino”, in analogy with the word “domino”.

Given two polyominoes P1, P2, a polyomino isomorphism is a bijection from P1 to P2

such that, for every p, q ∈ P1, xp < xq ⇔ xφ(p) < xφ(q) and yp < yq ⇔ yφ(p) < yφ(q).

The width (resp. height) of a polyomino P is the maximum over all pairs {p, q} ⊆ P of

|xp − xq| (resp. |yp − yq| ). The reduction of P is the polyomino which minimizes the

width and the height among all polyominoes isomorphic to P in which all tiles have only

non-negative coordinates. A polyomino shape (or simply a shape) is a polyomino which

is its own reduction. If the reduction of a polyomino P is a certain shape C, we shall

also say that P has the shape C. We shall denote shapes by a geometric depiction of the

relative positions of the tiles.

Given a non-negative integer n, [n] denotes the set of non-negative integers less than

or equal to n; a set of this form is called an interval. A numbering φ of a set T is a

function from T into the set of integers. If the range A of φ is finite, there exists a unique

order-preserving bijection ψ from A onto the interval of cardinality |A|. The reduction of

φ is the numbering φ ◦ψ, and a numbering is reduced if it is its own reduction. Also, for

any integer k ≥ |A|, φ is called a k-numbering. We shall extend our notation for shapes

to numbered shapes in the obvious way.
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Given a polyomino P , a subset Q ⊆ P is a subpolyomino of P . A numbered polyomino

is a polyomino equipped with a numbering. If φ is a numbering of P , the subpolyomino

Q inherits the numbering φ|Q. Given a polyomino Q′ with a numbering φQ′ , Q is an

occurrence of Q′ in P if there exists a polyomino isomorphism µ from Q to Q′ such that

the numberings φ|Q and µ ◦ φQ′ have the same reduction; if the two numberings are

actually the same, then the occurrence is literal.

If there are no occurrences of Q′ in P , P is said to avoid Q′.

A numbered polyomino pattern (or simply a pattern) is a polyomino shape equipped

with a reduced numbering. We are concerned with occurrences of patterns in numbered

shapes. Given a positive integer k, a shape C and a pattern P , S
(k)
C denotes the set of

k-numberings of C such that the corresponding numbered polyomino avoids the pattern

P (the pattern P is understood and not explicitly specified in the notation).

In this paper, we shall assume that k = 2 and only examine avoidance of polyomino

patterns in (binary) matrices. Moreover, we shall assume that the matrix C has m rows

and n columns, and denote |S(2)
C | by Mm,n.

Remark 1. The operations of complementation (replacing i with k − i) and reflection

about any one of the four axes of symmetry of the square lattice (the vertical, horizontal

and diagonal lines through the origin) are all involutions on the set of numbered poly-

ominoes which preserve occurrences, in the sense that if χ is one of the above operations,

and P,Q are numbered polyominoes, then P occurs in Q if and only if χ(P ) occurs in

χ(Q). Clearly, the same is true if χ is any composition of these operations. Note that

reflecting a matrix about the line y = −x and reducing the shape corresponds to taking

the transpose of the matrix. As in classical permutation avoidance, these operations are

often useful in reducing the enumeration of pattern-avoiding polyominoes to a smaller

number of cases (patterns).

A polyomino is right angled if it contains precisely three tiles, two rows and two

columns. There are four different right angled shapes: , , and , each of

which can be numbered in 7 different ways (the numeration with all 1s is not in the

reduced form, and therefore does not give us a pattern). However, in this paper, we shall

consider simultaneous avoidance of patterns having the same shape. Thus, for instance,

we are interested in simultaneous avoidance of the patterns and , but not in that of,

say, the patterns, one of which has the shape , whereas the other one has the shape

. Furthermore, the operations of reflection mentioned in Remark 1 allow us to consider

only the patterns

p1 = , p2 = , p3 = , p4 = , p5 = , p6 = , p7 = .
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Also, if C denotes the operation of complementation mentioned in Remark 1, T denotes

the operation of transposition (see Remark 1 again), and CT denotes the composition

of C and T , which is obviously commutative, then one can use Table 1 to reduce the

number of cases to consider.

a pattern p p1 p2 p3 p4 p5 p6 p7

C(p) p1 p5 p6 p7 p2 p3 p4

T (p) p1 p3 p2 p4 p6 p5 p7

CT (p) p1 p6 p5 p7 p3 p2 p4

Table 1: Complementation, transposition, and their composition

Thus, if we determined the number Mm,n of m×n binary matrices that simultaneously

avoid, for instance, the patterns p2, p4 and p5, then the number of m× n matrices that

simultaneously avoid the patterns p2, p5 and p7 is the same, that is Mm,n, due to the

operation of complementation. Moreover, if in the the expression for that Mm,n we switch

m and n, we get the number of permutations that simultaneously avoid the patterns p3,

p4 and p6, as well as that avoiding the patterns p3, p6 and p7, due to the operation of

transposition and that of composition of complementation and transposition.

So, using Table 1, one can divide all the possibilities into equivalence classes, and we

need to consider a representative from each class. We indicate the equivalence classes

and their representatives in the corresponding tables of Sections and . If we give any

information for an equivalence class, this information concerns to the representative from

this class. Since obviously M1,n = 2n and Mm,1 = 2m, in many cases we give the

results only for m,n ≥ 2. Moreover, in some cases as a solution to a problem, we

provide a recursion or/and the bivariate generating function M(x, y) defined as M(x, y) =∑
m,n≥0

Mm,nx
myn. Thus, the variable x is responsible for the number of rows, whereas y for

the number of columns. To getMm,n fromM(x, y) one can use the standard mathematical

packages such as Maple.

3. Relations to other combinatorial objects

We show the interest to study multi-avoidance of right angled numbered polyomino pat-

terns by giving connections to other combinatorial objects.
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3.1 Permutations with two sequences

Let σ be a permutation on [n]. A sequence of length ` (≥ 2) of σ is a maximal interval

of integers [i, i+ `− 1] = {i, i+ 1, . . . , i+ `− 1} on which σ is monotonic.

We are concerned about the permutations with exactly two sequences. If n = 2,

there are no such permutations, if n = 3, these permutations are 132, 231, 213, and 312.

Indeed, for instance, in the first permutation, the sequences are 13 and 32, whereas in

the last one, 31 and 12. There are 12 such permutations in the case n = 4, which are

1243, 1342, 1432, 2134, 2341, 2431, 3124, 3214, 3421, 4123, 4213, 4312.

One can show, in general, that there are 2n − 4 n-permutations with two sequences.

Proposition 2. For n ≥ 1, there is a bijection between the (n + 2)-permutations with

two sequences and the 2× n matrices that simultaneously avoid the patterns p2 = and

p5 = .

Proof. Clearly, the permutations with two sequences can be divided into two groups. The

first group contains permutations having increasing interval followed by decreasing one,

and the second group contains all other permutations. A bijection between these groups

is given by taking the complementation, that is by replacing the letter i by the letter

n + i + 1 for (n + 2)-permutations. Thus, the groups are equally large. Moreover, the

intervals in each permutation from the first group share the letter (n+ 2), and thus such

permutations can be specified by dividing the set {1, 2, . . . , n + 1} into two nonempty

subsets.

It is easy to see that a matrix A avoids p2 and p5 if and only if the complementation

of A, that is C(A), does it. Using this property, we will divide the set of all matrices

avoiding p2 and p5 into two equally large groups. Then we will construct a bijection

F between the first (n + 2)-permutations group and the first 2 × n matrices group. A

bijection between the second groups will be given by the composition C ◦ F ◦ C. Thus

we will get the desirable bijection.

Suppose A is a 2 × n matrix that avoids p2 and p5. Then either A entirely consists

of the columns x = (11)T and y = (00)T or A has at most one column u = (10)T and

at most one column v = (01)T . If A has both u and v then one of them must be the

right-most column of A (any column placed to the right of both u and v would lead to

an occurrence of a prohibition). Also, if there are columns in A to the right of u (resp.

v) then these columns, except maybe for the last one, must be y (resp. x), and the last

column can be v (resp. u).
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The first 2×n matrix group consists of the following four subgroups, where the symbol

”?” is used to indicate that corresponding column is either x or y, and, say, yi denotes

concatenation of i columns y.

1) ?n−1y;

2) ?n−1u;

3) ?iuyn−i−2y, 0 ≤ i ≤ n− 2;

4) ?iuyn−i−2v, 0 ≤ i ≤ n− 2.

This is easy to check using the considerations above, that matrices from the subgroups

1)–4) are exactly half of all matrices avoiding p2 and p5. All the other matrices can be

obtained by the operation of complementation.

We now describe the bijection F that makes a correspondence between subgroup 3)

(resp. 4)) and permutations from the first permutation group having 1 and 2 to the

left (resp. right) of (n + 2). Also, to subgroup 1) (resp. 2)) there corresponds the

permutations having 1 to the left (resp. right) and 2 to the right (resp. left) of (n+ 2).

To deal with subgroups 1) or 2), we list all the (n− 1) elements 3, 4, . . . , n+ 1 to be

placed to the right or to the left of (n+ 2), which defines a permutation uniquely in our

case. If we place an element to the right (resp. left), we assign the column x (resp. y) to

it. By concatenating these assigned columns in the increasing order of the corresponding

elements, and adjoining either y or u to the end, we obtain a matrix from subgroup 1)

or 2). This operation is obviously a bijection.

Let us consider subgroup 3) (subgroup 4) can be considered in the same way).

As above, we list the elements 3, 4, . . . , n+ 1 and assign to them the columns x and

y according to whether the elements are placed to the right of (n+ 2) or to the left of it

respectively. The fact that we have a nonempty word to the right of (n+ 2) ensures that

we have at least one column x. We concatenate the assigned columns in the same way as

above, then we change the rightmost x to u, adjoin the column y from right, and by this

we get a matrix from subgroup 3). This is clear how to convert this injective operation,

and thus we get a bijection.

The proposition is proved.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A21 7

3.2 Avoiding the patterns p2 and p6

Recall that p2 = and p6 = .

Proposition 3. There is a bijection between the edges in an (n+ 1)-dimensional hyper-

cube and 2× n matrices avoiding p2 and p6.

Proof. Any edge in an (n+ 1)-dimensional hypercube can be specified by the coordinate

i, 1 ≤ i ≤ n + 1, in which 0 has been changed to 1 or vice versa in the endpoints of the

edge, and a binary n-tuple, which gives values of the other coordinates.

Suppose A = (ai,j) is a 2× n matrix that avoids p2 and p6.

If a2,i = 0 for all i = 1, 2, . . . , n, there are no restrictions for the first row of A,

and clearly there is a one-to-one correspondence between such matrices and the edges

specified by changing the (n+ 1)-st coordinate of their endpoints.

Suppose now that i is the minimum index such that a2,i = 1, 1 ≤ i ≤ n. It is easy

to see, that in order to avoid p2 and p6, we must have a1,j = 1 for j = i + 1, . . . , n, and

there are no other restrictions for the elements of A. The edges that correspond to such

matrices are those having change in the i-th coordinate of their endpoints.

The described correspondence is obviously a bijection.

The following proposition is related to [10] by Wilf.

Proposition 4. There is a bijection between the ways to place n nonattacking kings on

a 2× 2n chessboard for n ≥ 1 and 2× n matrices avoiding p2 and p6.

Proof. For every nonattacking placement of kings, the chessboard is naturally divided

into n 2 × 2 cells, each containing exactly one king. We say that a cell is of type 1

(resp. 2, 3, 4) if the king sits in its NW (resp. NE, SE, SW) corner. The arrangement of

kings is then completely specified by an n-word over the alphabet {1, 2, 3, 4} that satisfies

certain adjacency conditions (AC), namely that none of the following two letter words is

permitted: 21, 24, 31, and 34.

The structure of 2×n matrices avoiding p2 and p6 is described in the proof of propo-

sition 3. Clearly, in order to construct a bijection, we can assume that the i-th column

of our matrices corresponds to the i-th cell of the chessboard with a king placed, that is

to one of the letters 1,2,3, or 4.
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If a2,i = 0 for all i = 1, 2, . . . , n then the column (00)T corresponds to 1, whereas

(10)T corresponds to 4. Clearly, for any such matrices we do not violate the AC, and of

course this is a one-to-one correspondence.

Suppose now that i is the minimum index such that a2,i = 1, 1 ≤ i ≤ n. Thus,

the columns preceding the i-th column are (00)T or (10)T , and they correspond to 1 or

4 respectively as above. For the other n − i + 1 columns, we assume that the column

(11)T corresponds to 2, (10)T and (01)T (only column i is possibly (01)T ) correspond to

3. Clearly we satisfy the AC.

Conversely, given a word satisfying the AC. We read it from left to right replacing

each 1 by (00)T and each 4 by (10)T . First time we meet 2 or 3, we replace it by (11)T

or (01)T respectively. Finally, we replace 2 and 3 by (11)T and (10)T respectively.

The proposition is proved.

Proposition 5. There is a bijection between the number of 2 × (n + 1) 0-1 matrices

containing n + 2 1s and having no zero row or column and 2 × n matrices avoiding p2

and p6.

Proof. We describe a correspondence between the matrices of the first and the second

types.

The 2× (n+ 1) matrices under consideration have exactly one column (11)T and all

other columns are either (10)T or (01)T . In our correspondence between the matrices of

two types, the position of (11)T determines the column of a 2× n matrix A in which we

first time meet 1 in the second row reading from left to right. If this position is i = n+1,

the second row of A consists only of 0s (for a possible structure of A see the proof of

proposition 3), in which case (10)T corresponds to itself, whereas (01)T corresponds to

(00)T . Otherwise, that is if i < n+1, (11)T is followed either by (10)T or by (01)T . In the

former case the i-th column of A is (11)T , whereas in the last case it is (01)T . Thus we

glue two columns into one column. For the other columns j, 1 ≤ j ≤ n+ 1, j 6= i, i+ 1, if

j < i, then we proceed as in the case i = n+1. Otherwise, column j determines (j−1)-st

column of A as follows. The column (10)T corresponds to itself, and (01)T corresponds

to (11)T .

It is easy to see that the correspondence is a bijection.

Proposition 6. There is a bijection between the number of spanning trees of the complete

bipartite graph K2,n+1 and 2× n matrices avoiding p2 and p6.
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Proof. The statement follows from Proposition 5 after observing, that any spanning tree

of K2,n+1 can be coded by a 2 × (n + 1) matrix having exactly one column (11)T and

other columns either (10)T or (01)T . Indeed, suppose K2,n+1 = A∪B, where A = {x, y}
and B = {1, 2, . . . , n + 1}, and i ∈ B is the only node connected to both x and y. We

assign (11)T to i, and for any other node j ∈ B, we assign (10)T (resp. (01)T ) to j if j is

connected to x (resp. y). By concatenating these columns in the natural order, we get

the matrix representing a spanning tree.

Our final illustration for this subsection is probably most interesting. It is related

to [7] by Robertson (for a survey on generalizations of this paper see [5, Section 2.2]).

However, we leave this example without proof, and we believe this could be a good student

project to solve problem 7. See, e.g., [5] for definition of a pattern in permutations, and

for the concept of pattern avoidance.

Problem 7. Find a bijection between 132-avoiding permutations of [n + 3] containing

exactly one 123 pattern and 2× n matrices that avoid p2 and p6.

3.3 Other relations

In this subsection we list some of the sequences appearing in [9] when dealing with

multi-avoidance of right angled numbered polyomino patterns. These references could

be considered as basis for studying the relations, which might lead to formulation of new

interesting problems in this direction. We observe that most of the objects appearing in

A001787 are considered in Subsection with respect to their connection to avoidance of

the patterns p2 and p6.

restrictions number of rows sequence number

p2, p6 m = 2 A001787
p2, p7 m = 2 A001394
p1, p2, p6 m = 2 A008574
p2, p3, p7 m = 3 A005803
p2, p4, p5 m = 2 A033484
p2, p4, p7 m = 2 A079859
p2, p3, p4, p5 m = 3 A016933
p2, p3, p4, p5 m = 4 A017341
p2, p3, p5, p7 m = 4 A022144

Table 2: Sequences from [9] related to the multi-avoidance of right angled numbered
polyomino patterns.
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4. Multi-avoidance of two patterns

There are 8 equivalence classes for two restrictions, which are presented in Table 3.

class representative other members of the class

A1 {p1, p3} C : {p1, p6}, T : {p1, p2}, CT : {p1, p5}
A2 {p1, p4} C : {p1, p7}
A3 {p2, p3} C : {p5, p6}
A4 {p3, p4} C : {p6, p7}, T : {p2, p4}, CT : {p5, p7}
A5 {p2, p5} T : {p3, p6}
A6 {p2, p6} C : {p3, p5}
A7 {p2, p7} C : {p4, p5}, T : {p3, p7}, CT : {p4, p6}
A8 {p4, p7}

Table 3: The equivalence classes for two restrictions.

According to [6, Proposition 2], when one of the patterns to avoid is p1, we have

Mm,n = 0 for m,n ≥ 3 with possible exception m = n = 3. This is easy to check that

M3,3 = 6 for A1, and M3,3 = 4 for A2. Moreover, the following proposition is true.

Proposition 8. We have

• Mm,2 = 4m+ 2 and M2,n = 3 · 2n − 2 for A1, m ≥ 2 and n ≥ 1;

• M2,n = Mn,2 = 6n− 2 for A2 and n ≥ 1.

Proof. See [4, Proposition 8].

To prove Propositions 11 and 18 below concerning the classes A3 and B9, we need

Lemma 10, which in turn uses Lemma 9.

Lemma 9. Let Rm,n denote the number of m×n binary matrices that avoid the patterns

h = and v = simultaneously. We assume that Rm,0 = R0,n = 1 for m,n ≥ 0. Also,

R(x, y) is the bivariate generating function for the numbers Rm,n. Then

R(x) =
1

1− x− y .

Proof. Suppose A = (ai,j) is an m× n matrix that avoids the patterns h and v.

If a1,1 = 0, clearly the first row and the first column must consist of 0s in order to

avoid h and v, which in turn courses that all entries of A must be 0.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A21 11

In the first row, all 1s must precede all 0s if any. Thus, assuming that the first i

elements in the first row are 1s, 1 ≤ i ≤ n, we have that aj,k = 0 for all 1 ≤ j ≤ m and

(i+ 1) ≤ k ≤ n, since otherwise we have an occurrence of v. The first row, as well as the

submatrix consisting of 0s, do not affect the rest of A, and we have Rm−1,i good matrices

in this case. Thus, for m,n ≥ 1,

R(m,n) = 1 +
n∑
i=1

Rm−1,i =
n∑
i=0

Rm−1,i,

which using the technique of manipulations with generating functions from, for instance,

the proof of Lemma 10, gives the desired.

Lemma 10. Let Nm,n denote the number of m×n binary matrices that avoid the patterns

h = and p2 = simultaneously. We assume that Nm,0 = N0,n = 1 for m,n ≥ 0.

Also, N(x, y) is the bivariate generating function for the numbers Nm,n. Then

N(x, y) =
3y − 2y2 − xy2 − 1

(2y − 1)(x+ y − 1)(y − 1)

Proof. Suppose A = (ai,j) is an m× n matrix that avoids the patterns h and p2.

If the first row is (11 . . . 11) or (11 . . . 10), this row does not affect the rest of A, and

we get Nm−1,n good matrices in this case.

Otherwise, since h is prohibited, the first row consists of i 1s followed by 0s, where

1 ≤ i ≤ n− 2. Since p2 is prohibited, the columns from (i+ 1)st to (n− 1) must consist

of 0s, and because we have at least one such column, in order to avoid h, the last column

must also consist of 0s. The remain submatrix B of A formed by first i columns without

the first row, must avoid h, p2, but also v = (otherwise we have an occurrence of p2

with appropriate element from the last m−i columns). Since if a matrix avoid v it avoids

p2, we may assume that B avoids two patterns, h and v, and thus according Lemma 9,

there are Rm−1,i good matrices in this case. We observe, that is was essential to define

Rm,0 = R0,n = 1 in order to count all possibilities to form A. We now have

Nm,n = 2Nm−1,n +
n−2∑
i=0

Rm−1,i

for m,n ≥ 1. Multiplying both parts of the equality by xn, summing over all n ≥ 0, and

assuming that Nm(x) =
∑

n≥0 Nm,n, we have

−1 +Nm(x) = −2 + 2Nm−1(x) +
1

1− xRm−1(x)− xRm−1(x)−Rm−1(x),
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and thus

Nm(x) = 2Nm−1(x) +

(
1

1− x − x− 1

)
Rm−1(x)− 1 =

2mN0(x) +
m−1∑
i=0

((
1

1− x − x− 1

)
Ri(x)− 1

)
2m−i−1.

We now multiply both parts of the equality by ym, sum over all m ≥ 0, and take into

account that N0(x) = 1/(1− x) to get

N(x, y) =
1

(1− x)(1− 2y)
+

y

1− 2y

(
1

1− x− y

(
1

1− x − x− 1

)
− 1

1− y

)
,

which gives the desirable after simplification.

Proposition 11. For the class A3, we have Mm,n = Mn,m, Mm,1 = M1,m = 2m, and for

m,n ≥ 2,

Mm,n = 2 +Mm−1,n−1 + 2Mm,n−1 +
m−2∑
i=1

(2Ni,n−1 + Pm,n,i),

where Pm,n,0 = Mm−1,n−1, Pm,2,i = P2,m,i = 2m−1, and for m,n ≥ 3,

Pm,n,i = 2iMm−i−1,n−1 +

min(i,n−2)∑
k=1

(
i

k

)(
n− 2

k

)
Pm−1,n−1,i−1.

Proof. Suppose A = (ai,j) is an m × n matrix that avoids the patterns from A3, and

m,n ≥ 2.

Suppose a(1, 1) = 0. If a(1, 2) = 1 then all other elements in the first column must

be 1 (p3 is prohibited), which courses that all other elements from the first row must be

1 (p2 is prohibited). Now the first column and the first row do not affect the rest of A,

and we have Mm−1,n−1 good matrices in this case. If a(1, 2) = 0 then all other elements

in the first column must be 0 (p2 is prohibited), which gives that all other elements from

the first row must be 0 (p3 is prohibited). This is easy to see now that in order to avoid

p2 and p3, all other elements from A but am,n must be 0. So we choose am,n in two ways

which gives two good matrices.

Suppose now that a(1, 1) = 1, and the first column is either (11 . . . 11)T or (11 . . . 10)T .

Such column does not affect the rest of A and we have 2Mm,n−1 good matrices in this

case.

We observe that in the remain cases having a(1, 1) = 1, we have either

a) exactly one 0 in the first column in position (i+ 1), or
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b) the first column is (11 . . . 1︸ ︷︷ ︸
i

00 . . . 0︸ ︷︷ ︸
m−i

)T , where 1 ≤ i ≤ m− 2.

In case b), to avoid p3, the (i + 1)st row must consist of 0s, which gives that all

elements below this row, except possibly am,n, must be 0 (the same considerations as

above when a(1, 1) = a(1, 2) = 0). Clearly, the remain elements of A form a i× (n− 1)

matrix that avoids , p2 and p3, or just and p2, since once we avoid , we

avoid p3 as well. The number of such matrices Ni,n−1 was discussing in Lemma 10, and

could be obtained by expanding N(x, y). So, in case b) we have 2Ni,n−1 good matrices.

In case a), to avoid p2, the (i + 1)st row must consist of 1s. Let Pm,n,i denote the

number of such matrices, that is the matrices avoiding p2 and p3, having ai,1 = 0, and

all other elements in the first column and row i are 1 for 1 ≤ i ≤ m− 2. We consider the

matrix B formed by intersection of columns 2, 3, . . . , (n − 1) and the first i rows. B is

possibly empty. If all entries of B are 1s, we can choose the entries of A to the right of

B in 2i ways, and there are no restrictions, except for avoiding p2 and p3, for the remain

elements of A, which form a (m − i − 1) × (n − 1) matrix. Thus, the number of good

matrices in this case is 2iMm−i−1,n−1.

Suppose now that B has at least one 0, and thus we have n,m ≥ 3. One can see

that in order to avoid p2 and p3, each column, as well as each row of B, must contain

at most one 0. Thus, the maximum number of 0s is given by min(i, n − 2). Moreover,

once we place a 0 in B, the entries of A staying in the same row or column with this 0,

must be 1, which does not affect the rest of A, and thus gives Pm−1,n−1,i−1 good matrices.

Finally, we observe that if we want to place k 0s in B, we can do that in
(
i
k

)(
n−2
k

)
ways

by choosing first rows and then columns from the 0s. The initial conditions for Pm,n,i are

easy to get.

We sum the results in a) and b) over i from 1 to m−2, to get the truth the statement.

Proposition 12. The bivariate generating function for the classes A4, A6, and A8 is

M(x, y) =
2xy

1− 2(x+ y − xy)
.

Proof. We prove the statement for the class A4, all other classes can be considered in

the same way.

Suppose A = (ai,j) is an m× n matrix that avoids the patterns from A4.

If the first column consists of 1s, it does not affect the rest of A, and thus we have

Mm,n−1 good matrices in this case. Otherwise, suppose that am−i+1,1 = 0 and aj,1 = 1
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for m − i + 2 ≤ j ≤ m and 1 ≤ i ≤ m. That is the down most 0 from the first column

is am−i+1,1. We can now choose the remain elements from the first column in 2m−i ways,

and our choice of Aj,1, 1 ≤ j ≤ m − i, uniquely determines the j-th row of A, since we

need to avoid p3 and p4. Thus, each of the fist m− i rows of A consists of either only 1s

or only 0s, which, with the first column, do not affect the rest of A, and therefore give

Mi,m−1 good matrices.

We have

Mm,n = Mm,n−1 +
m∑
i=1

Mi,n−12m−i.

Multiplying both parts of the equality above by xn, summing over all n ≥ 0, assuming

that Mm,0 = 0 and denoting Bm(x) =
∑

n≥0 Mm,nx
n, we have

Bm(x) = xBm−1(x) + x
m∑
i=1

Bi(x)2m−ixi,

and thus

Bm(x) =
x

1− x

m∑
i=1

Bi(x)2m−ixi.

Now considering Bm(x)− 2Bm−1(x), we get

(1− x)(Bm(x)− 2Bm−1(x)) = xBm(x),

which gives

Bm(x) =
2− 2x

1− 2x
Bm−1(x) =

(
2− 2x

1− 2x

)m−1

B1(x).

Clearly, B1(x) =
∑
n≥0

2nxn − 1 =
2x

1− 2x
, so

Bm(x) =
2x

1− 2x

(
2− 2x

1− 2x

)m−1

=
x

1− x

(
2− 2x

1− 2x

)m
.

Finally, taking into account that B0(x) must be 0 rather than x/(1−x) according to the

formula above, we have that M(x, y is given by∑
m≥0

Bm(x)ym =
x

1− x
∑
m≥0

(
2− 2x

1− 2x
· y
)m
− x

1− x =
2xy

1− 2(x+ y − xy)
.

Proposition 13. We have that Mm,2 = (m+ 1)2m and

Mm,n = (m+ 3)2m+n−2 − 2n − 2m+1 + 4

for A5, m ≥ 1 and n ≥ 3.
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Proof. Suppose A = (ai,j) is an m× n matrix that avoids A5.

We first consider the case n = 2. The number of good matrices having am,1 = 1 is

equal to that having am,1 = 0, since taking the complement of p2 and p5, we get p2 and

p5.

Assume that am,1 = 1. If the other elements from the first column are 1s, the first

column does not affect the second column, and we have 2m good matrices in this case.

If we have 0 in the first column, we assume that the down most 0 is in position m − i,
where 1 ≤ i ≤ m − 1. Clearly, we can choose the elements above this 0 in 2m−i−1 ways

and each such choice uniquely determines the elements aj,2, 1 ≤ j ≤ m − i, because of

the prohibitions. We now can choose the remain elements in the second column in 2i

ways, to get 2m +
∑m−1

i=1 2m−i−12i = (m + 1)2m−1 good matrices in the case am,1 = 1.

According to the discussion above, the case am,1 = 0 gives us the same number of good

matrices, which proves the statement.

Suppose that n ≥ 3. Like above, we can assume that am,1 = 1 and then multiply

the obtained result in this case by 2. If the first column consists of only 1s, this column

does not affect the rest of A, and we get Mm,n−1 good omatrices in this case. Otherwise,

assume that the down most 0 from the first column is in the (m−i)-th row, 1 ≤ i ≤ m−1.

In order to avoid p2, all other elements from the (m− i)-th row must be 1. This courses

that ak,j = 1 for m − i + 1 ≤ k ≤ m and 2 ≤ j ≤ n − 1, since we need to avoid p5.

Moreover, we cannot have 1s above the down most 0 in the first column. Indeed, if we

have 1 above the down most 0, the row corresponding to this 1 must be (100 . . . 0) in

order to avoid p5, but this would lead to an occurrence of p2 (since the (m− i)-th row is

(011 . . . 1), it is below, and n ≥ 3).

So, the remain elements in the first row are 0s, which uniquely fills all the elements

to the right of these 0s (they must be 1s in order to avoid p2). Finally, we can choose

the remain elements in the last column in 2i ways, which gives
∑m−1

i=1 2i = 2m − 2 good

matrices.

Summarizing all the cases, we have that Mm,n = 2(Mm,n−1 + 2m− 2), which gives the

desired, since Mm,1 = 2m.

Proposition 14. We have that Mm,n = (m+ 1)n−12m for A7 and m,n ≥ 1.

Proof. See [4, Proposition 14].
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5. Multi-avoidance of three or four patterns

A motivation to study simultaneous avoidance of three or four patterns, despite of willing

to make a complete classification for multi-avoidance of right angled polyomino patterns,

is the fact that we meet this avoidance in Table 2. Recall that all the proofs missing in

this section, as well as consideration of the case of avoiding five or more of right angled

polyomino patterns, can be found in [4].

There are 12 equivalence classes for three restrictions, which are presented in Table 4.

class representative other members of the class

B1 {p1, p2, p3} C : {p1, p5, p6}
B2 {p1, p2, p4} C : {p1, p5, p7}, T : {p1, p3, p4},

CT : {p1, p6, p7}
B3 {p1, p2, p5} T : {p1, p3, p6}
B4 {p1, p2, p6} C : {p1, p3, p5}
B5 {p1, p2, p7} C : {p1, p4, p5}, T : {p1, p3, p7},

CT : {p1, p4, p6}
B6 {p1, p4, p7}
B7 {p2, p3, p4} C : {p5, p6, p7}
B8 {p2, p3, p5} C : {p2, p5, p6}, T : {p2, p3, p6},

CT : {p3, p5, p6}
B9 {p2, p3, p7} C : {p4, p5, p6}
B10 {p2, p4, p5} C : {p2, p5, p7}, T : {p3, p4, p6},

CT : {p3, p6, p7}
B11 {p2, p4, p6} C : {p3, p5, p7}, T : {p3, p4, p5},

CT : {p2, p6, p7}
B12 {p2, p4, p7} C : {p4, p5, p7}, T : {p3, p4, p7},

CT : {p4, p6, p7}

Table 4: The equivalence classes for three restrictions.

Proposition 15. We have

• Mm,n = 0 for B1–B6, m,n ≥ 3, with two exceptions: M3,3 = 4 for B4, and M3,3 = 2

for B5;

• M2,n = Mn,2 = 2n+ 4 for B1 and n ≥ 2;

• M2,n = 6 and Mm,2 = 4m for B2, m ≥ 2, and n ≥ 3;

• M2,n = 0 and Mm,2 = 2m+1 for B3, m ≥ 2, and n ≥ 3;
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• M2,n = Mn,2 = 4n for B4 and n ≥ 2;

• M2,n = 2n+ 4 and Mm,2 = 4m for B5 and m,n ≥ 2;

• M2,n = Mn,2 = 8 for B6 and n ≥ 2.

Proposition 16. For B7, Mm,n = Mm,n−1 +Mm−1,n+2 for m,n ≥ 2 and M1,n = Mn,1 =

2n.

Proposition 17. For B8, Mm,n = (n + 2)2m−1 + 2m(n − 1) − 2 for m,n ≥ 2 and

M1,n = Mn,1 = 2n.

Proposition 18. For B9, we have

M(x, y) =
2xy(y − xy + x− 1)

(2x− 1)(2y − 1)(x+ y − 1)
.

Proof. Suppose A = (ai,j) is an m× n matrix that avoids B9, and m,n ≥ 2.

If am,1 = 0 or am,1 = 1 and all other elements from the first column are 1s, the first

column does not effect the rest of A, and thus we have 2Mm,n−1 possibilities here. Also,

in order to avoid p2 and p7, all 1s in the first column must be above all 0s. Thus, we can

assume that in the first column i 0s are below m− i 1s, where 2 ≤ i ≤ m.

Clearly, in order to avoid p3, the rows m− i + 1, m− i + 2, . . . ,m− 1 must consist

only of 0s. Which, in turn, courses that each element in the last row, except possibly

am,n must be 0 (A avoids p2).

Now, the (m − i) × (n − 1) matrix B that is formed by all but the first column

and all but the last i rows must avoid the patterns from B9 but also the pattern h =

(an occurrence of h in B, with the corresponding 0s in the last i rows of A will

form the pattern p3). Moreover, if a matrix avoids h, it also avoids p3 and p7, and thus

the restrictions for B, we need to control, are p2 and h. We can now use Lemma 10

to get that there are Nm−i,n−1 choices for B, which we must sum over i and multiply

by 2, the number of ways to choose am,n. We observe, that it was necessarily to define

N0,n = Nm,0 = 1 for all m,n ≥ 0, in order to count all the possibilities to construct A.

We have, that for m,n ≥ 2,

Mm,n = 2Mm,n−1 + 2
m∑
i=2

Nm−i,n−1,

with Mm,1 = 2m and M1,n = 2n.
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Suppose Mm(x) =
∑

n≥0 Mm,nx
m. Using manipulations similar to that as, for in-

stance, in Lemma 10, one can get

Mm(x) =
2x

1− 2x

(
2m−1 −m+ 1 +

m−2∑
i=0

Ni(x)

)
.

Multiplying both parts of this equality by ym, summing over m ≥ 0, taking into account

that M0(x) = 0, and simplifying the result, one can get the desired.

Proposition 19. For B10, we have Mm,n = 2m+n − 2n − 2m + 2 for m,n ≥ 1.

Proposition 20. Suppose M1(x, y) and M2(x, y) are the bivariate generating functions

for the class B11 and B12 respectively. Then,

M1(x, y) = M2(y, x) =
2xy

(1− 2x)(1− 2−x
1−xy)

.

Proof. We consider only the class B11, since one can study B12 in the same way changing

rows to columns and vice versa in the considerations. One then get the same recursion

as for B11 after switching m and n.

Suppose A = (ai,j) is an m× n matrix that avoids B11, and m,n ≥ 2.

If a1,1 = 1 then the first row consists of 1s, since otherwise we cannot choose a2,1 (p4

and p6 are prohibited). The first row now does not affect the rest of A, and we have

Mm−1,n good matrices in this case.

If a1,1 = 0 and all other elements from the first row are 1s, the first row does not

affect the rest of A, and we also have Mm−1,n good matrices in this case.

Suppose a1,1 = 0 and the first row contains at least one more 0. Clearly, all 0s must

proceed all 1s in the first row, since otherwise there is an element in the second row, that

we cannot choose (p4 and p6 are prohibited). Moreover, all the enteries below all but the

rightmost 0 must be 0 (p2 is prohibited). If the number of in the first row 0s is i + 1,

1 ≤ i ≤ n − 1 then the first i columns, as well as the first row, do not affect the rest of

A and could be removed, which gives
∑n−1

i=1 Mm−1,n−i good matrices.

We now have

Mm,n =
n−1∑
i=0

Mm−1,n−i +Mm−1,n.

Multiplying both parts of the equality above by xn, summing over all n ≥ 0, assuming

that Mm,0 = 0 and denoting Bm(x) =
∑

n≥0 Mm,nx
n, we have

Bm(x) =
∑
n≥0

n−1∑
i=0

Mm−1,n−ix
n−ixi +Bm−1(x),
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and thus

Bm(x) = Bm−1(x)
1

1− x +Bm−1(x) =
2− x
1− xBm−1(x) =

(
2− x
1− x

)m−1

B1(x).

Clearly, B1(x) =
∑
n≥0

2nxn − 1 =
2x

1− 2x
, which gives that M(x, y) is given by

∑
m≥0

Bm(x)ym =
2xy

1− 2x

∑
m≥1

(
2− x
1− x

)m−1

ym−1 =
2xy

(1− 2x)(1− 2−x
1−xy)

.

There are 12 equivalence classes for four restrictions, which are presented in Table 5.

class representative other members of the class

C1 {p1, p2, p3, p4} C : {p1, p5, p6, p7}
C2 {p1, p2, p3, p5} C : {p1, p2, p5, p6}, T : {p1, p2, p3, p6},

CT : {p1, p3, p5, p6}
C3 {p1, p2, p3, p7} C : {p1, p4, p5, p6}
C4 {p1, p2, p4, p5} C : {p1, p2, p5, p7}, T : {p1, p3, p4, p6},

CT : {p1, p3, p6, p7}
C5 {p1, p2, p4, p6} C : {p1, p3, p5, p7}, T : {p1, p3, p4, p5},

CT : {p1, p2, p6, p7}
C6 {p1, p2, p4, p7} C : {p1, p4, p5, p7}, T : {p1, p3, p4, p7},

CT : {p1, p4, p6, p7}
C7 {p2, p3, p4, p5} C : {p2, p5, p6, p7}, T : {p2, p3, p4, p6},

CT : {p3, p5, p6, p7}
C8 {p2, p3, p4, p7} C : {p4, p5, p6, p7}
C9 {p2, p3, p5, p6}
C10 {p2, p3, p5, p7} C : {p2, p4, p5, p6}, T : {p2, p3, p6, p7},

CT : {p3, p4, p5, p6}
C11 {p2, p4, p5, p7} T : {p3, p4, p6, p7}
C12 {p2, p4, p6, p7} C : {p3, p4, p5, p7}

Table 5: The equivalence classes for four restrictions.

In the cases, when one of the patterns to avoid is p1, it is not difficult to see that

Mm,n = 0 for m,n ≥ 3. Moreover, one can consider the cases m = 2 or n = 2 to get the

truth of the following proposition.
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Proposition 21. We have

• M2,2 = 6 and Mm,2 = M2,n = 4 for C1, and m,n ≥ 3;

• Mm,2 = 2(m+ 1) and M2,n = 0 for C2 and C4, and m ≥ 1, n ≥ 3;

• Mm,2 = M2,n = 6 for C3, and m,n ≥ 2;

• Mm,2 = 2(m+ 1) and M2,n = 6 for C5, and m,n ≥ 2;

• Mm,2 = 6 and M2,n = 4 for C6, and m ≥ 2, n ≥ 3.

• Mm,n = (n+ 1)2m−1 + 2(n− 1) for C7, m ≥ 2 and n ≥ 1;

• Mm,n = 8 for C9 and m,n ≥ 2;

• Mm,n = 2m+n−1 for C11 and C12, and m,n ≥ 1.

• Mm,n = 2m + 2n + 2(nm− n−m) for C8, and m,n ≥ 1;

• Mm,n = 2m + 2m(n− 1) for C10, and m,n ≥ 1.
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