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Abstract

Numerous functions which enumerate partitions into powers of a fixed number m have
been studied ever since Churchhouse’s original work in the late 1960’s on the unrestricted
binary partition function. In particular, Calkin and Wilf recently considered the hyper-
binary partition function (as they “recounted the rationals”). In this paper, we first prove
an unexpected partition congruence satisfied by the hyperbinary partition function. We
then consider a natural generalization of hyperbinary partitions, which we call hyper
m–ary partitions, and prove surprising arithmetic properties for these via elementary
means.

1. Introduction

In a recent note, Calkin and Wilf [2] utilized the enumerating function for hyperbinary
partitions, h2(n), to “recount the rationals.” Here h2(n) is the number of ways of writing
n as a sum of powers of 2, wherein each power of 2 is allowed to be used as a part at
most twice.

Our first goal in this note is to study h2(n) from a different perspective, that of
partition congruences in arithmetic progressions, and Section is devoted to this. Then,
in Section , we consider a natural generalization of h2(n), denoted hm(n), which is the
number of partitions of n into parts which are powers of m ≥ 2 wherein each power of m
is allowed to be used as a part at most m times. We close by proving a surprising infinite
family of arithmetic results for hm(n) for m ≥ 3 which imply infinitely many partition
congruences in arithmetic progressions.
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2. A Congruence for Hyperbinary Partitions

We now focus our attention on arithmetic properties of the function h2(n). Such a per-
spective is not at all new. Beginning with Churchhouse’s groundbreaking work on the
(unrestricted) binary partition function [3], numerous authors have considered arithmetic
properties for a wide variety of related binary partition functions [7], [8], [10].

It appears that very few congruences in arithmetic progressions exist for h2(n). Indeed,
only one such congruence is evident (based on extensive computational evidence). We
prove that congruence here.

Theorem 2.1. For all n ≥ 0, h2(3n+ 2) ≡ 0 (mod 2).

Proof. Rather than resorting to the usual proof techniques (such as generating func-
tion dissections or bijective arguments), we prove this result by contradiction, using the
following recurrences (for n ≥ 0) provided by Calkin and Wilf [2] (and the fact that
h2(0) = 1):

h2(2n+ 1) = h2(n) and h2(2n+ 2) = h2(n+ 1) + h2(n) (1)

These quickly follow from the fact that the generating function for h2(n) is given by

H2(q) :=
∑
n≥0

h2(n)qn =
∏
i≥0

(1 + q2i + q2·2i),

which means
H2(q) = (1 + q + q2)H2(q2).

We assume, to contradict, that N is the smallest positive integer such that h2(3N+2)
is odd. We then consider three cases:

Case 1: N = 2J + 1 for some integer J

Then h2(3N + 2) = h2(6J + 5)

= h2(3J + 2)

by (1). This yields a contradiction, as J is clearly less than N.

Case 2: N = 4J for some integer J

Then h2(3N + 2) = h2(12J + 2)

= h2(6J + 1) + h2(6J) by (1)

= h2(3J) + h2(3J) + h2(3J − 1) by (1)

≡ h2(3J − 1) (mod 2)

= h2(3(J − 1) + 2).
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This again yields a contradiction.

Case 3: N = 4J + 2 for some integer J

Then h2(3N + 2) = h2(12J + 8)

= h2(6J + 4) + h2(6J + 3) by (1)

= h2(3J + 2) + h2(3J + 1) + h2(3J + 1) by (1)

≡ h2(3J + 2) (mod 2).

This is a contradiction and the proof is complete.

We close this section with two remarks. First, it is clear that results involving h2(n)
and geometric progressions exist in abundance. For example, one can easily prove by
induction that h2(2n−1(2m − 1)) = mn− (m− 1) for all m ≥ 0 and n ≥ 1. In contrast, a
result involving an arithmetic progression, such as Theorem 2.1, is quite unexpected.

Secondly, Theorem 2.1 can be strengthened. Calkin and Wilf note that, for all n ≥ 0,
gcd(h2(n + 1), h2(n)) = 1. Hence, the theorem implies that h2(3n + 1) and h2(3n + 3)
must be odd for all n ≥ 0. Therefore, we know

h2(`) ≡ 0 (mod 2) if and only if ` ≡ 2 (mod 3)

for all nonnegative integers `.

3. A Natural Generalization

Soon after Churchhouse [3] wrote his landmark paper on the unrestricted binary parti-
tion function b2(n), which enumerates the partitions of n into parts which are powers
of 2, Andrews [1], Gupta [6], and Rødseth [9] proved all of Churchhouse’s results and
generalized his work by considering bm(n), the enumerating function for partitions of
n into parts which are powers of m for some fixed m ≥ 2. Since that time, numerous
authors have considered related m–ary partition functions; see [4], [5], [8], [10], and [11]
for examples.

In the same vein, we now generalize hyperbinary partitions in the obvious way, letting
hm(n) be the number of partitions of n into powers of m wherein each power of m is
allowed to be used as a part at most m times. Unlike the comment made in the previous
section (that h2(n) appears to satisfy only one congruence in an arithmetic progression),
it is clear that hm(n) behaves much differently for m ≥ 3. Indeed, we now prove that
hm(n) satisfies infinitely many congruences in arithmetic progressions when m ≥ 3.

For fixed m ≥ 2, the generating function for hm(n) is given by

Hm(q) :=
∑
n≥0

hm(n)qn =
∏
i≥0

(1 + qm
i

+ q2mi + . . .+ qm·m
i

).
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Hence,
Hm(q) = (1 + q + q2 + . . .+ qm)Hm(qm),

from which we obtain the following recurrences:

hm(mn) = hm(n) + hm(n− 1), (2)

hm(mn+ r) = hm(n) for 1 ≤ r ≤ m− 1 (3)

Armed with (2) and (3), and the fact that hm(0) = 1, we can prove the following theorem
which implies infinitely many congruence properties for the functions hm(n) for m ≥ 3.

Theorem 3.1. Let m ≥ 3 and j ≥ 1 be fixed integers and let k be some integer between
2 and m− 1. Then, for all n ≥ 0,

hm(mjn+mj−1k) = jhm(n).

Proof. We prove this result by induction on j using the recurrences (2) and (3).

The basis case occurs when j = 1. In that case, the left–hand side of Theorem 3.1 is
hm(mn+ k). Since 2 ≤ k ≤ m− 1, we see that hm(mn+ k) = hm(n) by (3) above. This
is the right–hand side of Theorem 3.1 when j = 1.

Next, assume hm(mjn + mj−1k) = jhm(n) for some positive integer j. We then wish
to prove hm(mj+1n+mjk) = (j + 1)hm(n). We have

hm(mj+1n+mjk) = hm(mjn+mj−1k) + hm(mjn+mj−1k − 1) by (2)

= jhm(n) + hm(mjn+mj−1k − 1)

= jhm(n) + hm(m(mj−1n+mj−2k − 1) +m− 1)

= jhm(n) + hm(mj−1n+mj−2k − 1) by (3)

=
...

= jhm(n) + hm(mn+ k − 1)

= jhm(n) + hm(n) by (3).

This last equality is true since 2 ≤ k ≤ m−1, so that k−1 is clearly not a multiple of m.
The last quantity above is clearly equal to (j + 1)hm(n), which completes the proof.

We close with two comments. First, Theorem 3.1 clearly implies that for all m ≥ 3,
j ≥ 1, k between 2 and m− 1, and n ≥ 0,

hm(mjn+mj−1k) ≡ 0 (mod j).

Secondly, Theorem 3.1 can also be used to find additional results (of similar form) by
iterative substitution. For example, one of the special cases of Theorem 3.1 is that, for all
n ≥ 0, h3(9n+ 6) = 2h3(n). Replacing n by 9n+ 6 in this equality yields h3(81n+ 60) =
2h3(9n + 6) = 4h3(n). Because 60 is not divisible by 27, we see that this identity is
different from any identity obtained by substituting m = 3 and j = 4 in Theorem 3.1.
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