A NEGATIVE ANSWER TO TWO QUESTIONS ABOUT THE SMALLEST PRIME NUMBERS HAVING GIVEN DIGITAL SUMS

Tom Müller

Institut für Cusanus-Forschung an der Universität und der Theologischen Fakultät Trier, Domfreihof 3, 54290 Trier, Germany muel4503@uni-trier.de

Received: 10/28/04, Revised: 5/22/05, Accepted: 5/23/05, Published: 6/20/05

Abstract

Denote by $\rho(k)$ the smallest prime number with digital sum k (not a multiple of 3). Richard K. Guy asked whether the congruences $\rho(k) \equiv 99 \pmod{100}$ and $\rho(k) \equiv 999 \pmod{1000}$ hold for all k > 38, respectively k > 59. Counterexamples to this are given, inter alia, for k = 86 and k = 104. Moreover, several open problems and conjectures about $\rho(k)$ are discussed.

1. Introduction

In his famous book about unsolved problems in Number Theory, Richard K. Guy [1] asks in section A3 the following three questions:

"If $\rho(k)$ is the smallest prime with digital sum k, is $\rho(k) \equiv 9 \pmod{10}$ for k > 25? Is it $\equiv 99 \pmod{100}$ for k > 38? And $\equiv 999 \pmod{1000}$ for k > 59?"

We intend to show that the two latter congruences do not hold by constructing a counterexample in the following paragraph. The final section is concerned with some open problems and conjectures concerning the prime numbers $\rho(k)$ for k not a multiple of 3.

2. Counterexamples

A first counterexample to two of the claims above is given for k = 86. Using some simple combinatorial methods, we find that the smallest number with digital sum 86 is

$$5\,999\,999\,999$$

followed by the numbers

$$6\,899\,999\,999,$$
 (2)

$$6\,989\,999\,999,$$
 (3)

- $6\,998\,999\,999,$ (4)
- $\begin{array}{l} 6\ 999\ 899\ 999, \\ 6\ 990\ 980\ 990 \end{array} \tag{5}$

$$6\,999\,989\,999,$$
 (6)

- $6\,999\,998\,999,$ (7)
- $6\,999\,999\,899,$ (8)
- $6\,999\,999\,989.$ (9)

The integers (1) to (8) turn out to be composites, as they are divisible respectively by 7, 6089, 827, 19, 61, 31, 7 and 3011.

The number (9) is prime. So $\rho(86) = 6999999989 \equiv 989 \pmod{1000} \equiv 89 \pmod{100}$. Therefore the two latter questions above have to be answered with "no", while the first one remains open. It might moreover be interesting to note that k = 86 is not the only known case for which the said congruences do not hold. Other examples are $\rho(104) = 699999999989$, $\rho(137) = 4 \cdot 10^{15} - 11$, $\rho(317) = 4 \cdot 10^{35} - 11$, $\rho(400) = 6 \cdot 10^{44} - 11$ and $\rho(580) = 6 \cdot 10^{64} - 11$. Perhaps there are many other primes of the form $a \cdot 10^n - 11$ with $a \in \{1, 3, 4, 6, 7, 9\}$ (the parameters $a \in \{2, 5, 8\}$ give only multiples of 3), which lead to further examples. Lists of such primes can be found in the Online Encyclopedia of Integer Sequences [2] (the reference codes are respectively A092767, A102737, A102738, A102739, A102740 and A102741). Additionally, we have $\rho(260) = 10^{29} - 101$.

3. Open problems and conjectures

A number of open problems dealing with $\rho(k)$ are waiting to be solved. Is there a k > 25 with $\rho(k) \equiv 79$, or $\equiv 97 \pmod{100}$? Moreover, one might ask whether $\rho(k)$ exists for every k not a multiple of 3. The answer to this is very probably positive, and therefore the above question could be changed into the following one (Question 1):

Does an integer *m* exist, such that the congruences $\rho(k) \equiv 99 \pmod{100}$ and $\rho(k) \equiv 999 \pmod{100}$ hold for all k > m?

Let S(k) be the set consisting of the k smallest integers with digital sum k, and let N(k) be the number of integers in S(k) that end in "999". We know that as $k \to \infty$, $\frac{N(k)}{k} \to 1$; however, as N(k) < k for all k > 10, we conjecture that there exist infinitely many values of k for which $\rho(k)$ does not satisfy the congruences in Question 1. If this is true, the integer m does not exist.

Acknowledgements

Thanks are due to the friendly referee who pointed out a known sequence in the Online Encyclopedia of Integer Sequences. The author is grateful to the referee, Daniel O'Connell and Prof. Dr. Jürgen Müller for their help in finalizing this paper.

References

- [1] Richard K. Guy, Unsolved problems in number theory, Springer Verlag, New York 2004 (3th edition), 15
- [2] Neil J. A. Sloane, *Online Encyclopedia of Integer Sequences*, published electronically at http://www.research.att.com/njas/sequences/