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Abstract

The game of Euclid is an impartial game played between two players. A position in
the game is a pair of integers (a, b). A move consists of replacing the current position
with one in which the larger of a and b has been reduced by any multiple of the smaller.
The game ends when the two numbers are equal. The players alternate moves, and the
winner is the last player to make a move.

Several variations take the form of restrictions on the moves available to the players.
One important class of restrictions takes the form of a set Λ of positive integers from
which the number of multiples a player removes on a turn must be chosen.

Of particular interest are versions with ”dynamic” restrictions. In these variations
of Euclid, the maximum multiple which can be removed on a turn is governed by some
given function. In this way, the set of available moves changes as the game proceeds.

It is shown how all versions considered can be recast as sequential take-away games,
and this transformation is frequently used to find winning strategies.

1. Introduction

The game of Euclid is an impartial game played between two players. A position in the
game is a pair of integers (a, b). A move consists of replacing the current position with
one in which the larger of a and b has been reduced by any multiple of the smaller, with
the proviso that the result must remain positive. The game ends when the two numbers
are equal. Without loss of generality, we can assume that a and b are relatively prime
and that a ≤ b for any position (a, b). The players alternate moves, and the winner is
the last player to make a move, i.e., to move to (1, 1).

Euclid is a Nim-like game, and we can use the Sprague-Grundy theory of impartial
games. We also employ the convention of referring to positions in which the next player
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to move has a win as N-positions and to those in which the previous player to move wins
as P-positions (cf. [1], Ch. 4). An N-position has a positive Sprague-Grundy value, while
a P-position has a Sprague-Grundy value of zero.

We begin our discussion of Euclid with a result which makes finding the winner easy.

Theorem 1 The first player to have more than one available move has a winning strategy
in Euclid.

Proof. If the player to move has more than one choice, we have b > 2a. Choose n such
that a < (b − na) < 2a. We need to consider only two of the possible moves from (a, b):
to (a, b − na) and to (a, b − (n + 1)a). Call these moves A and B, respectively. Then, if
B is a P-position, the first player can simply move there. Otherwise, moving to A will
force the second player to move to B. Clearly, the first player will win in one of these
cases. �

There are a few interesting things about this theorem. First, it is non-constructive:
it does not actually tell us how to win. Later on, we shall see several different ways of
constructing the winning strategy. The advantage of this form is that the principle of the
first player with a choice winning applies to many variants of Euclid while the winning
strategy itself varies. Second, it applies equally well to the misère form of the game
where the last player to move loses. In many Nim-like games, solving the misère version
is—relative to solving the standard version—misery (a miserable pun). Fortunately, this
is not the case with Euclid, at least as far as knowing who has a winning strategy (as we
shall see in Section 7).

The first and probably the simplest way to approach the task of finding explicit
winning strategies in the game of Euclid is to use the golden ratio, φ. We claim that
in Euclid, the first player has a win in exactly those positions in which b/a > φ. The
validity of this claim depends on the following two assertions:

1. From every position for which b/a > φ, there is a move which leaves a position
(a′, b′) with 1 ≤ b′/a′ < φ.

2. Any move from a position with b/a < φ leaves a position (a′, b′) with b′/a′ > φ.

These conditions are equivalent to the assertion that the positions in Euclid with a
Sprague-Grundy value of 0 are precisely those with 1 ≤ b/a < φ. The interested reader
can consult [6] for a proof that these conditions do indeed hold.

I shall refer the game considered above as the standard version of Euclid. This paper
shall consider many variations of these standard rules. We shall consider first variations
in which the number of multiples of a which can be removed from b in a position (a, b)
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must be chosen from a fixed set Λ. We shall present a solution for the simplest of these
restriction sets, Λk = {1, 2, . . . , k}, and extend this theory to many other restriction sets
in Section 4. Theorem 2 gives a necessary and sufficient condition for which a larger
restriction set is equivalent to some Λk. We next consider “dynamic” restrictions which
are not fixed but rather change as the game progresses and solve Euclid for one class
of such restrictions, the move size restriction, in Theorem 3 (Section 5). The Sprague-
Grundy theory does not seem to be useful in analyzing these dynamic restrictions because
the winner in a given position is determined not only by the position itself but also by
the preceding move.

After a brief discussion of standard Euclid with three numbers rather than two (Sec-
tion 6), we conclude with a discussion of misère forms. In Section 7, Theorem 4 provides
the winning strategy for the misère forms of both standard Euclid and of versions with
restriction sets equivalent to some Λk.

For a game (a, b), a < b, we will use the continued fraction representation (Section 2)
of b/a throughout and will often view the game as played in the Stern-Brocot tree (Sec-
tion 3).

2. Continued Fractions

A second method of describing the winning strategy (besides the φ-based approach seen
above) is through continued fractions. This method has the advantage of being more
amenable to the analysis of the various variations of Euclid which are the subject of this
paper. Each fraction b/a can be represented as a continued fraction in two ways: as
[a0, a1, . . . , an] (called the short form) and as [a0, a1, . . . , an − 1, 1]. Later on, we shall
see why it does not matter which form of the continued fraction expansion we use.

It is possible to reinterpret Theorem 1 in terms of continued fractions. Euclid was
first analyzed in this way by Lengyel in [6]. In the position (a, b), b/a = [a0, a1, . . . , an],
a move affects only the leading continued fraction digit a0. If a0 = 1, the player to
move will have only one option. We therefore assume that the game is played until some
player has a real choice, and ai ≥ 2 with some i. (The existence of such i is guaranteed
by writing b/a in the short continued fraction form.) Since this continued fraction is
certainly greater than φ, that player has a winning strategy.

3. Sequential Take-away Games

The above approach works quite well for the standard version and some of its variations
[6]. Nevertheless, we have found it more convenient in investigating a wide variety of
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generalizations to look at the game of Euclid as what we call a sequential take-away
game.

A simple take-away game is an impartial game played between two players. A position
consists of a single pile of counters, and the players take turns removing some positive
number of counters from this pile, subject to the rules of the particular game. The
position (1, n) in Euclid corresponds to an utterly trivial take-away game with a pile size
of n − 1 and no movement restriction whatsoever.

Now that we possess the concept of a take-away game, we can define a sequential
take-away game as a game which is divided into a series of smaller “subgames” to be
played in a given order, each of which is a take-away game having the same movement
restrictions. The players alternate throughout the game; the player to move last in a
given subgame moves second in the game following it (cf. [6]). Such a game is denoted
by [a0, a1, . . . , an], where a0 is the pile size in the first subgame, a1 the pile size in the
second, and so on.

The game of Euclid is a sequential take-away game, somewhat disguised. The con-
tinued fraction representation of the position (a, b) reveals the disguise. Let a/b have
continued fraction expansion [a0, a1, . . . , an] (cf. [3]). The players’ moves reduce the size
of the first coefficient a0 until it is zero (a0 reflects the number of multiples of b which
must be removed from a before the result is less than b). Then, the play continues from
a position with continued fraction representation [a1, . . . , an], and with the players re-
ducing a1. Thus, Euclid is a sequence of take-away games with successive pile sizes of
a0, a1, a2, and so on. The only exception is that one must be subtracted from the last
partial quotient of the continued fraction expansion of a/b, because [1] (corresponding to
the Euclid position (1, 1)) is a terminal position and does not reflect an option.

From this point on, we shall assume that one has already been removed from the
last term whenever we consider a Euclid position (or any position) as [a0, a1, . . . , an].
(Therefore, the “Euclid position representation” [a0, a1, . . . , an] for the game (a, b) differs
slightly from the original continued fraction expansion of b/a. In fact, this is why it does
not matter which of the two continued fraction forms was used in the first place.)

Looking at the game of Euclid as a sequential take-away game makes finding the
Sprague-Grundy number of any position much easier; whereas without continued frac-
tions they are rather obscured. To find the Sprague-Grundy values, we work from right to
left: to find the Sprague-Grundy value of [a0, a1, a2, . . . , an], we look first at the Sprague-
Grundy value of [an], then [an−1, an], and so on. To find g([ai, . . . , an]), we need to know
only ai, i < n, and the Sprague-Grundy value of [ai+1, ai+2, . . . , an]. In [7], Lengyel refines
the use of this method to calculate the Sprague-Grundy values for Euclid, and shows how
it is related to the Stern-Brocot tree [3]. Later on in this paper, we shall employ a similar
recursive technique when looking at variations of Euclid.
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4. Static Restrictions

Many different ways of extending the game of Euclid are covered in this paper. Probably
the most natural way is to restrict the choice of multiples which can be removed to a given
set Λ. This type of restriction remains constant throughout the game and is referred to
as a static restriction. In the standard form of Euclid, the number of multiples of a which
are removed from b is chosen from the infinite set Λ = {1, 2, . . . }. We can change this set
Λ and produce any number of variations on the game. Lengyel [6] solves Euclid for the
restriction sets Λk = {1, 2, . . . , k}. These games are the sequential extensions of Bachet’s
subtraction game, a single-pile take-away game where only 1, 2, . . . , k counters can be
removed on a turn. (In general, a subtraction game consists of the players removing
some number of counters from a single pile where the number removed must be chosen
from a restriction set [1], Ch. 4.) The Sprague-Grundy function of Bachet’s game has
the period (0, 1, . . . , k) of length k + 1.

Many subtraction-based games with finite or infinite restriction sets display a similar
periodicity and are equivalent to Bachet’s game for some k. For example, the single-
pile take-away game with restriction set {1, 2, 3, 5, . . . , pk, . . . }, with pk being the kth
prime number, has the same Sprague-Grundy function as Bachet’s subtraction game
with Λ3 = {1, 2, 3}. Now, we show that games which are equivalent to one of Bachet’s
games in the one-pile version are equivalent in Euclid as well. More formally, let G be any
static restriction game and let Bk be Bachet’s subtraction game with the set {1, 2, . . . , k}
of allowed subtractions. We denote the Sprague-Grundy functions of G and Bk by gG and
gBk, respectively. We write G ≡c Bk if games G and Bk have the same Sprague-Grundy
function with c (c ≤ k) being the Sprague-Grundy value of the terminal position, i.e.,
gG = gBk and gG(0) = gbk(0) = c.

If G and Bk have the same Sprague-Grundy function for all c ≤ k, we write G ≡ Bk.
In the one-pile form, of course, the value of the terminal position is zero; but as we
have seen above, a Euclid position [a0, a1, . . . , an] is equivalent to the one-pile game with
a0 counters, the only difference being that the Sprague-Grundy value of the terminal
position is g([a1, a2, . . . , an]) rather than zero. The following theorem was suggested by
Lengyel.

Theorem 2 G ≡0 Bk if and only if G ≡ Bk.

Proof. The “if” part of the statement is obvious. For the other part we need

Lemma. If G ≡0 Bk then ΛG ⊇ Λk for the subtraction set ΛG of game G.

Proof of the lemma. We proceed by contradiction. Suppose that ΛG �⊇ Λk. Let m be
least element of the difference set Λk \ΛG. We have 1 ≤ m ≤ k. Then clearly, gG(m) = 0



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5 (2005), #G03 6

because we can only move to 1, 2, . . . , m − 1 in G, and they have non-zero values, for
gG(i) = gBk

(i) = i, 0 ≤ i ≤ k, by G ≡0 Bk. On the other hand, gBk
(m) �= 0 because we

can move to zero in Bk. Thus, G �≡0 Bk, a contradiction. �

Assume that ΛG \ Λk �= ∅. Now, let s be any element of ΛG \ Λk, thus s > k by the
lemma. There are two cases.

1. For all s ∈ ΛG \ Λk there exists an s′ ∈ Λk such that s − s′ ≡ 0 mod (k + 1). We
now prove by contradiction that G ≡ Bk. (In this case, the option s really adds
nothing to the options to remove 1, . . . , k, and does not affect the Sprague-Grundy
function.) By the lemma, ΛG ⊇ Λk, so that gG(i) = gBk

(i) for all i ≤ k. Now let t
be the least element for which gG(t) �= gBk

(t). Then t > k and

gG(t) = mex


{

k⋃
i=1

gG(t − i)

}⋃ 
⋃

s∈ΛG\Λk
s≤t

gG(t − s)


 =

= mex

{
k⋃

i=1

gBk
(t − i)

}
= gBk

(t).

The second step in this equality is justified since gG(t−s) = gBk
(t−s) = gBk

(t−s′)
where s′ ∈ Λk and s ≡ s′ mod (k + 1) by the hypothesis. We have a contradiction.

2. There exists an s ∈ ΛG\Λk such that for all s′ ∈ Λk, we have s−s′ �≡ 0 mod (k+1),
i.e., gBk

(s − s′) �= 0. In the games G and Bk, both with g(0) = 0, we consider the
value of g(s). We know that gBk

(s) = 0, otherwise there would exist an option to
move to s− s′ in Bk with s− s′ ≡ 0 mod (k +1), violating our assumption. On the
other hand, gG(s) �= 0, because gG(s − s) = gG(0) = 0. This contradiction shows
that G �≡0 Bk, so this case never occurs under the hypothesis of the theorem. �

Remark. If indeed G is equivalent to any Bk, the value of k + 1 will be the least integer
not in ΛG. In fact, it is not too difficult to see that G ≡ Bk if and only if ΛG contains
{1, . . . , k} but no multiples of k + 1.

This theorem and the remark allow us to apply the theory of Euclid with restriction
set Λk = {1, 2, . . . , k} to Euclid with other restriction sets. We summarize this ap-
proach here. In the position [a0, a1, . . . , an], each of the partial quotients can be reduced
mod(k + 1). Then, the game plays exactly as in the unrestricted Euclid, except that it
may take somewhat longer. In particular, the first player facing a position with ai ≥ 2
has a winning strategy. This extends our first theorem to the restriction sets Λk and
restrictions equivalent to these by the above theorem. We now turn to some examples of
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infinite sets which are equivalent to Λk.

Example 1 : Λ = {1 and any number of odd numbers}.

Since one is present but all multiples of two are excluded, this game is equivalent to
B1, a completely deterministic game. In this variation of Euclid, there is never a “real”
choice (for the parity of the number of remaining moves changes by every move [6]), and
the result is completely unaffected by skill.

Example 2 : Λ = {1, 2, . . . , 2n, . . . }.

Since the multiples of three are not powers of two, it is now clear that the version of
Euclid with Λ = {1, 2, . . . , 2n, . . . } is completely equivalent to B2. At any point, we need
only use the options Λ2 = {1, 2} to reduce any non-zero position to zero. The additional
options serve only to shorten the game as in example 1.

Example 3 : Λ = {1, 2, 3, 5, . . . , pk, . . . }.

The set of primes works in an analogous way. This variation of Euclid reduces to B3.
Again, since multiples of four are not prime, the multiples of four are the positions with
Sprague-Grundy value of zero. In any position, we need only to use the removal options
Λ3 = {1, 2, 3}.

Example 4 : Λ = {pk for all primes p, k = 0, 1, . . . }.

We leave it to the reader to show that the removal set of prime powers is equivalent
to Λ5.

5. Dynamic Euclid

We next consider “dynamic” versions of Euclid in which the maximum multiple which
can be removed on a given turn is governed by the game function, f . In this way, the set
of available moves dynamically changes as the game proceeds. Typically, the reduction
technique of Section 4 cannot be applied when dynamic restrictions are imposed on the
available moves. In one class of dynamic games, the maximum number of counters f(n)
which can be removed is a function of the pile size n. In [4], Holshouser, Reiter, and
Rudzinski show how to calculate the Sprague-Grundy values g(n) given a game function
f(n). We note that Theorem 1 of [4] guarantees that many of these games cannot be
equivalent to Λk for any k.

In its Euclid form the pile size restriction makes the maximum number of multiples of
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a which can be removed from b in (a, b) a function of the maximum number which could
be removed were there no restriction. The Sprague-Grundy numbers of each position in
a pile size restriction can be found recursively using the representation of Euclid as a
sequential take-away game introduced earlier and working from right to left. Suppose
that a Euclid position (a, b) has the representation [a0, a1, . . . , an−1, an] Then, the last
segment [an] is a single-pile take-away game with pile size an, so g([an]) can be found
using the theory of [4]. Then, the Sprague-Grundy function g([an−1, an]) is clearly just
g([an−1]) permuted so that the output 0 is replaced by g([an]) and the values less than
or equal to g([an]) are shifted down by one, or, more formally,

g([an−1, an]) =


g([an−1]) − 1, if g([an−1]) ≤ g([an]) and g([an−1]) �= 0,

g([an−1]), if g([an−1]) > g([an]),

g([an]), if g([an−1]) = 0.

Similarly, we can now find g([an−2, an−1, an]) as a function of g([an−2]) and g([an−1, an]),
and continue recursively in this fashion until the Sprague-Grundy value of the entire
game is known. Thus, we see how results of [4] extend directly to Euclid.

Another class of dynamic take-away games makes the maximum number of counters
which can be removed on a given turn a function of the previous move. The theory of
one-pile games with this move size restriction has been solved by Schwenk in [8]. Here,
we offer a complete extension of his theory to the game of Euclid. It will be noted
that in Euclid, the restriction is on the maximum number of multiples of a which can
be removed from b in a position (a, b), b ≥ a; and this restriction is a function of the
number of multiples removed on the previous turn. Games with a move size restriction
are especially difficult to handle because the characterization of the Sprague-Grundy
numbers is problematic and does not immediately give the winner and winning strategy.
This is why Schwenk chooses a different approach.

Space prevents us from giving all the details of Schwenk’s theory here; the interested
reader should consult [8]. What follows is a brief summary. In a take-away game, let the
maximum number of counters to be removed on the kth (k ≥ 2) move be f(T (k − 1)),
where T (k − 1) is the number removed on the previous move and f is a non-decreasing
function. (Also, we exclude the possibility of removing all counters on the first move in
the one-pile version.)

For example, we might have a game in which one can remove only up to twice as
many counters as were removed on the previous move; in this case f(n) = 2n (cf. [8] and
[5], Section 1.2.8, #37). The idea of Schwenk’s theory is to define a sequence Hi such
that H1 = 1 and Hk+1 = Hk + Hj, where j is the smallest index such that f(Hj) ≥ Hk.
In our example, H1 = 1, H2 = H1 + H1 = 2, H3 = H2 + H1 = 3, and it is not too
difficult to see that in general Hk+1 = Hk +Hk−1. Thus, the sequence Hi is the Fibonacci
sequence in our case.
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Schwenk demonstrates that each number N is represented uniquely by a sum of His,
where N = Hj1 + Hj2 + · · · + Hjm, j1 < j2 · · · < jm, and f(Hj i) < Hj i+1. In our ex-
ample, this statement becomes Zeckendorf ’s Theorem, which states that each number is
represented uniquely as a sum of non-consecutive Fibonacci numbers. The number of
elements in this sum is the norm |N | of N . Clearly, |N | = 0 if and only if N = 0. In [8],
Schwenk proves

Theorem A The first player to be able to reduce the norm has a winning strategy. The
only winning strategy is to reduce the norm.

Schwenk’s idea is to make up N as a sum of “losing” positions, Hjs. In fact, each Hj

as a starting position is a P-position of norm one which cannot be decreased on the first
move. If a player can reduce N = Hj1 + · · ·+Hjm with j1 < j2 · · · < jm and |N | = m ≥ 2,
by removing Hj1 then the other player cannot immediately remove Hj2 , for f(Hj1) < Hj2 .
Therefore, any legal removal by the other player will not decrease the norm. Also note
that all winning removals can be characterized as partial sums of Hj1 + Hj2 + · · · + Hjm

(cf. [5]).

To extend the Schwenk theory to Euclid, we need to employ a new function. Define
h(N), N = Hj1 + · · · + Hjm , as the least Hi such that f(Hi) ≥ Hj1 = Hj1(N). The defi-
nition implies that |h(a)| = 1, f(h(a)) ≥ Hj1(a), and if Hi < h(a) then f(Hi) < Hj1(a).

We now consider the Euclid position [a0, a1, . . . , an]. If n = 0 then we are back to the
one-pile version covered by Theorem A [8]. We now have the following theorem:

Theorem 3 Assume that n ≥ 1.

(1) The position [a0, a1, a2, . . . , an−1, an] has the same winner as the first position in
the series [a0, . . . , an−1−h(an)], [a0, . . . , an−2−h(an−1)], . . . , [a0, . . . , ai−h(ai+1)],
. . . , [a0 − h(a1)] in which the last partial quotient ai − h(ai+1) is non-negative.

(2) If ai − h(ai+1) < 0 for i = 0, 1, . . . , n − 1, the first player is always the winner.

Any position can be reduced to a shorter position (i.e., one with fewer terms in the Euclid
position representation) with the same winner in one of these two ways. By recursively
applying these reductions, we eventually reach a one-pile position whose winner is known
by Schwenk’s theory.

Proof. We first prove the second assertion of the theorem. Suppose that in [a0, a1, . . . , an],
ai − h(ai+1), i = 0, 1, . . . , n − 1, is always negative. Then the first player can win by
adopting the strategy of reducing the norm of a0 by one on each move. In this way, that
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player will eventually reduce a0 to zero by removing some Hi satisfying Hi ≤ a0 < h(a1).
We have f(Hi) < Hj1(a1) by definition, so that even the smallest norm-reducing removal
is precluded and the next player will be unable to reduce the norm of a1. Therefore, the
first player will be able to apply the same strategy of reducing the norm by one. It is
clear that the first player will win each subgame in this fashion and thus the entire game.

We can now prove the first part of the theorem. Assume that ai is the greatest index
such that ai − h(ai+1) is non-negative. Then, the winner of [a0, a1, . . . , ai − h(ai+1)], say
Player A, will be able to reach the position [h(ai+1), ai+1, . . . , an]. We must show that
this is a P-position. Clearly, h(ai+1) has norm one, so the only way for Player B to reduce
it is to eliminate it entirely. This, however, allows Player A to reduce the norm of ai+1

by removing Hj1(ai+1), by the definition of h(ai+1) (for f(h(ai+1)) ≥ Hj1(ai+1)). In this
case, (2) shows that Player A wins, since each al − h(al+1), l ≥ i + 1, is now negative. If,
on the other hand, Player B does not reduce the norm of h(ai+1) but instead moves to
[k, ai+1, . . . , an], then Player A can win by adopting the strategy of reducing the norm of
k by one on each turn (cf. Theorem A guarantees that Player B, by missing the oppor-
tunity to decrease the norm, allows Player A to do so). In this way, Player A eventually
will be the one to move to [ai+1, . . . , an]. However, Player A will reach this position by
removing some Hj < h(ai+1) (recall that Player B faced [h(ai+1), ai+1, . . . , an]). Thus,
again by the definition of h(ai+1) (for f(Hj) < Hj1(ai+1) ≤ ai+1), Player B will be unable
to reduce the norm of ai+1 and loses by (2). �

Example 1. In all of the following examples assume that the move function is f(n) = 2n.
Consider the position (25, 87), i.e., [3, 2, 11]. This reduces to [3, 2 − h(11)] = [3] by (1).
Thus, the first player can win by moving to the P-position [2, 11], i.e., (12, 25), first. How
the first player wins from here by playing second is not directly given by Theorem 3 but
is outlined in its proof. If the second player moves to (1, 12) = [11], the first player can
reduce the norm of 11 = 3 + 8 by moving to [8]. If the second player instead moves to
[1, 11] = (12, 13), the first player moves to [11] = (1, 12). Then, the second player can
remove one at most twice and is unable to reduce the norm. Thus, the first player wins
in all cases, as Theorem 3 claims.

Example 2. Now consider the position [1, 5, 11]. This reduces to [1, 5 − h(11)] = [1, 3]
by (1). Now, since 1 − h(3) = −1, we use (2) and reduce to [1]. Thus, the first player
wins by removing 1 and moving to [5, 11]. Now, any response allows the first player to
reach the P-position [2, 11] and win as above.

Example 3. Finally, consider the position [2, 3, 13]. We first try [2, 3 − h(13)], but
because 3 − h(13) = −5 is negative, we instead reduce to [2 − h(3)] = [0]. Thus, this is
a P-position and a loss for the first player. The reader can check all the variations.
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6. The Euclid of Three Numbers

Consider an extension of Euclid in which a position is (a, b, c), where a, b, c are integers.
There are many ways to generalize the rules of standard Euclid. Suppose we decree that
a legal move is to remove the same multiple of the smallest integer from each of the larger
two. Then it is not hard to see that the idea of Theorem 1 applies.

Assume without loss of generality that in (a, b, c) we have a ≤ b ≤ c. Then, assuming
that b > 2a, we choose n such that a < b − na < 2a. Then one of the moves (a, b −
na, c − na) or (a, b − (n + 1)a, c − (n + 1)a) will win, for if the latter does not, the first
player can take the former and force his opponent to move there.

The reader may object that this is hardly the most natural way of generalizing Euclid
to three numbers, and the author sympathizes. To me, the most natural extension would
be to make a legal move the decreasing of any of the three integers by a multiple of
any other, provided the result remains positive. Unfortunately, I have not been able to
find any winning strategies in this variation of Euclid, and doing this remains the most
intriguing unsolved problem in the domain. The general theme that a player with many
options has a winning strategy seems to hold, but there are some surprising P-positions;
for example, (4, 9, 16).

7. Misère forms

As we mentioned in Section 1, the misère form of Euclid is a win for the first player with
a choice of moves. Our next theorem gives a winning strategy.

Theorem 4 The first player to have a choice can win misère Euclid by adopting the
following strategy: when faced with the position [ai, ai+1, . . . , an], with ai ≥ 2, make the
same move as in the unrestricted version if at least one of ai+1, . . . , an ≥ 2. Otherwise,
play so as to leave an odd number of ones (whereas in unrestricted version one would
leave an even number). This strategy works for Euclid with no restriction, restriction
sets Λk, and other equivalent restriction sets.

Proof. If at least one of ai+1, . . . , an ≥ 2, playing as in the unrestricted version will ensure
that the first player will make the next choice. Thus, the position will be reduced to a
smaller one in which the first player still has control. If ai+1 = ai+2 = · · · = an = 1, there
are no more choices. In this case, playing to leave an odd number of ones will ensure
that the second player’s moves always leave an even number, eventually making the last
move by leaving zero, and giving the first player victory. Note that it is always possible
for the first player to leave an odd number, because [1, ai+1, . . . , an] and [ai+1, . . . , an]
are two options. This completes the proof for the unrestricted version. This strategy
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also applies to the misère games with restriction set Λk and other equivalent restriction
sets (in the sense described in Section 4). All we need to do is to reduce all the partial
quotients mod(k + 1) and apply the above strategy. �
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