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Abstract

Richard Guy [5] asks whether the game-theoretic value *2, the value of a nim-heap of
size 2, occurs in the games of Domineering or chess. We demonstrate positions of that
value in Generalized Domineering and chess.

1. Overview

We follow the terminology of Winning Ways [1], considering two-player alternating-turn
finite-termination complete-information chance-free games whose loss conditions are ex-
actly the inability to move, and which always end in a loss. According to this definition,
chess is not a game because it can be tied or drawn and the loss condition is not the
inability to move. We will answer these objections.

A game position can be expressed recursively as {GL | GR} where GL, called the
left-options of G, is a collection of positions to which one player, called Left, can move,
if it is her turn, while GR, the right-options of G, is a collection of positions to which the
other player, called Right, can move if it is hers. We abuse terminology by also using the
symbols GL and GR to refer to generic elements of these collections.

We can recursively define a binary operation + on the collection of game positions by
G+H = {GL+H, G+HL | GR+H, G+HR} and an involution − by −G = {−GR | −GL}.
Then we can partially order game positions up to an equivalence relation by G ≥ H if
Left can win G + (−H) going second. This equivalence relation is usually taken to be
equality; G = H if G − H is a win for whichever player goes second.

Employing modest restrictions on the number of options available from any position,
the collection of all game positions becomes an Abelian group under + with inverse −
and identity the equality class of {|}, called 0. It turns out that one can determine the
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outcome class of a game by comparing it to 0. If G > 0 then G is a win for Left regardless
of who plays first, if G < 0 then it is a win for Right, if G = 0 it is a win for whichever
player goes second, and if G is incomparable with 0 it is a win for whomever goes first.

A game consists of a collection of legal game positions. A game is called impartial
if from each legal game position both players have exactly the same options, i.e., if
GL = GR (as sets of game positions) for every position G. A game that is not impartial
is called partizan. It is well-known that every impartial game position is equivalent to a
nim-heap of a particular size, called the Sprague-Grundy number, nim-value, or nimber
of the position. This is certainly not true in general for a partizan game position, but it is
possible for a position in a partizan game to be equivalent to a nim-heap. In particular,
a 0-position in any game, where neither player has a canonical move, is always equivalent
to an empty nim-heap. If a game has nim-value n, it is referred to as ∗n, with ∗ standing
in for ∗1 and 0 for ∗0.

The simplest nimbers, 0 and ∗, occur in very simple guises in many partizan games.
However, it is often much more difficult to find positions of other nimber values. The
next nimber, ∗2, defined as {0, ∗ | 0, ∗} is known not to appear in some partizan games
and has proven elusive in others. In this note, we demonstrate generalized Domineering
positions and a chess position with value ∗2.

2. Domineering

Domineering, discussed in Winning Ways [1] and On Numbers and Games [2], is a game
played with dominoes on a rectangular board tiled with squares. Players take turns
placing dominoes on unoccupied squares on the board. Each domino covers two squares.
Left must place all her dominoes with a “vertical” orientation while Right must place
hers with “horizontal” orientation. This game can easily be seen to be partizan. The
simplest game position with value 0 is the empty position; the simplest game position
with value ∗ is

Figure 1: Domineering position of value ∗

Generalized Domineering, as a game, has the same rules to determine left and right
options as domineering, but includes a larger class of legal positions. Any subset of a
rectangular board is a legal position in generalized Domineering, whereas only subsets
corresponding to a sequence of legal Domineering moves are legal positions in ordinary
Domineering.
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The following generalized domineering positions all have value ∗2 or n + ∗2 where n

is an integer. The values were obtained with Aaron Siegel’s cgsuite software [7].

Figure 2: Generalized Domineering positions of value n ∗ 2
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Clearly, there is a pattern at work here. All simple rectangles of the above type
(i.e., like the first, third, and fourth example) have value ∗2 modulo an integer. That
is, rectangles with vertical side length 4n + 1 and horizontal side length 4m + 1 fitted
with 2n, 2m respective “outward-pointing bumps” alternating with 2n − 1 or 2m − 1
“inward-pointing bumps,” have value 2(m−n)∗2, for any n, m ≥ 1. For two side lengths
of 4n + 3, 4m + 3, these rectangles have integral value, while for mixed side lengths of
4n + 1 and 4m + 3 they are hot. There is no obvious way to fit together the bumps on a
rectangle with even side length on a planar Domineering board.

I have not been able to find any ordinary Domineering positions with value ∗2, and
suspect that if such exist, they will be unlike the positions constructed here, which appear
to depend strongly for their nimber value on the “holes” in the corners.

In order to prove that all rectangles of the appropriate type have value n ∗2, let us
note some peculiar characteristics of these rectangles. Ignoring the four corner squares
for a moment, such positions consist of rows and columns of interlocking bumps. On
a row of bumps, a left (vertical) move eliminates a bump and leaves zero, one, or two
rows of bumps; a right move eliminates two adjacent bumps and leaves zero, one or two
rows of bumps, along with two leftover squares of no value. The roles are reversed for a
column.

Now considering the corners, Left can move on a corner and a vertically adjacent
bump; Right can move on a corner and a horizontally adjacent one. This completes the
list of possible moves on a rectangle as above or any subgame of one.

Thus motivated, we can define a new game called SQUID as a bookkeeping device.
This game is played on a graph whose vertices are colored from the color set {red, green,
blue}. A legitimate move for Left is to erase one blue or two adjacent non-blue vertices;
a legitimate move for Right is to erase one red or two adjacent non-red vertices. Clearly,
we can express any generalized Domineering rectangle as above as a position in this game
as a rectangle of the same side length with green corners, blue horizontal sides, and red
vertical sides.

Figure 3: A position fragment in both games with an overlay to show the translation
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Figure 4: A ∗2 rectangle in Domineering and SQUID

Now that we have a framework, we can work locally with with positions in our new
game. Our main aim is:

Proposition 1 Any regular position in SQUID containing a chain of five blue vertices
has value one less than the same position with the chain lengthened to nine blue vertices.

Here a regular position is one in which the valence of any vertex is at most two, and a
chain is a connected row of vertices. Henceforth we will assume that all our positions are
regular. In fact, locally almost all of our vertices will be blue.

By symmetry the negative of this statement will be true for red chains. Since we have
checked by computer the special case rectangle with dimensions 5 × 5 (three red/blue
vertices to a side) and then the base cases of dimension 5×9 and 9×9, this will suffice to
establish that all rectangles with side lengths 4n + 1 and 4m + 1 have the desired value,
as any larger rectangle of the appropriate dimensions modulo four can be obtained from
one of these two by repeated lengthening of subchains of length five by four.

We need two short lemmas and then we will be ready to prove this. First, a tail of
length n is defined as n adjacent vertices with one endpoint monovalent, i.e., wagging
free.

Lemma 1 Let A be a SQUID position.

1. Let A2 be the same position with a blue tail of length two attached, either to a blue
vertex or disjointly. Then A2 = A + {1 | 0}.

2. Let A3 be the same position with its tail lengthened to three. Then A3 ≥ A.
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A A2 A3

Figure 5: Lemma 1

The proofs are straightforward, and involve only the usual tricks of combinatorial
game theory analysis. In order to show, for example, that a game position G has value
greater than or equal to zero, we must show that it can be won either by Left or by the
second player to move. To show this it is both necessary and sufficient to demonstrate a
Left response (GR)L to every possible Right move which has value greater than or equal
to zero; such positions are won by Left or by the second player to play, who in this case
would be Left.

The other trick we use often is that if G and G′ have exactly the same moves except
some Left options of G and its subgames are not present in G′, then G ≥ G′. The idea is
that if Left refuses to take certain moves it can only hurt her.

Proof.

1. We need to show that the difference game A2 − A + {0 | −1} is a second player
win. We break it up into cases, and proceed by induction on the size of A. The
base case where A is empty is trivially verified.

Left moves first:

• Left moves on the A part of A2 or in −A; then Right responds with the cor-
responding move in the other of these components. By the inductive premise,
Right has moved to a zero game.

• Left moves on the tail of A2. Right responds by moving to −1 in the {0 | −1}
component. Right can now refuse to move on the remainder of the tail, which
can only increase the value of the position to A + 1 − A − 1 = 0.

• Left moves on {0 | −1} to 0. Right responds by moving on the tail, destroying
it, leaving A − A = 0.

Right moves first:

• Right moves on the A part of A2 or in −A; then Left responds with the
corresponding move as above.

• Right moves on both vertices of the tail, leaving A−A+ {0 | −1} = {0 | −1}.
Left moves to 0.

• Right moves on the {0 | −1} component to A2 − A − 1. Left responds by
moving on the square of the tail closer to A, leaving A + 1−A− 1 = 0, where
the +1 is the value of the isolated blue vertex.

• Right possibly moves half-on, half-off the tail of A2, leaving a position A′

which looks like A missing a blue square along with a single vertex worth 1,
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and −A+{0 | −1}. Left responds on {0 | −1}, leaving A′, a single blue vertex,
and −A. Now, A′ along with a single blue vertex is the same position as A
with some Right moves removed, so A′ + 1 ≥ A. Then A′ + 1−A ≥ 0, so that
this is now a win for Left, as desired.

2. This is similar, but a little quicker. Since we only need to show A3 −A ≥ 0, all we
care about is that Left can win going second. We proceed as before by induction,
with trivial base case (∅3 = {2 | 1}).
Now, as in the first case, if Right moves on the A part of A3 or −A, then Left can
respond with the corresponding move in the other component and we are done by
the inductive premise. If Right moves on two of the three squares of the tail of A3,

then Left moves on the other square, leaving A − A = 0. Finally, if Right moves
half-on, half-off the tail, leaving A′ and a component which is two adjacent blue
vertices, then Left can respond by taking one of these vertices, leaving A′ + 1−A,
which as in the last case is at least 0, as desired.

Corollary 1 A position A4 with a length four blue tail attached disjointly or to a blue
vertex or a position A2,2 with two length two blue tails attached disjointly or to blue
vertices satisfy A4 = A + 1 = A2,2.

Proof. This is easy, since we can write A4 or A2,2 as (A2)2 = A+{1 | 0}+{1 | 0} = A+1.

Proof of Proposition 1. Now let B5 be a position with a chain of five blue vertices and B9

the same position with a chain of nine blue vertices instead. We will show by induction
that B9 − B5 − 1 = 0. The base case is again easy to verify, as a chain of length five has
value 2 while a chain of length nine has value 3. As in the lemmas, we use the inductive
step only to say that we can respond to a move far away from the chain in one component
with the corresponding move in the other component, leaving a second player win by the
inductive premise. The remaining cases are summarized below. It helps to organize the
descriptions to have a labelling of the chains, as in Figure 6.

1 2 3 4 5 1 2 3 4 5 6 7 8 9

Figure 6: B5 and B9

Left moves first:

• Left moves on the n vertex of the chain of B9. Right can respond by moving on
the n vertex of −B5 for n ≤ 4, the 3 vertex of B5 for n = 5, or the n − 4 vertex
of −B5 for n ≥ 6. The resulting positions differ by a length four or two length two
blue tails, so by the corollary, this is a zero position.
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• Left moves on the n, n + 1 vertices of the chain of −B5. For n �= 4, Right responds
with the n, n + 1 vertices of the chain of B9; for n = 4 Right responds with the 8, 9
vertices of the chain of B9. In either case the corollary again applies to say that the
resulting position is 0.

• Similarly, if Left moves half-on, half-off, the chain of −B5 then Right makes the
corresponding move half-on and half-off the chain of B9 and the corollary again
applies

Right moves first:

• If Right moves on two adjacent vertices of the chain of B9, or half-on and half-
off the chain, Left responds on the chain of −B5. If Right’s move involves one of
the endpoints, Left responds with the matching move involving the corresponding
endpoint. If Right moves (2, 3), (4, 5), or (6, 7) then Left responds with (2, 3); if
Right moves (3, 4), (5, 6), or (7, 8) the Left responds with (3, 4). In any case the
corollary applies.

• If Right moves on a single vertex of −B5, then Left responds on B9; She responds
to a move on 5 with one on nine, and otherwise responds to n with n.

• If Right moves on the −1, taking it to 0, leaving the position B9−B5, then Left can
move on any interior vertex of B9, say, for specificity, on 2. This leaves a position
B1,7 with two trailing blue tails of lengths 1 and 7. Now by the second lemma
above, this has value at least as high as the same position (call it B1,4) with tails
of lengths 1 and 4 (see Figure 7). Then this is at least as high in value as B5,
which is precisely the same position with an additional possible move for Right. So
B1,7 ≥ B1,4 ≥ B5 so that the position we are left with, B1,7 − B5, is greater than
or equal to zero, and thus a win for Left, as desired.

This concludes the proof of the proposition.

Figure 7: Application of the second lemma and comparison

3. Chess

Following Elkies [3],[4], we consider chess as a combinatorial game in certain very re-
stricted settings. In order to avoid tied or drawn play, we require that every chess
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position end in a finite number of moves in a loss for either white or black. Also, so that
we do not have to haggle about the exact value of a win in chess, we require our starting
positions, when dominated options and reversible moves are removed, to pass through a
zero-value position of mutual zugzwang, that is, a position where whoever moves, loses,
assuming adequate play. The simplest example of a zero position is in the first board of
Figure 8:

Figure 8: 0 and *

White can move only her king, but to do so leaves her pawn undefended so that
black will immediately capture it and then shortly win the game. The same is true for
black. So this is a true zero position in chess, where neither player has a viable move.
We call starting positions that must pass through such a zero position with proper play
combinatorial positions.

In the second board of Figure 8, we see a combinatorial position with value *, the
same as a Nim-heap of size one. Whichever player has the turn advances the pawn on the
h-file, leaving a position which is essentially equivalent to the previous one, i.e., where
each player has only a losing move.

On the other hand, a position with value *2 is more difficult to come by. The pawns
(or other pieces, but it is easier to manipulate pawns) must have multiple moves, but
not “too many.” If pawns could not move forward, only capture, and the game ended
with the player unable to move losing, then the board in Figure 9 would have the desired
value.
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Figure 9: *2 position in capture-only chess

If it is white’s turn, there are three options. The pawn on g4 can take at f5, winning
the game (because there are no options for black). The same pawn can take at h5, leaving
the pawns on e4 and f5 each with the possibility to capture the other. Finally, the e4
pawn can capture at f5, leaving the pawns on g4 and h5 with the ability to capture one
another. Both of the latter two moves leave only one option for each player, namely the
immediate win, so are equivalent to a Nim-heap of size 1. It is clear by symmetry that
the options are the same for black. So each player can move to an empty game (that is,
a Nim-heap of size 0) or a ∗ game, a Nim-heap of size 1. These are the options from a
Nim-heap of size 2, and the value of the initial game is {0, ∗ | 0, ∗} = ∗2.

Now, it is all well and good to find such a position on a chessboard with pieces that
look like chess pieces, but this is not chess; there are no kings on the board, but even if
the kings were locked in an apparent zugzwang as before, a pawn can advance as well
as capture. As a chess position, such a game would not be combinatorial, because each
player wants to advance a pawn first in order to promote first and thereby win, without
ever passing through zugzwang. So how can we keep the pawns from advancing?

Figure 10: *2 position in 8x8 chess with arbitrary setup
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The first board of Figure 10 is a combinatorial position (with an impossible arrange-
ment of pieces) with the required properties. The interlocked bishops cannot themselves
move, being blocked by immobile pawns, but their presence prevents the pawns from
moving, except for the desired captures. So if we confine our attention to the files d
through h, pictured on the second board, this is easily seen to be equivalent to the
forced-capture game of Figure 9.

It may not be immediately obvious that the configurations in the upper and lower
left amount to a mutual Zugzwang, but it is not particularly difficult to see. White can
only move her king, which allows one of the black pawns to promote. Once black has a
queen she can sacrifice her rook to free her king and then mate with queen and king.
On the other hand, if black moves a pawn, she loses all three and is forced to move the
rook, which is either an immediate mate (c7xb8 or c7xd8) or allows white to take with
the pawn on the b-file and then promote and win with queen and king. There is no
danger of stalemate because white can always move her king and black can always move
either the rook, or, if the rook is captured by b6xc7, her king or the pawn on b7.

This basic position, without the kings, gives an idea of how to create a capture-only
situation in chess, but of course, just by the number of bishops and pawns, cannot be
achieved through normal play.

Figure 11 is a position of value *2 and the movelist of an orthodox (i.e., fully legal)
chess game, in algebraic notation, that results in it. The chess game was created with the
help of retrograde analysis software [6]. No effort was made to find a shortest solution,
or a solution that involved good chess play. It is obvious that an extra tempo move could
result in the same position with black to play. For convenience, we will begin numbering
possible variations at 68., the next move according to this particular chess game.

1. h3 Nc6
2. h4 Ne5
3. d3 Nc6

4. Qd2 Ne5
5. Kd1 Nc6
6. Qe1 Ne5

7. g4 Nc6
8. h5 Ne5
9. Nf3 Nc6

10. Nd4 Ne5
11. Nf5 Nc6
12. Ng3 Ne5
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13. a4 Nc6
14. a5 Ne5
15. c4 Nc6
16. f4 Ne5
17. Bg2 Nc6
18. b4 Ne5
19. f5 Nc6
20. a6 Ne5
21. d4 Nc6
22. b5 Nb8
23. Nf1 c5
24. Qb4 Qc7
25. Qxc5 Qd8
26. Qb4 bxa6

27. b6 Bb7
28. Nb1d2 Bc8
29. Bb7 Qc7
30. e4 d5
31. Qd6 Qd8
32. cxd5 e5
33. Nc4 Qxd6
34. Nf1d2 Qd8
35. Nb3 Be6
36. Bc8 Qd6
37. dxe6 Qd8
38. Bd7+ Qxd7
39. Kd2 Qd8
40. Nd6+ Qxd6

41. b7 Qd8
42. d5 Qf6
43. Kc3 Ne7
44. Kb4 Kd8
45. Bh6 g5
46. Bg7 Rg8
47. Bh8 Rg6
48. fxg6 Bh6
49. g7 Kc7
50. Rh1c1+ Kd6
51. Rc8 Qg6
52. Rg8 Kc7
53. hxg6 Nd7
54. Rc1+ Kb6

55. b8=B Kb7
56. Bd6 Nf5
57. Bf8 Nf6
58. Na5+ Kb8
59. d6 Ne7
60. Rc7 Nc8
61. Re7 Ne8
62. Kc5 Nc7
63. Re8 Nd5
64. Kc6 Nc7
65. Kd7 Nd5
66. Kd8 Nc8e7
67. dxe7 Nf6

Figure 11: Orthodox *2 chess position

First of all, the reader will verify that the system of pawns (e6,f7,g6,h7) is as before,
assuming that none of the other pieces, particularly the black bishop or knight, moves.
That is, there are three possible captures for each side. One of the three results in a
configuration of pawns with no moves for either side (a zero game); the other two result
in configurations with a capture option for each side (a ∗ game).

Now, other than these pawn moves, the only white piece able to move at all is the
knight on a5. If this moves, then 68. ... Kb7+ is an immediate mate; white can only
throw the knight in the way for one turn. So other than the pawn configuration, white
has only a losing move, so that she is in Zugzwang if no such move is available.

Now let us turn our attention to black, who has moves by the bishop and knight. The
pawn configuration is as before. Now, If the black knight is moved to any square but e8,
white’s Kd7 is an immediate mate; Therefore the only possible moves are 68. ... Bxg7
and 68. ... Nxe8.

White responds to 68. ... Bxg7 by capturing back with either bishop; this essentially
frees up the white pieces to apply more pressure. Black can move either the knight or the
pawn on h7. As before, any knight move but 69. ... Nxe8 is an immediate mate; with a
white bishop on g7, 69. ... Nxe8 70. Bg7xe5+ forces either 70. ... Nc7 71. Bxc7# or 70
... Nd6 71. Bxd6# The final possibility in this line, if the pawn on h7 is there, is 69. ...
h5 or h6 70. Bg7xf6 which leaves black with only a pawn move before 71. Bxc7#.

So the only possible defense is 68. ... Nxe8. Here the response depends on the
configuration of the pawns. If there is a white pawn on f7 then 69. fxe8=Q Bxg7 70.
Kd7# is forced, so the analysis is easy. If there is a black pawn or no pawn there, then
the analysis is better left to chess experts or computers, but 69. Kd7 leads in every
case to a mate in 10. The main idea is to keep the black king on the 8th rank with the
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white king, force e8=Q Nxe8, and then to mobilize the rest of the trapped pieces with
something like Bd6.

It can be verified that the original position and the positions obtained after one
capture of the appropriate type (i.e., leaving a position of value ∗) are all forced mates
for either side (in three for black and four for white, except when there is no white pawn
on f7, in which case mate is in 11 for white). The unique first move in each case is
the pawn move that eliminates all further capture possibilities in the pawn configuration.
That is, the combinatorial moves are {exf7, gxf7, gxh7| fxe6, fxg6, hxg6} which translates
to {∗, 0, ∗ | ∗, 0, ∗} = ∗2, as desired.
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