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Abstract

In this paper a way of representing an ordinary partition as a tiling with dominoes and
squares is introduced. The generating functions associated with such tilings is developed
and explained analytically and combinatorially.

1. Introduction

The results in this paper were inspired by a talk given by Arthur Benjamin at the South-
eastern Section meeting of the MAA in 2004 and based on his new book with Jennifer Quinn
[2]. At this meeting Benjamin discussed tilings of a 1 × n rectangle with 1 × 1 squares and
1 × 2 dominoes. The total number of such tilings of a 1 × n rectangle is the nth Fibonacci
number and these tilings can be used to explain numerous identities involving the Fibonacci
numbers. For n < 5 the values of p(n), the number of partitions of n, match the values
of the Fibonacci sequence. The natural question that arises is “Can the partitions of n be
explained in terms of tilings using squares and dominoes?.” The answer to this question is
“yes” as the first theorem below explains.

2. The Main Theorem

Before we state the first theorem, we introduce some notation. In a tiling, we will number
the dominoes from left to right as d1, d2, ..., dm. We will let s0 be the number of squares
preceding d1; si for 1 ≤ i < m will be the numbers of squares between di and di+1; and sm

will be the number of squares succeeding dm.

Theorem 1 The number of partitions of n is the number of tilings of a 1×n rectangle where
the numbers of squares following successive dominoes form a nondecreasing sequence. That
is, s1 ≤ s2 ≤ ... ≤ sm.

Theorem 1 follows by observing that (1) a tiling of the type described can be converted
into the partition of n consisting of s0 ones and the parts 2 + si for 1 ≤ i ≤ m, and (2) a
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partition n can be converted into a tiling of the type described by making the ones initial
squares and converting each part k bigger than one into a domino followed by k − 2 squares.

3. Some Other Results

Unlike the Fibonacci sequence, which has a simple recursion formula, Fn = Fn−1 +Fn−2, the
recursion formula for the partition function is given by Euler’s Pentagonal Number Theorem,
p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+· · · =

∑∞
k=1(−1)k+1(p(n− 3k2−k

2 )+p(n− 3k2+k
2 )).

For n > 5, p(n − 1) + p(n − 2) overestimates p(n). The next result can be used to explain
this overestimate. We present an analytical and a combinatorial proof of this theorem.

Theorem 2 The following holds: 1
(q;q)∞

= 1 + q+q2

(q;q)∞
− ∑∞

i=2
q2i+1

(1−q)(qi;q)∞
.

Analytically, this theorem follows by setting x = 1 in the equation for s(x, q) in identity
10 on page 29 in [1] and then dividing by (q; q)∞. Combinatorially, we can create a tiling
representation for a partition of n by placing an extra square to the left of a tiling represen-
tation for a partition of n−1. This will create all partitions of n which contain a one. When
we place a domino to the left of a tiling representation for a partition of n− 2 we will create
a tiling representation of a partition of n in which the smallest part is at least two unless the
partition for n− 2 contains m ≥ 1 ones and a part greater than 1 and less than m + 2. The
generating function for these exceptions is given by

∑∞
m=1 q2+m ∑m+1

k=2
qk

(qk;q)∞
, which is equal

to the sum being subtracted on the left side of the equation in Theorem 2.

Note that
∑∞

i=2
q2i+1

(1−q)(qi;q)∞
enumerates the number of ways of expressing n as x1 + x2 +

· · · + xr, where r ≥ 1, xi ≥ 2 for all i, and x1 > x2 ≤ x3 ≤ · · · ≤ xr. In other words, we
almost have a partition of n into parts greater than 1, since only the first part is out of order.

By observing that q2k

(1−q)(q;q)k
is the generating function for partition tilings containing k

dominoes we can give a tiling interpretation of the following theorem due to Euler.

Theorem 3 The following holds: 1
1−q

∑∞
k=0

q2k

(q;q)k
=

∑∞
n=0 p(n)qn.

When k = 0 and there are no dominoes, the partition consists of only ones, with gener-
ating function 1

1−q . For k > 0, to see that the generating function for partition tilings with k

dominoes is q2k

(1−q)(q;q)k
, we look at the Ferrers’ graph for a partition containing k parts greater

than one, which gives us k dominoes by using the first two nodes of each part greater than
one to form the k dominoes; q2k. To the right of the dominoes we have columns containing
k or fewer nodes; 1

(q;q)k
, and below the dominoes we have the parts that are ones; 1

1−q .
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