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Abstract

We compute the average orders and study the distribution of values of a class of divisor
functions defined by symmetric polynomials on the multi-set of prime factors of a number.
These generalize those we have previously defined. The simplest case of these functions is
the sum of prime factors with repetition function, whose average order has been computed
in various ways by Alladi and Erdős, LeVan,and Kerawala.

1. Introduction

Let us begin by consolidating some notation. Let N0 denote the set of nonnegative integers.
In [13] we considered the functions sk defined as follows:

Definition 1 Let k ∈ N0. Define sk : N0 → N0 as follows: if n = 0, then sk(0) = 0, for all
k. For n > 0, if k = 0, sk(n) = 1. If k > 0, and n = p1 · · · pr, where r = Ω(n) is the number
of prime factors (with multiplicity) of n, then

sk(n) =
∑

pi1 · · · pik ,

where the sum is taken over all products of k prime factors from the multi-set {p1, . . . , pr}.

These functions are mere special cases of a larger class of functions:

Definition 2 Let k, ! ∈ N0. We define sk,!(0) = 0. If n = p1 · · · pr ∈ N, where the pi are
primes, not necessarily distinct, then

sk,!(n) =
∑

1≤i1<...<ik≤k

(pi1 · · · pik)
!.

1The author is operating under an NSERC CGS D research grant
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We write the function s1,k as ek. The function s0,k ≡ 1.

The special case when k = ! = 1, i.e. the sum of prime factors with repetition function,
has been studied in other contexts. Denote this function by s. Lal [10] observes that the
sequence of iterates n, s(n), s(s(n)), . . . , for n ≥ 5 always terminates in a prime number
p ≥ 5. Based on empirical evidence, he conjectures that corresponding to a fixed such
prime, the set

{n ∈ N : s(i)(n) = p for some i ≥ 0}

has a positive asymptotic density. Here we are writing s(i)(n) for the ith iterate of n by s.

Alladi and Erdős [1] show that s(n) is uniformly distributed modulo 2 by proving that

∑

n≤x

(−1)s(n) = o(x).

Since s(n) ≡ ek(n) (mod 2) for any k ∈ N, this result clearly extends to ek(n).

Gupta [4] shows that for a given m,

max {n ∈ N : s(n) = m} = t · 3"m/3#,

where t = 1, 4/3, or 2; according as m ≡ 0, 1, or 2 (mod 3).

The size of the set e(−1)
k (n) is equal to the number of partitions of n into kth powers

of primes, pP(k)(n). Bateman and Erdős [2] have shown that the number of partitions into
primes pP(n) is strictly increasing, and Hardy and Ramanujan [5] first demonstrated the
asymptotic formula

log pP(k)(n) ∼ (k + 1)

[
Γ

(
1

k
+ 2

)
ζ

(
1

k
+ 1

)]k/(k+1) [
n

logk n

]1/(k+1)

.

From this it is easily seen that the functions ek(n) attain all sufficiently high values, for
any k ∈ N. We have shown [13] that s2(n) does as well.

In Section 3 of the present paper, we shall prove the asymptotic formula

∑

n≤x

sk,!(n) ∼ ζ(! + 1)x!+1(log log x)k−1

(! + 1)(k − 1)! log x
, (1)

for k, ! ≥ 1 fixed, with a precise error term included. Section 2 is devoted to ek(n), and, in
addition to proving (1) in this case, we study the distribution of values of these functions.
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2. Statistical Results for ek

2.1 The Average Order of ek

Theorem 2 For k ∈ N,
∑

n≤x

ek(n) =
ζ(k + 1)xk+1

(k + 1) log x
+ O

(
xk+1 log log x

log2 x

)
.

The average order of s itself is studied by Alladi and Erdős [1] by comparing it to the
average order of the largest prime factor dividing n. The asymptotic in Theorem 2 (without
the error term included) has been advanced by Kerawala [9] and LeVan [11]. We shall make
precise LeVan’s sketch of the proof. First we require a lemma.

Lemma 1 For x ≥ 2, and k, ! ∈ N0 we have
∑

p≤x

pk

log! p
=

xk+1

(k + 1) log!+1 x
+ O

(
xk+1

log!+2 x

)
.

The proof of Lemma 1 follows from a simple application of Riemann-Stieltjes integration
and integration by parts.

Proof of Theorem 2. We have

∑

n≤x

ek(n) =
∑

p≤x

∞∑

i=1

pk

⌊
x

pi

⌋
=

∑

p≤x

pk

⌊
x

p

⌋
+

∞∑

i=2

∑

p≤x1/i

pk

⌊
x

pi

⌋
. (2)

As we shall see, the first term contributes the greater portion to the sum:
∑

p≤x

pk

⌊
x

p

⌋
=

∑

i≤x/2

∑

x
i+1<p≤x

i

ipk =
∑

i≤x/2

∑

p≤x/i

pk

=
∑

i≤x/2

(
(x/i)k+1

(k + 1) log (x/i)
+ O

(
(x/i)k+1

log2 (x/i)

))
. (3)

Let Σ1 =
∑

i≤log2 x

1

ik+1 log (x/i)
and Σ2 =

∑

log2 x<i≤x/2

1

ik+1 log (x/i)
so that

∑

i≤x/2

1

ik+1 log (x/i)
= Σ1 + Σ2.

We have that

Σ1 ≥
1

log x

∑

i≤log2 x

1

ik+1
=

1

log x



ζ(k + 1) −
∑

i>log2 x

1

ik+1





=
1

log x

(
ζ(k + 1) + O

(
1

log2k x

))
=

ζ(k + 1)

log x
+ O

(
1

log2k+1 x

)
.
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On the other hand,

Σ1 ≤
∑

i≤log2 x

1

ik+1(log x − 2 log log x)
=

1

log x

(
1 + O

(
log log x

log x

)) ∑

i≤log2 x

1

ik+1

=
1

log x

(
1 + O

(
log log x

log x

)) (
ζ(k + 1) + O

(
1

log2k x

))

=
ζ(k + 1)

log x
+ O

(
log log x

log2 x

)
.

Combining these results we have that

Σ1 =
ζ(k + 1)

log x
+ O

(
log log x

log2 x

)
. (4)

The sum Σ2 is negligible by comparison:

Σ2 =
∑

log2 x<i≤x/2

1

ik+1 log (x/i)
(

∑

i>log2 x

1

ik+1
(

∫ ∞

log2 x

1

tk+1
dt ( 1

log2k x
. (5)

Now we need to bound the error term in (3):

∑

i≤x/2

1

ik+1 log2 (x/i)
= O

(∫ x/2

1

dt

t2 log2 x/t

)

= O

(∫ √
x

1

dt

t2 log2 x/t
+

∫ x/2

√
x

dt

t2 log2 x/t

)

= O

(
4

log2 x

∫ √
x

1

dt

t2
+

∫ x/2

√
x

dt

t2

)

= O

(
1

log2 x

)
(6)

Hence by (4), (5), and (6), we have that

∑

p≤x

pk

⌊
x

p

⌋
=

ζ(k + 1)xk+1

(k + 1) log x
+ O

(
xk+1 log log x

log2 x

)
.

To conclude the proof, we need to bound the second term in (2):
∞∑

i=2

∑

p≤x1/i

pk

⌊
x

pi

⌋
≤ x

∞∑

i=2

∑

p≤x1/i

pk

pi
≤ x

∑

p≤
√

x

pk−1

p − 1
≤ 2x

∑

p≤
√

x

pk−2

=






O(x log log x), if k = 1;

O

(
x

k+1
2

log x

)
, if k > 1.
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Note that for the k = 1 case, x log log x = O

(
x2 log log x

log2 x

)
, and for the k > 1 case,

x
k+1
2

log x
= O

(
xk+1 log log x

log2 x

)
. !

2.2 The Distribution of Values of ek

In this section we shall relate ek(n) to the largest prime factor dividing n, which we denote by
P (n). The following trivial identity turns out to be rather useful in deriving some statistical
properties for ek:

P (n)k ≤ ek(n) ≤ P (n)kΩ(n). (7)

Definition 3 Let

bk(x, y) = #{n ≤ x : ek(n) ≤ y}, (8)

Ψ(x, y) = #{n ≤ x : P (n) ≤ y}. (9)

So bk(x, y) is the number of partitions into k-th powers of primes whose sum is less than or
equal to y, and whose product of parts is less than or equal to x. We wish to relate the two
quantities defined above. To do so, we state the following well-known fact concerning the
function Ω(n), which counts the number of prime factors with repetition of n. The proof is
by analogy with [8], p.30.

#{n ≤ x : |Ω(n) − log log n| > (log log n)3/4} = O

(
x√

log log x

)
. (10)

Theorem 3 There is an absolute constant c1 > 0 such that the following inequalities hold:

Ψ

(
x,

(
y

log log x + (log log x)3/4

)1/k
)

− c1x√
log log x

≤ bk(x, y) ≤ Ψ(x, y1/k). (11)

Proof. By equation (7), we have that

#{n ≤ x : P (n)kΩ(n) ≤ y} ≤ bk(x, y) ≤ #{n ≤ x : P (n)k ≤ y}.

This implies the second inequality. By (10), there is an absolute positive constant c1 such

that #{n ≤ x : |Ω(n) − log log n| ≤ (log log n)3/4} ≥ x

(
1 − c1√

log log x

)
. Given this, we
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have the following chain of inequalities:

#{n ≤ x : P (n)kΩ(n) ≤ y} ≥#{n ≤ x : P (n)kΩ(n) ≤ y, and

Ω(n) ≤ log log n + (log log n)3/4}
≥#[{n ≤ x : P (n)k(log log n + (log log n)3/4) ≤ y}

∩ {n ≤ x : Ω(n) ≤ log log n + (log log n)3/4}]
≥#{n ≤ x : P (n)k(log log x + (log log x)3/4) ≤ y}

+ #{n ≤ x : |Ω(n) − log log n| ≤ (log log n)3/4}− x

≥Ψ

(
x,

(
y

log log x + (log log x)3/4

)1/k
)

− c1x√
log log x

,

and the theorem is proved. !

The “Dickman function” ρ(u) is defined to be the unique continuous solution to the
differential-difference equation

uρ′(u) = −ρ(u − 1) (u > 1),

satisfying the initial condition ρ(u) = 1 (0 ≤ u ≤ 1). The Dickman function is nonnegative
for u > 0, and decreasing for u > 1. This definition and description is taken from [7], an
extensive survey of work done on the function Ψ(x, y).

It is also true that ρ(u) is convex on (1,∞). By the functional equation, it is apparent
that limu→1+ ρ′(u) = −1. It follows that

ρ(a + b) ≥ ρ(a) − b, for a ≥ 1, b ≥ 0. (12)

De Bruijin [3] proved that

Ψ(x, y) = xρ(u)

[
1 + O

(
log (u + 1)

log y

)]
(13)

holds uniformly for u = log x/ log y in the range

y ≥ 2, 1 ≤ u ≤ (log y)3/5−ε. (14)

This has since been improved by Hildebrand [6] to the range

y ≥ 2, 1 ≤ u ≤ exp
(
(log y)3/5−ε

)
. (15)

For the next theorem, we are interested in the range y = xα/k, and hence u = k/α.

Theorem 4 Let 0 < α < 1, and let k ∈ N be fixed constants. Then

bk(x, xα) ∼ Ψ(x, xα/k) ∼ ρ

(
k

α

)
x.
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In fact, we have

bk(x, xα) = ρ

(
k

α

)
x + O

(
x√

log log x

)
.

Proof. Note that for x ≥ 2k/α, we are within the range (15). Consequently (13) applies:

Ψ(x, xα/k) = xρ

(
k

α

) [
1 + O

(
1

log x

)]
.

Furthermore, the second inequality of Theorem 3 gives us bk(x, xα) ≤ Ψ(x, xα/k). Similarly,
the first inequality from Theorem 3 yields:

Ψ

(
x,

(
xα

2 log log x

)1/k
)

− c1x√
log log x

≤ bk(x, xα),

since Ψ(x, y) is increasing in y.

For x sufficiently large, (13) gives

Ψ

(
x,

(
xα

2 log log x

)1/k
)

= xρ

(
log x

(α/k) log x − (1/k) log(2 log log x)

) [
1 + O

(
log (u + 1)

log y

)]
,

where, in this instance,

y =

(
xα

2 log log x

)1/k

and

u =
log x

log y
=

log x

(α/k) log x − (1/k) log(2 log log x)

=

(
k

α

)
1

1 − (1/α) log(2 log log x)/ log x
.

The identity 1
1−a < 1 + 2a holds for 0 < a < 1/2. So if x is chosen sufficiently large such

that 0 <
log(2 log log x)

α log x
<

1

2
, then u <

k

α
+

2k log(2 log log x)

α2 log x
. Hence, since ρ(u) decreases

on (1,∞), we have

Ψ

(
x,

(
xα

2 log log x

)1/k
)

≥ xρ

(
k

α
+

2k log(2 log log x)

α2 log x

) [
1 + O

(
1

log x

)]

= xρ

(
k

α
+

2k log(2 log log x)

α2 log x

)
+ O

(
x

log x

)

≥ xρ

(
k

α

)
− 2kx log(2 log log x)

α2 log x
+ O

(
x

log x

)

= xρ

(
k

α

)
+ O

(
x log log log x

log x

)
,
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using equation (12). Combining this information with Theorem 3 we obtain the following
inequalities:

xρ

(
k

α

)
+O

(
x√

log log x

)
≤Ψ

(
x,

(
xα

2 log log x

)1/k
)
≤ bk(x, xα)

≤ Ψ(x, xα/k) = xρ

(
k

α

)
+O

(
x

log x

)
,

which proves the theorem. !

3. Average Order of sk,!

We now devote our attention to equation (1). We have already proved the k = 1 case, so
henceforth we shall assume that k ≥ 2.

Theorem 5 The average order of sk,!(n) has the following expression:

∑

n≤x

sk,!(n) =
k∑

r=1

∑

p1<...<pr

∑

i1+···+ir=k
i1,... ,ir>0

(pi1
1 · · · pir

r )! ×

( ∞∑

j1,... ,jr=1

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

) ⌊
x

pj1
1 · · · pjr

r

⌋)
.

Proof. The terms in the sum
∑

n≤x sk,!(n) are products of k !-th powers of primes, not

necessarily distinct. In other words, an arbitrary term is of the form (pi1
1 · · · pir

r )!, where
r ≤ k, p1 < . . . < pr, i1, . . . , ir > 0, and i1 + · · · + ir = k. Fix (pi1

1 · · · pir
r )!. We shall count

the number of times this expression occurs in the sum.

By the inclusion-exclusion principle, the number of n ≤ x such that pj1
1 , . . . , pjr

r ||n is

⌊
x

pj1
1 · · · pjr

r

⌋
−

(⌊
x

pj1+1
1 pj2

2 · · · pjr
r

⌋
+

⌊
x

pj1
1 pj2+1

2 · · · pjr
r

⌋
+ · · · +

⌊
x

pj1
1 pj2

2 · · · pjr+1
r

⌋)

+ · · · + (−1)r

⌊
x

pj1+1
1 · · · pjr+1

r

⌋
,

which we write as β(j1, . . . , jr). Each such n contributes
(

j1
i1

)
· · ·

(
jr

ir

)
copies of (pi1

1 · · · pir
r )! to

the sum
∑

n≤x sk(n). Thus (pi1
1 · · · pir

r )! occurs

∞∑

j1,... ,jr=1

(
j1

i1

)
· · ·

(
jr

ir

)
β(j1, . . . , jr)
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times. We make the following claim:

∞∑

j1,... ,jr=1

(
j1

i1

)
· · ·

(
jr

ir

)
β(j1, . . . , jr) =

∞∑

j1,... ,jr=1

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

) ⌊
x

pj1
1 · · · pjr

r

⌋
. (16)

To prove (16), first note that
⌊

x

p
j1
1 ···pjr

r

⌋
occurs

(
j1

i1

)
· · ·

(
jr

ir

)
−

((
j1 − 1

i1

)(
j2

i2

)
· · ·

(
jr

ir

)
+ · · · +

(
j1

i1

)(
j2

i2

)
· · ·

(
jr − 1

ir

))

+ · · · + (−1)r

(
j1 − 1

i1

)(
j2 − 1

i2

)
· · ·

(
jr − 1

ir

)

times in the left hand side. But an induction on r, with the identity
(

j

i

)
−

(
j − 1

i

)
=

(
j − 1

i − 1

)
(17)

being the r = 1 case, gives us
(

j1

i1

)
· · ·

(
jr

ir

)
−

((
j1 − 1

i1

)(
j2

i2

)
· · ·

(
jr

ir

)
+ · · · +

(
j1

i1

)(
j2

i2

)
· · ·

(
jr − 1

ir

))

+ · · · + (−1)r

(
j1 − 1

i1

)(
j2 − 1

i2

)
· · ·

(
jr − 1

ir

)
=

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

)
. (18)

Indeed, suppose that (18) holds for r − 1. Denote the left-hand side of (18) by Cr. We need

to show that Cr =

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

)
. But factoring, the identity (17), and the induction

hypothesis give us that

Cr =

(
jr

ir

)
Cr−1 −

(
jr − 1

ir

)
Cr−1 = Cr−1

(
jr − 1

ir − 1

)
=

(
j1 − 1

i1 − 1

)
· · ·

(
jr−1 − 1

ir−1 − 1

)(
jr − 1

ir − 1

)
.

Thus, the claim (16) is proved. The theorem follows by summing over all values of r from
1 to k, all possible r-tuples of primes, and for each such r-tuple, all r-tuples (i1, . . . , ir)
satisfying ij > 0 for j = 1, . . . , r, and i1 + · · · + ir = k. !

We will first investigate the part of the sum in Theorem 5 corresponding to r = k, and
hence i1 = . . . = ik = 1. To do so, we require some generalizations of the prime number
theorem. These are taken from Nathanson [12], pp.313-319, however we also include precise
error terms.

Let πk(x) = #{n ≤ x : Ω(n) = ω(n) = k} and π∗
k(x) = #{n ≤ x : Ω(n) = k}. That is,

πk(x) counts the number of n ≤ x that are products of exactly k distinct prime factors, and
π∗

k(x) counts the number of n ≤ x which have k prime factors with repetition. Note that
π1(x) = π∗

1(x) = π(x). For k ≥ 2, we have that

πk(x) =
x(log log x)k−1

(k − 1)! log x
+ O

(
x(log log x)k−2

log x

)
, (19)
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and

0 ≤ π∗
k(x) − πk(x) ( x(log log x)k−2

log x
. (20)

The first result can be used to prove the next lemma via Riemann-Stieltjes integration.

Lemma 6 Let u ≥ 0, and k ≥ 2. Then

∑

n≤x
ω(n)=Ω(n)=k

nu =
xu+1(log log x)k−1

(u + 1)(k − 1)! log x
+ O

(
xu+1(log log x)k−2

log x

)
.

For r = k, we have the following:

∑

p1<...<pk

(p1 · · · pk)
!

∞∑

j1,... ,jk=1

⌊
x

pj1
1 · · · pjk

k

⌋
=

∑

p1<...<pk

(p1 · · · pk)
!

⌊
x

p1 · · · pk

⌋

+
∑

p1<...<pk

(p1 · · · pk)
!

∞∑

j1,... ,jk=1
j1···jk>1

⌊
x

pj1
1 · · · pjk

k

⌋
. (21)

We further focus by looking at the first term on the right-hand side of (21), that is, the term
corresponding to j1 = . . . = jk = 1. Making use of Lemma 6, we have

∑

p1<...<pk

(p1 · · · pk)
!

⌊
x

p1 · · · pk

⌋
=

∑

m≤x/2k

∑

p1<...<pk
x

m+1<p1···pk≤ x
m

m(p1 · · · pk)
!

=
∑

m≤x/2k

∑

p1<...<pk
p1···pk≤x/m

(p1 · · · pk)
!

=
x!+1

(! + 1)(k − 1)!

∑

m≤x/2k

(log log (x/m))k−1

m!+1 log (x/m)

+ O



x!+1
∑

m≤x/2k

(log log (x/m))k−2

m!+1 log (x/m)



 . (22)

Now

∑

m≤x/2k

(log log (x/m))k−1

m!+1 log (x/m)
=

∑

m≤log2 x

(log log (x/m))k−1

m!+1 log (x/m)
+

∑

log2 x<m≤x/2k

(log log (x/m))k−1

m!+1 log (x/m)
. (23)

For m ∈ [1, log2 x],

(log log (x/m))k−1

m!+1 log (x/m)
≤ (log log x)k−1

m!+1(log x − 2 log log x)
=

(log log x)k−1

m!+1 log x

(
1 + O

(
log log x

log x

))
,
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which implies that

∑

m≤log2 x

(log log (x/m))k−1

m!+1 log (x/m)
≤(log log x)k−1

log x

(
1 + O

(
log log x

log x

)) ∑

m≤log2 x

1

m!+1

=
(log log x)k−1

log x

(
1 + O

(
log log x

log x

))

× ζ(! + 1)

(
1 + O

(
1

log2! x

))

=
ζ(! + 1)(log log x)k−1

log x
+ O

(
(log log x)k

log2 x

)
. (24)

On the other hand, for m ∈ [1, log2 x] we have

(log log (x/m))k−1

m!+1 log (x/m)
≥ (log (log x − 2 log log x))k−1

m!+1 log x
=

(
log log x + log

(
1 − 2 log log x

log x

))k−1

m!+1 log x

=

(
log log x + O

(
log log x

log x

))k−1

m!+1 log x

=
(log log x)k−1 + O

(
(log log x)k−1

log x

)

m!+1 log x
,

and so

∑

m≤log2 x

(log log (x/m))k−1

m!+1 log (x/m)
≥ (log log x)k−1

log x

(
ζ(! + 1) + O

(
1

log2! x

))
+ O

(
(log log x)k−1

log2 x

)

=
ζ(! + 1)(log log x)k−1

log x
+ O

(
(log log x)k−1

log2 x

)
. (25)

Combining (24) and (25) we have that

∑

m≤log2 x

(log log (x/m))k−1

m!+1 log (x/m)
=

ζ(! + 1)(log log x)k−1

log x
+ O

(
(log log x)k

log2 x

)
. (26)

Now we must bound the second term on the right-hand side of (23).

∑

log2 x<m≤x/2k

(log log (x/m))k−1

m!+1 log (x/m)
(

∑

log2 x<m≤x/2k

(log log x)k−1

m!+1
( (log log x)k−1

log2 x
.

A similar argument shows that

∑

m≤x/2k

(log log (x/m))k−2

m!+1 log (x/m)
( (log log x)k−2

log x
. (27)
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This we use to bound the error term in (22).

Applying this information to (22) we have that

∑

p1<...<pk

(p1 · · · pk)
!

⌊
x

p1 · · · pk

⌋
=

x!+1

(! + 1)(k − 1)!
×

(
ζ(! + 1)(log log x)k−1

log x
+ O

(
(log log x)k

log2 x

))

+ O

(
x!+1(log log x)k−2

log x

)

=
ζ(! + 1)x!+1(log log x)k−1

(! + 1)(k − 1)! log x
+ O

(
x!+1(log log x)k−2

log x

)
. (28)

This is the main term in
∑

n≤x sk,!(n). To complete the computation of the sum, we need
only bound all that remains. We will first complete the case when r = k, by bounding the
second term in the right-hand side of (21):

∑

p1<...<pk

(p1 · · · pk)
!

∞∑

j1,... ,jk=1
j1···jk>1

⌊
x

pj1
1 · · · pjk

k

⌋

( x
∑

p1<...<pk
p2
1p2···pk≤x

(p1 · · · pk)
!

∞∑

j1,... ,jk=1
j1···jk>1

1

pj1
1 · · · pjk

k

( x
∑

p1<...<pk
p2
1p2···pk≤x

(p1 · · · pk)
!

(
1

(p1 − 1) · · · (pk − 1)
− 1

p1 · · · pk

)

( x
∑

p1<...<pk
p2
1p2···pk≤x

(p1 · · · pk)!

p2
1p2 · · · pk

( x
∑

p≤x
1

k+1



p!−2
∑

n≤x/p
ω(n)=Ω(n)=k−1

n!−1





( x
∑

p≤x
1

k+1

(
p!−2 (x/p)!(log log (x/p))k−2

log (x/p)

)

= x!+1
∑

p≤x
1

k+1

(log log (x/p))k−2

p2 log (x/p)

( x!+1(log log x)k−2

log x
. (29)
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Let us now bound the terms of Theorem 5 corresponding to r < k. We require the
following power series identity:

∞∑

n=j

(
n − 1

j − 1

)
xn =

(
x

1 − x

)j

,

which holds for |x| < 1. We have

k−1∑

r=1

∑

p1<...<pr

∑

i1+···+ir=k
i1,... ,ir>0

(pi1
1 · · · pir

r )!

( ∞∑

j1,... ,jr=1

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

) ⌊
x

pj1
1 · · · pjr

r

⌋)

( x
k−1∑

r=1

∑

i1+···+ir=k
i1,... ,ir>0

∑

p1<...<pr

p
i1
1 ···pir

r ≤x

(pi1
1 · · · pir

r )!
r∏

m=1

∞∑

jm=im

(
jm − 1

im − 1

)
1

pjm

= x
k−1∑

r=1

∑

i1+···+ir=k
i1,... ,ir>0

∑

p1<...<pr

p
i1
1 ···pir

r ≤x

(pi1
1 · · · pir

r )!
r∏

m=1

(
1

pm − 1

)im

( x
k−1∑

r=1

∑

i1+···+ir=k
i1,... ,ir>0

∑

p1<...<pr

p
i1
1 ···pir

r ≤x

(pi1
1 · · · pir

r )!−1

= x
∑

n≤x
ω(n)<k=Ω(n)

n!−1

= x

∫ x

2−
t!−1 d(π∗

k(t) − πk(t)). (30)

Applying integration by parts to (30), and using the bound (20), we have that

k−1∑

r=1

∑

p1<...<pr

∑

i1+···+ir=k
i1,... ,ir>0

(pi1
1 · · · pir

r )! ×
( ∞∑

j1,... ,jr=1

(
j1 − 1

i1 − 1

)
· · ·

(
jr − 1

ir − 1

) ⌊
x

pj1
1 · · · pjr

r

⌋)

( x!+1(log log x)k−2

log x
. (31)

Combining Theorem 5 with (28), (29), and (31), we have proved the following theorem:

Theorem 7 Let k ≥ 2, and let ! ≥ 1. Then

∑

n≤x

sk,!(n) =
ζ(! + 1)x!+1(log log x)k−1

(! + 1)(k − 1)! log x
+ O

(
x!+1(log log x)k−2

log x

)
.
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