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Abstract

In this article we apply a formula for the n-th power of a 3× 3 matrix (found previously by
the authors) to investigate a procedure of Khovanskii’s for finding the cube root of a positive
integer.

We show, for each positive integer α, how to construct certain families of integer sequences
such that a certain rational expression, involving the ratio of successive terms in each family,
tends to α1/3. We also show how to choose the optimal value of a free parameter to get
maximum speed of convergence.

We apply a similar method, also due to Khovanskii, to a more general class of cubic
equations, and, for each such cubic, obtain a sequence of rationals that converge to the real
root of the cubic.

We prove that Khovanskii’s method for finding the m-th (m ≥ 4) root of a positive integer
works, provided a free parameter is chosen to satisfy a very simple condition.

Finally, we briefly consider another procedure of Khovanskii’s, which also involves m×m
matrices, for approximating the root of an arbitrary polynomial of degree m.

1. Introduction

In [1] Khovanskii described a method which uses powers of 3 × 3 matrices to approximate
cube roots of integers. More precisely, let α be a positive integer whose cube root is desired
and let a be an arbitrary integer. Define the matrix A by

(1) A =




a α α
1 a α
1 1 a



 ,
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and let An,i,j denote the (i, j)-th entry of An. Suppose

lim
n→∞

An,1,1

An,3,1
= x, lim

n→∞

An,2,1

An,3,1
= y,(2)

where x and y are finite and x + y + 1 #= 0. Then x = 3
√

α2 and y = 3
√

α.

Khovanskii did not give conditions which insure the convergence of the sequences above.
Also, he did not investigate the speed of convergence or the question of the optimal choice
of the integer a to ensure the most rapid convergence. Further, there is the difficulty that is
necessary to compute the powers of the matrix A.

In this present paper we show that the sequences {An,1,1/An,3,1}∞n=1, {An,2,1/An,3,1}∞n=1

converge for all integers a greater than a certain explicit lower bound. We also determine,
for a given α, the choice of a which insures the most rapid convergence. We also give precise
estimates for |An,2,1/An,3,1 − α1/3|, for this optimal choice of a. Finally, we employ a closed
formula for the n-th power of a 3 × 3 matrix from our paper [2], which actually makes it
unnecessary to perform the matrix multiplications. We have the following theorems.

Theorem 1. Let α > 1 be an integer and a be any integer such that a > − α2/3

1 + α1/3
. Set

an =
∑

i,j

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
(3a)n−2i−3j(3a2 − 3α)i(a3 + α − 3aα + α2)j.

Then

lim
n→∞

1 +
α− 1

an

an−1
− a + 1

= α1/3.

Note that the limit is independent of the choice of the parameter a.

Theorem 2. Let α and a be as described in Theorem 1. Let the matrix A be as described in
(1). Then the choice of a which gives the most rapid convergence is one of the two integers

closest to ā =
α1/3 + α

1 + α1/3
. For this choice of a and n ≥ 3,

An, 2, 1

An, 3, 1
− α1/3 =

(
(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where ω = exp(2πı/3), |δ3| ≤ 8 and |δ4| ≤ 48.

We also investigate two other procedures due to Khovanskii. One is a method for finding
a root of x3 − p x − q and the other is a method for finding α1/m, where α and m are
arbitrary positive integers. Again, Khovanskii’s methods involve sequences of powers of
matrices and rely on the ratios of certain matrix entries converging, and he did not give any
conditions which guarantee convergence. We give criteria which insure convergence. In the
case of x3 − p x− q, we again prove a result which makes the actual matrix multiplications
unnecessary. We have the following theorems.
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Theorem 3. Let p > 0, q > 0 be integers such that 27q2 − 4p3 > 0. Define

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j.

Then

(3) −1 + lim
n→∞

an

an−1
=

(2/3)1/3 p
(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

is the real root of f(x) = x3 − px− q.

Theorem 4. Let A be the m×m matrix

A =





a α α α . . . α
1 a α α . . . α
1 1 a α . . . α
...

...
...

. . .
...

...
1 1 1 . . . a α
1 1 1 . . . 1 a




.

Let An, i, j denote the (i, j) entry of An and suppose a > 0. Then lim
n→∞

An, i, j

An, u, v
= α(j+u−i−v)/m.

Some of the work in this paper relies heavily on results proved in our paper [2]:

Theorem 5. Suppose A ∈Mk(K) and let T k− s1T k−1 + s2T k−2 + · · ·+(−1)ksk I denote its
characteristic polynomial. Then, for all n ≥ k, one has An = bk−1Ak−1+bk−2Ak−2+· · ·+b0 I,
where

bk−1 = a(n− k + 1),

bk−2 = a(n− k + 2)− s1a(n− k + 1),

...

b1 = a(n− 1)− s1a(n− 2) + · · · + (−1)k−2sk−2a(n− k + 1),

b0 = a(n)− s1a(n− 1) + · · · + (−1)k−1sk−1a(n− k + 1)

= (−1)k−1ska(n− k),

and

a(n) = c(i2, · · · , ik, n)sn−i2−2i3−···−(k−1)ik
1 (−s2)

i2si3
3 · · · ((−1)k−1sk)

ik ,

with

c(i2, · · · , ik, n) =
(n− i2 − 2i3 − · · ·− (k − 1)ik)!

i2! · · · ik!(n− 2i2 − 3i3 − · · ·− (kik)!
.

For the case k = 3 we get the following corollary.
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Corollary 1. (i) Let A ∈ M3(K) and let X3 = tX2 − sX + d denote the characteristic
polynomial of A. Then, for all n ≥ 3,

(4) An = an−1A + an−2Adj(A) + (an − tan−1) I,

where

an =
∑

2i+3j≤n

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
tn−2i−3jsidj

for n > 0 and a0 = 1.

We use this corollary in conjunction with Khovanskii’s ideas to determine sequences of
rational approximations to the real root of certain types of polynomials.

2. Approximating Cube Roots of Positive Integers

We start with a theorem.

Theorem 6. Let α > 1 be an integer and a be any integer such that

(5) a > − α2/3

1 + α1/3
.

Set

an =
∑

i,j

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
(3a)n−2i−3j(3a2 − 3α)i(a3 + α − 3aα + α2)j.

Then

(6) lim
n→∞

1 +
α− 1

an

an−1
− a + 1

= α1/3.

Proof. Let ω := exp(2πı/3) and set

A =




a α α
1 a α
1 1 a



 .

The eigenvalues of A are

β1 = a + α1/3 + α2/3,(7)

β2 = a + α1/3 ω + α2/3 ω2,

β3 = a + α2/3 ω + α1/3 ω2.

Note that β1 is positive for any a satisfying (5). Further, for such a,
∣∣∣∣
β2

β1

∣∣∣∣
2

=

∣∣∣∣
β3

β1

∣∣∣∣
2

=
β2β3

β2
1

=
a2 − aα1/3 + α2/3 − aα2/3 − α + α4/3

(a + α1/3 + α2/3)2 < 1,
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so that β1 > |β2| = |β3|. Let

M =




α2/3 α2/3 ω2 α2/3 ω
α1/3 α1/3 ω α1/3 ω2

1 1 1



 , D =




β1 0 0
0 β2 0
0 0 β3



 .

Then A = M D M−1 and so

An = M Dn M−1 =





β1
n+β2

n+β3
n

3

α1/3 (β1
n+ω β2

n+ω2 β3
n)

3

α2/3 (β1
n+ω2 β2

n+ω β3
n)

3

β1
n+ω2 β2

n+ω β3
n

3 α1/3
β1

n+β2
n+β3

n

3

α1/3 (β1
n+ω β2

n+ω2 β3
n)

3

β1
n+ω β2

n+ω2 β3
n

3 α2/3
β1

n+ω2 β2
n+ω β3

n

3 α1/3
β1

n+β2
n+β3

n

3




.

Let An, i, j denote the (i, j)-th entry of An. It is now easy to see (since β1 > |β2| = |β3|) that

(8) lim
n→∞

An, 2, 1

An, 3, 1
= α1/3 lim

n→∞

β1
n + ω2 β2

n + ω β3
n

β1
n + ω β2

n + ω2 β3
n = α1/3.

On the other hand, the characteristic polynomial of A is

X3 = 3 aX2 − (3a2 − 3α)X + a3 + α− 3aα + α2.

It follows from Corollary 1, that if t = 3a, s = 3a2 − 3α, d = a3 + α− 3aα + α2 and

an =
∑

2i+3j≤n

(−1)i

(
i + j

j

)(
n− i− 2j

i + j

)
tn−2i−3jsidj,

γn :=
(
a3 + α− 3 aα + α2

)
an−3 − 2

(
a2 − α

)
an−2 + a an−1,

δn := (−a + α) an−2 + an−1,

ρn := (1− a) an−2 + an−1,

then

An =




γn αρn αδn

δn γn αρn

ρn δn γn



 .

Thus (6) now follows by comparing limn→∞ δn/ρn with the limit found above. !

Remarks: (a) Note that the limit in (6) is independent of the choice of a, so that various
corollaries can be obtained from particular choices of a.
(b) A similar method can be used to approximate square roots and roots of higher order (see
Section 4).
(c) The pairs (1, 2) and (1, 3) in (8) can be replaced by other pairs to give limits of the form
αj/3, −4 ≤ j ≤ 4.

Corollary 2. Let α be a positive integer. Set

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−i−3j(α− 1)i+2j.
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Then limn→∞ 1 + (α− 1)
an−1

an
= α1/3.

Proof. Let a = 1 in Theorem 6. !

Corollary 3. Let α be a positive integer. Set

an =
n∑

i=0

(
2n + i

2n− 2i

)
33iα2n+i(α + 1)2n−2i,

bn =
n−1∑

i=0

(
2n + i

2n− 2i− 1

)
33i+1α2n+i(α + 1)2n−2i−1.

Then

lim
n→∞

1 +
α− 1
an

bn
+ 1

= α1/3.

Proof. Let a = 0 and replace n by 6n in Theorem 6. !

Corollary 4. Let α be a positive integer. Set

an =
%n/3&∑

i=0

(
n− 2i

i

)
3n−3iαn−i(α− 1)2i.

Then

lim
n→∞

1 +
α2 − 1

an

an−1
− α + 1

= α2/3.

Proof. Replace α by α2 and then let a = α in Theorem 6. !

It is clear from (8) that the smaller the ratios |β2/β1| = |β3/β1|, the faster will be the rate
of convergence in (6). It is also clear from (7) that these ratios can be made arbitrarily close
to 1 by choosing a arbitrarily large. We are interested in how small this ratio can be made
(to get fastest convergence) and what is the optimal choice of a for a given α to produce this
smallest ratio.

Theorem 7. Let α and a be as described in Theorem 6. Let the matrix A be as described at
(1). Then the choice of a which gives the most rapid convergence is one of the two integers
closest to

(9) ā =
α1/3 + α

1 + α1/3
.

For this choice of a and n ≥ 3,

(10)
An, 2, 1

An, 3, 1
− α1/3 =

(
(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where ω = exp(2πı/3), |δ3| ≤ 8 and |δ4| ≤ 48.
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Proof. For the moment we consider a to be a real variable and define

h(a) =

∣∣∣∣
β2

β1

∣∣∣∣
2

=

∣∣∣∣
β3

β1

∣∣∣∣
2

=
β2β3

β2
1

=
a2 − aα1/3 + α2/3 − aα2/3 − α + α4/3

(a + α1/3 + α2/3)2 .

The function h(a) achieves its minimum at

a = ā :=
α1/3 + α

1 + α1/3
and h(ā) =

(
−1 + α1/3

)2

4 (1 + α1/3 + α2/3)
.

Hence for large α the best possible choice of a is one of the two integers closest to ā, say

a′ =
α1/3 + α

1 + α1/3
+ η,

with |η| < 1. With this choice,

β2β3

β2
1

=
1

4
− 3

4

(
1 + α1/3 + α2/3

)
4α +

(
1 + α1/3

)
η

(
4α2/3 − η − α1/3 η

)

(2 (1 + α1/3 + α2/3) α1/3 + (1 + α1/3) η)2

=:
1

4
+

3

4
g(η).

Next, considering g(η) as a function of η,

g′(η) =
4
(
1 + α1/3

)4
α1/3 η

(2α1/3 + 2α2/3 + 2α + η + α1/3 η)3

Thus, since g′(0) = 0 and g(1) < g(−1),

1

4
+

3

4
g(0) ≤ β2β3

β2
1

≤ 1

4
+

3

4
g(−1),

or

1

4
−3

4

α1/3

(1 + α1/3 + α2/3)
≤ β2β3

β2
1

≤ 1

4
−3

4

(
−1 + α1/3

) (
1 + 3α1/3 + 8α2/3 + 8α + 4α4/3

)

(−1 + α1/3 + 2α2/3 + 2α)2 .

Thus β2β3/β2
1 < 1/4 or |β2/β1| = |β3/β1| < 1/2, for α > 1. Also,

β2

β1
=

α1/3 − α2/3 + η + α1/3 η + α1/3 ω − α ω

2α1/3 + 2α2/3 + 2α + η + α1/3 η
(11)

= −ω

2
+

δ1

α1/3
,

β3

β1
=
−α2/3 + α + η + α1/3 η − α1/3 ω + α ω

2α1/3 + 2α2/3 + 2α + η + α1/3 η

= −ω2

2
+

δ2

α1/3
,

where |δ1|, |δ2| < 1. (We omit the details of these calculations. The first equation is simply
solved for δ1, the solution is multiplied by its conjugate δ1 = δ2, the resulting real number
is shown to be monotone decreasing as a function of η by differentiating with respect to η,
and finally it is shown that δ1δ1 < 1 at η = −1.)
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Note that these ratios |β2/β1| = |β3/β1| increase quite slowly with α: |β2/β1| < 0.45, for
α < 3000, for example. Returning to large α,

An, 2, 1

An, 3, 1
− α1/3 =

(
β1

n + ω2 β2
n + ω β3

n

β1
n + ω β2

n + ω2 β3
n − 1

)
α1/3(12)

=
(1− ω) ω (−β2

n + β3
n)

β1
n + ω β2

n + ω2 β3
n α1/3

=

(
(ω − 1) ω

((
−ω

2

)n

−
(
−ω2

2

)n)
+

nδ3

2nα1/3
+

δ4

22n

)
α1/3,

where |δ3| ≤ 8 and |δ4| ≤ 48. Note that we have used (11) to replace the ratios β2/β1 and
β3/β1 in the final expression. !

Remark: Note that for n ≥ 3 and α > 24n, we have the following:

(13) 2n

(
An, 2, 1

An, 3, 1 α1/3
− 1

)
=






−3 + Kn
2n , n ≡ 1, 2 ( mod 6),

0 + Kn
2n , n ≡ 3, 6 ( mod 6),

3 + Kn
2n , n ≡ 4, 5 ( mod 6),

where |Kn| < 61.

3. Approximating the Real Root of an Arbitrary Cubic

If the zeros of a x3 + bx2 + cx + d are β1, β2 and β3, then the zeros of x3 + (9ac − 3b2)x +
2b3−9abc+27a2d are 3aβ1 + b, 3aβ2 + b and 3aβ3 + b. Thus, in finding the roots of a general
cubic equation, it is sufficient to study cubics of the form f(x) = x3− px− q. For simplicity,
here we restrict to the case p > 0, q > 0 and 27q2 − 4p3 > 0, so that f(x) has exactly one
real root, which is largest in absolute value. We have the following theorem.

Theorem 8. Let p > 0, q > 0 be integers such that 27q2 − 4p3 > 0. Define

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j.

Then

(14) −1 + lim
n→∞

an

an−1
=

(2/3)1/3 p
(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

is the real root of f(x) = x3 − px− q.

Proof. As before, let ω = exp(2πı/3) and set

A =




1 p q
1 1 0
0 1 1



 .
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Define

α =
(2/3)1/3 p

(
9 q −

√
81 q2 − 12 p3

)1/3
, β =

(
9 q −

√
81 q2 − 12 p3

)1/3

21/3 32/3
.

The eigenvalues of A are

γ1 = 1 + α + β,(15)

γ2 = 1 + α ω2 + β ω,

γ3 = 1 + α ω + β ω2.

Set

M =




(α + β)2 (β ω + α ω2)2 (α ω + β ω2)2

α + β β ω + α ω2 α ω + β ω2

1 1 1





and then

M−1AM =




γ1 0 0
0 γ2 0
0 0 γ3



 .

Here we use the facts that q = α3 + β3 and p = 3αβ. Clearly

An = M




γn

1 0 0
0 γn

2 0
0 0 γn

3



M−1.

As before, let An, i j denote the (i, j) entry of An. It is straightforward to show (preferably
after using a computer algebra system like Mathematica to perform the matrix multiplica-
tions) that

An,2,1 =
(−1 + γ1) γ1

n

(γ1 − γ2) (γ1 − γ3)
+

(−1 + γ3) γ3
n

(γ1 − γ3) (γ2 − γ3)
+

(−1 + γ2) γ2
n

(γ1 − γ2) (−γ2 + γ3)
,

An,3,1 =
− (γ2

n γ3) + γ2 γ3
n + γ1

n (−γ2 + γ3) + γ1 (γ2
n − γ3

n)

(γ1 − γ2) (γ1 − γ3) (−γ2 + γ3)
.

Since γ1 > |γ2|, |γ3|, it follows that

(16) lim
n→∞

An, 2, 1

An, 3, 1
= γ1 − 1 = α + β.

Next, the real zero of x3 − p x− q = 0 is

(2/3)1/3 p
(
9 q +

√
81 q2 − 12 p3

)1/3
+

(
9 q +

√
81 q2 − 12 p3

)1/3

21/3 32/3
,

and some simple algebraic manipulation shows that this is equal to α + β, so that the limit
at (16) is indeed equal to this real zero.
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Finally, the characteristic polynomial of A is X3 = 3X2 − (3− P )X + q + 1− p, so that
Corollary 1 gives, after setting t = 3, d = q + 1− p and s = 3− p,

an =
∑

2i+3j≤n

(
i + j

j

)(
n− i− 2j

i + j

)
3n−2i−3j(3− p)i(q − p + 1)j

and εn = (1− p + q) an−3 + (−2 + p) an−2 + an−1, that

An =




εn (q − p) an−2 + p an−1 q (an−1 − an−2)

an−1 − an−2 εn q an−2

an−2 an−1 − an−2 εn − p an−2



 .

The result now follows, after comparing lim→∞An, 2, 1/An, 3, 1 in the matrix above with the
limit found at (16). !

4. Approximating roots of Arbitrary order of a positive integer

Khovanskii shows that the method of section 2 extends to roots of arbitrary order m, by
considering the m×m matrix

(17) A =





a α α α . . . α
1 a α α . . . α
1 1 a α . . . α
...

...
...

. . .
...

...
1 1 1 . . . a α
1 1 1 . . . 1 a




.

Again his result is dependent on the existence of limn→∞An, i, j/An, u, v, for various pairs (i, j)
and (u, v), but he does not suggest any criteria which guarantee these limits exist. We make
his statement more precise in the following theorem.

Theorem 9. Let A be the matrix defined above at (17). Let An, i, j denote the (i, j) entry of
An and suppose a > 0. Then

(18) lim
n→∞

An, i, j

An, u, v
= α(j+u−i−v)/m.

Proof. Let ωm be a primitive m-th root of unity. Define the matrix M by (M)i, j =

α(m−i)/mω(m−j+1)i
m . Then (M−1)i,j = 1

m (M)j, i
. (We omit the proof of this statement. It can

easily be checked by showing that multiplying M and the claimed inverse together gives the
m×m identity matrix.)

It is now not difficult to show that M−1AM = diag (β1,β2, . . .βm), where diag (β1,β2, . . .βm)
is the matrix with β1,β2, . . .βm along the main diagonal and zeroes elsewhere. Here

βi = a +
m−1∑

j=1

(ωi−1
m α1/m)j, i = 1, 2, . . .m,
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are the eigenvalues of A. For a > 0 , there is clearly a dominant eigenvalue, namely β1.

(This condition could be relaxed to allow a to take some negative values, but the precise
lower bound which makes β1 > |βj|, j #= 1, is not so easy to determine in the case of arbitrary
m.)

Next, it is clear that An = Mdiag (βn
1 ,βn

2 , . . .βn
m)M−1, and it is simple algebra to show

that

An, i j =
α(j−i)/m

m

m∑

k=1

ω(m−k+1)(i−j)
m βn

k .

The result now follows, upon using the fact that β1 is the dominant eigenvalue. !

Note, as in Theorem 6, that the limit is independent of the choice of a.

Theorem 5 could be used to produce results similar to those in Theorem 6 and its var-
ious corollaries, but the statements of these results become much more complicated with
increasing m.

Also, we have not been able to determine the optimum choice of a that gives the most
rapid convergence in (18). One difference between the m = 3 case and the general case is
that the sub-dominant eigenvalues in the general case need not necessarily all have the same
absolute value.

5. Concluding Remarks

For completeness we include the following neat construction by Khovanskii, one that enables
good approximations to a root of an arbitrary polynomial to be found in many cases. Let

A =





k l am 0 . . . 0 0 0 0
0 k l am . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 . . . l am 0 0 0
0 0 0 . . . k l am 0 0
0 0 0 . . . 0 k 0 l am

−l a0 −l a1 −l a2 . . . −l am−4 −l am−3 k − l am−1 −l am−2

0 0 0 . . . 0 0 l am k





.

Here k and l are non-zero. If limn→∞An, i, 1/An, m, 1 exists and equals, say, βi, for f(x) =
anxn + an−1xn−1 + an−2xn−2 . . . a1x + a0.
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This can be seen as follows. Since the limits exist and βm = 1, we get the system of
equations

βi =
k βi + l amβi+1

l amβm−1 + k
, 1 ≤ i ≤ m− 3,

βm−2 =
k βm−2 + l am

l amβm−1 + k

βm−1 =
−l a0β1 − l a1β2 − · · ·− l am−3βm−2 + (k − l am−1)βm−1 − l am−2

l amβm−1 + k
.

This system of equations leads to the system βm−1βm−2 = 1, βi+1 = βm−1βi, 1 ≤ i ≤ m− 3,
and amβ2

m−1 +am−1βm−1 +am−2 +am−3βm−2 + · · ·+a1β2 +a0β1 = 0. The result now follows,
after multiplying the last equation by βm−2

m−1 and using the equations preceding it to eliminate
βi, i #= m− 1.

This situation is of course even more difficult to analyze: f(x) may not even have real
zeroes, or it may have multiple real zeroes, or even if it has a single real zero, this may not
be enough to guarantee that the limits limn→∞An, i, 1/An, m, 1, 1 ≤ i ≤ m, exist,.

It would be interesting to find and prove general criteria, based on the entries of the matrix
A, which guarantee that this method of Khovanskii’s does lead to convergence to one of the
roots.
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