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Abstract

We establish a general summation theorem, which expresses multiple convolutions in
closed forms. As examples, several interesting formulae regarding the numbers of Fi-
bonacci, Lucas and Pell are given.

0. Introduction

For m,n € Ny with Ny being the set of non-negative integers, let o, (m) be the set of
(n + 1)-compositions of m — n given by

on(m) ={k = (ko, k1, -+ ,kn) | ko + k1 + -+ - + k, = m — n with each k, € Ny}.
Consider a sequence {wy, }nen, associated with the ordinary generating function

W(z) = anx" = w, =[z"|W(zx)

n>0

where [z"]| W (z) stands for the coefficient of 2™ in the formal power series W (x). This pa-
per will investigate the ()-function with an extra indeterminate \ defined by the following

T The corresponding author: Xiaoyuan Wang (xiaoyuan.dlut@yahoo.com.cn)
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multiple convolution:
QA w) == Z)\m*" Z Hwki. (1)
n=0 keo, (m) i=0

Then the main result of this paper may be stated as follows.

Theorem 1 (Multiple convolution formula).

QN w) = [zm]%

Proof. This theorem contains many summation formulae as special cases even though its
proof is almost a routine matter. In fact, we have

QA w) = [z " W () = [2™] ) 2™ W (Ax)
n=0 n=0
| m]W()\:c){l — ™ () } e W(\z)
- 1 —azW(Ax) I W(Ax)
which confirms the formula stated in the theorem. OJ

The purpose of this short paper is to show several interesting closed formulae from
Theorem 1 on multiple summations. The sequences of which we are concerned have
rational functions as their generating functions. In particular, the convolution formulae
involving Fibonacci numbers, Lucas numbers, and Pell numbers will be examined.

1. Fibonacci Numbers

Among the classical combinatorial sequences, Fibonacci numbers [4, §6.6] are well-known.
They are defined through the recurrence relation

F() = 0, F1 = ]_, Fn = Fn—l + Fn_g for n Z 2 (2&)
and the ordinary generating function
n x

n>0
Then we have the following decomposition into partial fractions:

F(\z) Az B A { 1 1 }

1—aF(M\r) 1—Xz—A2— A2 A\ + 5N

where o and v are given respectively by

Y A+ V4 + 5A2
N 2

1—9504_1—1'7

A — V4N + 52
5 :

and v =




INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A51 3

According to Theorem 1, we get the multiple convolution formula

A
QN F) = ——=(a™ — 7"
B = T )
which may explicitly be restated as the following proposition.
Proposition 2 (Multiple convolution formula on Fibonacci numbers).

ZXMZ H \/4>\+5)\2( o = "),

n=0 ke€on(m)

For A € N, the first nine examples are tabulated as follows:

A QA F)
)

(1+f) —(1=v7)m}
3+\/_ 3 \/_) }

+2\/) (2 2v/6)"}

1
2
3
4
5 \/Eg{(sﬁ/ﬁm (5@)}
6
7
8
9

SI

N G
\/:{4+2¢_ — (4—2v22)")
-2

)
VELB+ VB — (3 - VBI)")
?)
)"

In particular when m = 5, we can explicitly write down, from Proposition 2 specified
with A =1 and A = 9, the following two numerical equalities

Fy + 2R F3+ F3 4+ F? =11 and 9°F5 +2 x 9*F1 Fy + 9*F7 + 93 F? = 328779.
Observing that

T T 212
F F — =
(z) + F(-z) = l—z—22 14+z—22 1-—3224+22

we derive the generating function of the Fibonacci numbers with even indices:
x
Fe( Foa" = ———

Z " 1 —3x+a?

n>0
According to the partial fraction decomposition

Fe(Ax) Az
1—aFe(A\r)  1—3\z — A2+ \2z2

B A { 1 B 1 }
VA sl —2(A+a) 1—z2(\+7)
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we can similarly evaluate the multiple convolution

\/ﬁ{()\—l—a)m — (>\+7)m}

where the parameters A and ~ are defined in (3) as before. This reads explicitly as the
following summation formula.

QN F) =

Proposition 3 (Multiple convolution formula).

m—n A m m
Z)\ S H m{@m) —(A+7) }

n=0 keoy, (m) =0

For A € N, the first nine examples are tabulated as follows:

A Qo (\, F€)

1 3m—1

2 BV =B -VT)"}
3R %)m (= ﬁ)m}
4 %{6+2\/)m—(6—2¢6)m}
5| (/B - (=)
6

7

8

9

\f{ 9+v51)"™ — (9 —
\/7 21+\/f)m (2= P)m}
V2{12+2v)" — (12— 2v22)")

1

In addition, when m = 4, we can explicitly write down, from Proposition 3 specified with
A =1and A =9, the following two numerical equalities

Fy+2FF, =27 and 9*Fy + 2 x 93FyFy = 142155.

Instead, noticing that

x x _ 2z(1—2?)
1—2—2a2 + 142 —22 1—322+a4
we derive the generating function of the Fibonacci numbers with odd indices:

11—z
Fiion
Z tr2n " 1—3:c+x2

n>0

F(z) = F(—x) =

Taking into account the partial fraction decomposition
Fe(Ax) 1—
1 —aFo(Ar) 1—x—3\z+ \a2 + \222

B 1 {d—A_&—)\}
 Vi+Foa+onll—za 1—23)
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where & and 4 are given respectively by

. 13N +HVIH204+5A2 . 143N —V14+2\+5)A2

o= 5 and 4= 5
the corresponding multiple convolution has the following closed form:
1
0,,(\, F) = {d—)\ &M — (5 — A m}
() = = {a-nam - -0

We state it explicitly as the following proposition.

Proposition 4 (Multiple convolution formula).

m—n 1 ~ ~m ~ ~m
Z)\ Z H 142k \/m{(a—)\)a —(F=N#7 }

keon(m)

For A € N, the first nine examples are tabulated as follows:

Q (A, F°)

{0 +VDe+ V" - (1- V22— VD))

H{1+4x6m}

o {2+ VI3 + VI3 — (2 - VI3)(5 - V13)"}

W{ 5—|—\/_ (13+\/@>m_(@)<13—\/@)m}

2

-3
\/W{ 7+\/F)(19+\/F) ( \/@)(19 x/ﬁ) }
—(

5o LA+ /65)(11 + v/65)™ — (4 — v/65)(11 — v/65)™ }

m{ 9+\/§)(25+\/§) 9— 2337)(25 \/ﬁ) }

A
1
2
3
4
5 2f{3+\/_ )(8 4+ V34)™ — (3 —V/34)(8 — V34)™}
6
7
8
9

—(
gm{5+\/ﬁ(14+\/ﬁ) — (5 —+/106)(14 — v/106)™ }

, #A51 5

(4)

We point out the identity corresponding to A\ = 2 has been proposed by Tauraso [6].
When m = 3, we can also explicitly write down, from Proposition 4 specified with \ = 2

and A = 15, the following two numerical equalities:

2°F + 2P\ Fy + 2°Fy + 2x 3F}Fy + F} = 173,
15°Fy +2 x 15°Fy 5 + 15°F; + 3 x 15F}Fy + F = 47116.
2. Lucas Numbers

Lucas numbers (cf. [4, P 312]) are defined through the recurrence relation

LO = 2, L1 = 1, Ln = Ln,1 -+ Ln,Q for n Z 2
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and the ordinary generating function

=Y La" = 2z (5b)

1—x—2a2
n>0

Then we have the decomposition into partial fractions

L(Ax) 2 — \x 1 {QM—)\ 21/—)\}

1—aL(Az)  1—2z— A x+ 2 — N2  \/4+5\2

where i and v are given respectively by

1—$u_1—xu

24+ A+ V4 + 5\ 24+ A —V4+5)\
= and v = . (6)
2 2
By means of Theorem 1, we obtain the following closed formula

1
(N, L :7{ 21— N)p™ — (20 — A ym}
(L) = {2 = ™ = (20— )
which leads us consequently to the following proposition.
Proposition 5 (Multiple convolution formula on Lucas numbers).

Z)\m_"z H m{@u—/\)um—@l/—)\)ym}.

For A € N, the first nine examples are tabulated as follows:

A Qn(A, L)

1 5 x 3m-1

2| {12+ Ve + (V6-1)(2 - Vo)"}

3 HOx 6™ +5(-1)"}

4] {21+ DB+ V21" + (V21 - D)3 - v2D)™}

5| {2+ VI120)(T2)m — (2 — V/129)(Tg22)m )

6| (VA6 +1)(4 + V46)™ + (V46 — 1)(4 — v46)™ }

7| {2+ v249) (220 — (2 — /249) (2280}

8 515 x 14™ — (—4)m+1}

9| i {(2 + VAOD) ()™ — (2 - VADD) (M)
Noting that

L) + L(—x) 2 -1 N 2+x 4 — 622

l—xz—2%2 14z—22 1-32%2+2?
we get the generating function of the Lucas numbers with even indices:

2 — 3z
Loy x™
Z 20 1—3a:+x2

n>0
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From the decomposition into partial fractions

Le(Ax) 2 -3z
1 —aLe(Axr) 1 —2z — 3z + 3 22 4 \222
B 1 2 — A 2U— )\
B \/m{l—x()\+u) - 1—9:(>\—|—y)}

we can similarly evaluate the multiple convolution

1
———{ - N+ = @ =N+ )
e e VA ) = (2= N +)
where the parameters 1 and v are defined as before. This reads explicitly as the following
summation formula.

QA L) =

Proposition 6 (Multiple convolution formula).

an "y H \/ﬁ{@u—)\)()\—l—u)m—(21/—)\)()\+1/)m}.

n=0 k€op (m) i=0

For A € N, the first nine examples are tabulated as follows:

A Qm(\, L)

1 s{1+5x4m}

2 A6+ DA+ V6" + (V6 —1)(4 - VE)"}
3 {9+ + 5 x 2m}

4 (V2T 4+ DT+ V2™ + (V21 = 1)(7T - V21)"}
5| vAm {2+ V(B — (2 - VI20) (M=}
6 | w51 (V46 + 1)(10 + V46)™ + (v/46 — 1)(10 — v46)™ }
7| Sl 2+ V20 (M — (2 - VAY)(R=2)m)
8 2{5 x 22™ 4 4™*1}

9| —A{(2+ vA09) (250 )m — (3 — \/109) (2= )}

Moreover, observing that
2 —x 2+ 2z(1 + 2%)

T l—x—22 l14z—22 1—322+°

we derive the generating function of the Lucas numbers with odd indices:

1+2n — T 9. 92
= 1 3r+x

=

=
|

=
|

=
|

In view of the partial fraction decomposition
L°(A\z) 1+ A
1 —xLe(A\x) T 1—2—3\r— \2? £ \%?
1 i+ A v+ A
Vel }

1—xﬂ_1—xﬁ
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where 1 and 7 are given respectively by

o 1430+ V14 10A 4 5)2
ILL:

143X —+v1+ 10X+ 5\
UV =

5 and 5 (7)
we can similarly evaluate the corresponding multiple convolution
1
0\, L) = {A+>\ i — (0 4+ A um}
( ) 1+ 10X+ 5A2 (A ( )

which leads us to the following proposition.

Proposition 7 (Multiple convolution formula).

- m—n - _ 1 ~ ~m ~ ~m
nZ:O)\ Z HLl—I—le—m{(M—i_/\):u —(y—|—)\)1/ }

kEay, (m) i=0

For A € N, the first nine examples are tabulated as follows:

Qm(N, L)
5 x 4m—1

L{11+\/4H(7+\/4H>m _ 117\/5(77@)771}
NZ%Y 2 2 2 2

w8+ VI + VIO" — (8 - VIO)(5 — VI9)"}
{16 x 12m — 5}
2= {134 2vIT) (8 + 2VI1)™ — (13 — 2V/11)(8 — 2V/11)™}
\/214_1{31+5/m(19+gm m _ 31-;/%(19-;/%)711}

)
505 L (18 + VT9) (11 + V79)™ — (18 — VT79)(11 — V79)"}
)

1 {41+\/m(25+\/m m 41-@(25—@)771}
V401 2 2 2 2

o {(23 4+ 2v/31)(14 4+ 2v/31)™ — (23 — 2V/31)(14 — 2v/31)™}

O | 00| | | O] W[ N | >

3. Pell Numbers

The Pell numbers (cf. Sloane [5, A000129]) are given by the recurrence relation
P():l, P1:2, PnZQPn,1+Pn,2 for n22 (8&)

with the following ordinary generating function

P(z) = ) Pa" = m (8h)

n>0
By means of the partial fraction decomposition

P(\z) 1 B 1 {155_177 }
- —In

1—2P(\z) 1—2—2\z— X222 /I f4d\t3N
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where £ and n are given respectively by

142X+ V1 44X+ 8X2 L4+2X — 144X+ 8)2
&= 5 and n = 5

we get through Theorem 1 the following multiple convolution formula

1 m+1 _  m+1
\/1+4/\+8/\2(£ ),

This reads explicitly as the following proposition.

Qn(\, P) =

Proposition 8 (Multiple convolution formula on Pell numbers).

m—n - 1 m m
ZA 2 n= e -,

ke€on(m) i=

For A € N, the first nine examples are tabulated as follows:

A Qn(\, P)

1] B{E)m — (=)
2| el = ()
3 %{(7—&-;/%)711—#1 ) +1}
4 1+45{<9+ 2145)m+1 N (97\2ﬁ m+1}
5 ﬁ{(uz 20 ym+1 _ (11 )m+l}
6 ﬁ{(l?ﬁ-? 313)m+1 (1 ;/_S)m—&-l}
7 ﬁ{(15+2421)m+1 (15 %ﬁ)mﬂ}
] \/ﬁ{(17+2545)m+1 (17 5/T5)m+1}
9 ﬁ{(19+2685)m+1 (Lo= 2685)m+1}

Observing that
1 1 2 — 222

P P =
(z) + P(-2) = 1—2x—x2+1+2x—x2 1 — 622 4+ 24

we derive the generating function of the Pell numbers with even indices:
1—
Z Popz” - 167+ 2
= T 1-6r+a
Taking into account the partial fraction decomposition
Pe(Az) 1— Az
1—zPe(Ax) 1—2—6Ax+ \a? + \2x2
B 1 { §-X =2 }
VI+8A+3202 01 — ¢ 1—an

, #A51

9
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where é and 7 are given respectively by

o 146X+ 1+ 8\ + 32)2
a 2

an

’[’]:

1+ 6A

— V148X +32)2

2

we can similarly evaluate the multiple convolution

1
Qn(A, P?) =

VI T8\t 3202 {(g - AT -

(5 — Nii" }

which may explicitly be restated as the following summation formula.

Proposition 9 (Multiple convolution formula).

m—n 1 c o
S Y [ = e J-

n=0 k€oy (m) i=0

A)E™ = (1 =M™

For A € N, the first nine examples are tabulated as follows:

A U (N, P)
1 {5+\ﬁ 7+W> 5*\/5(77\/5)m}
2 2
9 {9+\/E 3+\/%)m _ 9—@(13—@)771}
2
3 {13+\/ﬁ(19+\/ﬁ) 13— \/W 19— \/W m}
2 2
4 {17+¢5T5(25+¢547) 17— F 25— \/57 m}
2 2
5 5544+ 25 x 30™}
6 {25+\/120 (37+\/120 ym 257\/1201<377\/1201>m}
120 2 2
7 {29+5\/_(43+5\/_) . 29—5\/%(43—5\/%>m}
8 {33+\/211 ( \/2113) 33— \/211 49 \/211 m}
211 2
9 {37+\/266 ( \/2665) _ 37— \/266 55 \/266 m}
266 2 2
In addition, noticing that
1 1 4x
P(x) — P(—x) = - =
(z) (=) 1—2x—22 142x—22 1-—0622+ 2t
we get the generating function of the Pell numbers with odd indices:
2
Prioy
Z 12nd” T 1—6z ta?

n>0

Then we can similarly have the following partial fractions

P°(\x)

2

1—zP°(\z)

1 -2z —6Xz + \2z2

- Sl )
VTN L —gé 1—ah

where é and 7) are given respectively by

E=1+43A+V1I+6A+8X2 and H=1+3\—

V146X +8)%

10

(10)

(11)
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Hence, we have further the multiple convolution formula

1
V146X + 8)2

which leads us to the following proposition.

Qn(A, PO) =

(ém+1 . ﬁerl)

Proposition 10 (Multiple convolution formula).

n 1 R
)\m n P = m+1 _ ~m+41
Z keazn(:m) H 1+2k1 /1 + 6)\ + 8)\2 (5 T/
For A € N, the first nine examples are tabulated as follows:
A Qm(\, P°)
1| 7e{d+VI5)™ — (4 = V15)™H
2 3_\1/5{7+3\/5>m+1_(7_3\/5)m+1}
3| 110+ VO1)™ ! — (10 — VO™
4| 5o { (13 +3VIT)™H — (13 = 3V1T)™ 1}
5| S5 1(16 +v231)"*H — (16 — v231)" '}
6 ?{(19 +5y/I3)™H — (19 — 5y/I3)™+1)
7| o {(22+ V435)" ! — (22 — v/435)" !}
8 f{(% +/561)m ! — (25 — /561)™ !}
9| (28 +V703)™+ — (28 — V703)™* }

).

#A51

11

From the results displayed in this paper, we see that Theorem 1 contains many multi-
ple convolution identities as special cases. There exist numerous other sequences having
rational functions as their generating functions, or equivalently, satisfying linear recur-
rence relations of constant coefficients, which may serve to produce multiple convolution

formulae, for example, the Fibonacci polynomials appeared in [1, 2, 8, 9].

In particu-

lar, it is worthwhile mentioning that the two trigonometric sequences {sinnf},cy, and

{cosnb},en, satisfy the same recurrence relation
W, =2cosO@W,_1 — W, _»

with the following generating functions

. zsin 0
E z"sinnf =

_ 27
= 1 —2xcosf+x

" 1 —zcosf
Zx cosnf = >
e~ 1—2xcosl+x
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The multiple convolution formula corresponding to {sinnf},cy, reads as

- m—n - . o P"L—-Q"L Asind
;A Z)gsm(m)— 2 V1= Xsing

keoy,(m

where p and p are defined respectively by
p=Acosf+ +/Asinf(1 — Asinf) and o= Acosf —/Asinf(1 — Asin#).

Similarly, we have the convolution formula corresponding to {cosnf},en,

- - 5 — AcosB) 5™ — (& — AcosB) g™
Z AT Z Hcos(kiG) = (P cos0)p (0 cos )¢
n=0 K€y (m) i=0 V1 —4X2sin? 6

where p and ¢ are defined respectively by

14+ 2Xcosh + /1 —4X\2sin’6 d 142X cosf — /1 —4X2sin’ 0
2

and 0= )

p = 2
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