

PROJECTIVE *P*-ORDERINGS AND HOMOGENEOUS INTEGER-VALUED POLYNOMIALS

K. Johnson

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada johnson@mathstat.dal.ca

D. Patterson

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada donaldp@mathstat.dal.ca

Received: 7/22/10, Accepted: 1/16/11, Published: 3/18/11

Abstract

Bhargava defined *p*-orderings of subsets of Dedekind domains and with them studied polynomials which take integer values on those subsets. In analogy with this construction for subsets of $\mathbb{Z}_{(p)}$ and *p*-local integer-valued polynomials in one variable, we define projective *p*-orderings of subsets of $\mathbb{Z}_{(p)}^2$. With such a projective *p*-ordering for $\mathbb{Z}_{(p)}^2$ we construct a basis for the module of homogeneous, *p*-local integer-valued polynomials in two variables.

1. Introduction

Let p be a fixed prime and denote by ν_p the p-adic valuation with respect to p, i.e., $\nu_p(m)$ is the largest power of p dividing m. If S is a subset of \mathbb{Z} or $\mathbb{Z}_{(p)}$ then a p-ordering of S, as defined by Bhargava in [2] and [3], is a sequence $\{a(i) : i = 0, 1, 2, ...\}$ in S with the property that for each n > 0 the element a(n) minimizes $\{\nu_p(\prod_{i=0}^{n-1}(s-a(i))) : s \in S\}$. The most important property of p-orderings is that the Lagrange interpolating polynomials based on them give a $\mathbb{Z}_{(p)}$ -basis for the algebra $\operatorname{Int}(S, \mathbb{Z}_{(p)}) = \{f(x) \in \mathbb{Q}[x] : f(S) \subseteq \mathbb{Z}_{(p)}\}$, of p-local integer-valued polynomials on S. In this paper we will extend this idea to give p-orderings of certain subsets of \mathbb{Z}^2 or $\mathbb{Z}_{(p)}^2$ in such a way as to give a construction of a $\mathbb{Z}_{(p)}$ -basis for the module of p-local integer-valued homogeneous polynomials in two variables.

One reason the algebra of homogeneous integer-valued polynomials is of interest is because of its occurrence in algebraic topology as described in [1]. Let $\mathbb{C}P^{\infty}$ denote infinite complex projective space. Computing the homotopy groups of this space shows that it is an Eilenberg-Mac Lane space $K(\mathbb{Z}, 2)$ and so is the classifying space, BT^1 , of the circle group. It follows that $(\mathbb{C}P^{\infty})^n$ is the classifying space of the *n*-torus, BT^n . It was shown in [6] that the complex *K*-theory, $K_0(\mathbb{C}P^{\infty})$, is isomorphic to $\operatorname{Int}(\mathbb{Z},\mathbb{Z})$ from which it follows that $K_0(BT^n) = \operatorname{Int}(\mathbb{Z}^n,\mathbb{Z}) =$ $\{f(x_1,\ldots,x_n) \in \mathbb{Q}[x_1,\ldots,x_n] : f(\mathbb{Z}^n) \subseteq \mathbb{Z}\}$. For any space *X* the complex *K*theory, $K_0(X)$, has the structure of a comodule with respect to the Hopf algebroid of stable cooperations for complex *K*-theory, K_0K . In [1] it was shown that the primitive elements in $K_0(BT^n)$ with respect to this coaction are the homogeneous polynomials and this was used to give an upper bound on the *K*-theory Hurewicz image of *BU*. Projective *p*-orderings give an alternative to the recursive construction used in Theorem 1.11 of that paper.

The paper is organized as follows: In Section 2 we recall some of the basic properties of *p*-orderings of subsets of $\mathbb{Z}_{(p)}$ which allow their computation in specific cases. Section 3 contains the definition of projective *p*-orderings for subsets of $\mathbb{Z}_{(p)}^2$ and the construction of a specific *p*-ordering of $\mathbb{Z}_{(p)}^2$ using the results of Section 2 and their extensions. Section 4 defines a sequence of homogeneous polynomials associated to a projective *p*-ordering and shows that in the case of *p*-orderings of $\mathbb{Z}_{(p)}^2$ these polynomials are $\mathbb{Z}_{(p)}$ -valued when evaluated at points in $\mathbb{Z}_{(p)}^2$. From these a basis is constructed for the $\mathbb{Z}_{(p)}$ -module of homogeneous *p*-local integer-valued polynomials in two variables of degree *m* for any nonnegative integer *m*.

2. *p*-Orderings in \mathbb{Z} and $\mathbb{Z}_{(p)}$

As in the introduction we have the basic definitions:

Definition 1. [3] If p is a prime then a p-ordering of a subset S of $\mathbb{Z}_{(p)}$ is an ordered sequence $\{a_i, i = 0, 1, 2, \dots, |S|\}$ of elements of S with the property that for each i > 0 the element a_i minimizes $\nu_p(\prod_{i \le i}(s - a_i))$ among all elements s of S.

and

Definition 2. [3] If $\{a_i\}_{i=0}^{\infty}$ is a *p*-ordering of a set $S \subseteq \mathbb{Z}_{(p)}$ then the *p*-sequence of S is the sequence of integers $D = \{d_i\}_{i=0}^{\infty}$ with $d_0 = 0$ and $d_i = \nu_p(\prod_{j < i} (a_i - a_j))$.

These objects have the following properties:

Proposition 3. (a) The p-sequence of a set S is independent of the p-ordering used to compute it, i.e., any two p-orderings of S have the same p-sequence.

(b) The p-sequence of a set characterizes the p-orderings of S, i.e., if $\{d_i : i = 0, 1, 2, ...\}$ is the p-sequence of S and $\{a_i : i = 0, 1, 2, ...\}$ is a sequence in S with the property that $d_i = \nu_p(\prod_{j < i} (a_i - a_j))$ for all i, then $\{a_i : i = 0, 1, 2, ...\}$ is a p-ordering of S.

(c) The increasing order on the non-negative integers is a p-ordering of $\mathbb{Z}_{(p)}$ for any prime p, and the p-sequence of $\mathbb{Z}_{(p)}$ is given by $\{\nu_p(i!) : i = 0, 1, 2, ...\}$.

(d) The increasing order on the non-negative integers divisible by p is a p-ordering of $p\mathbb{Z}_{(p)}$ and the p-sequence of $p\mathbb{Z}_{(p)}$ is given by $\{i + \nu_p(i!) : i = 0, 1, 2, ...\}$.

(e) If the set S is the disjoint union $S = S_0 \cup S_1$ of sets S_0 and S_1 with the property that if $a \in S_0$ and $b \in S_1$ then $\nu_p(a-b) = 0$, then the p-sequence of S is equal to the shuffle of those of S_0 and S_1 , i.e., the disjoint union of the p-sequences of S_0 and S_1 sorted into nondecreasing order. Furthermore, the same shuffle applied to p-orderings of S_0 and S_1 will yield a p-ordering of S and any p-ordering of S occurs in this way.

Proof. Statement (a) is Theorem 5 of citeB1. Statement(b) is Lemma 3.3(a) of [7]. Statement(c) follows from Proposition 6 of [2] and the observation that the minimum of $\nu_p(\prod_{j < i} (s - a_j))$ for $s \in \mathbb{Z}$ is equal to the minimum for $s \in \mathbb{Z}_{(p)}$. Statement (d) follows from Statement (c) by Lemma 3.3(c) of [7]. (e) is a generalization of Lemma 3.5 of [7] for which the same proof holds.

In the next section, we define projective *p*-orderings for pairs in $\mathbb{Z}_{(p)}$ and show that there are analogs to some of the properties of *p*-orderings given above. Specifically, part (e) in Proposition 3 generalizes to projective *p*-orderings and allows $\mathbb{Z}_{(p)}^2$ to be divided into disjoint subsets whose *p*-orderings are obtained from parts (c) and (d) of Proposition 3. While there is no analog to part (a) in Proposition 3, we show that any projective *p*-ordering of all of $\mathbb{Z}_{(p)}^2$ (and some other specific subsets) will produce the same *p*-sequence, and so the *p*-sequence of $\mathbb{Z}_{(p)}^2$ is independent of the projective *p*-ordering used to compute it.

3. Projective *p*-Orderings in $\mathbb{Z}^2_{(p)}$

Definition 4. A projective *p*-ordering of a subset *S* of $\mathbb{Z}^2_{(p)}$ is a sequence $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ in *S* with the property that for each i > 0 the element (a_i, b_i) minimizes $\nu_p(\prod_{j < i} (sb_j - ta_j))$ over $(s, t) \in S$. The sequence $\{d_i : i = 0, 1, 2, ...\}$ with $d_i = \nu_p(\prod_{j < i} (a_ib_j - b_ia_j))$ is the *p*-sequence of the *p*-ordering.

Lemma 5. a) If $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ is a p-ordering of $\mathbb{Z}^2_{(p)}$, then for each i either $\nu_p(a_i) = 0$ or $\nu_p(b_i) = 0$.

(b) If $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ is a p-ordering of $\mathbb{Z}^2_{(p)}$, then there is another pordering $\{(a'_i, b'_i) : i = 0, 1, 2, ...\}$ with the property that for each i either $a'_i = 1$ and $p|b'_i$ or $b'_i = 1$ and $\{(a'_i, b'_i) : i = 0, 1, 2, ...\}$ has the same p-sequence as $\{(a_i, b_i) : i = 0, 1, 2, ...\}$.

Proof. (a) Since $\nu_p(psb_j - pta_j) = 1 + \nu_p(sb_j - ta_j)$, the pair (s, t) would always be chosen in place of the pair (ps, pt) in the construction of a *p*-ordering.

(b) By part (a) either a_i or b_i is a unit in $\mathbb{Z}_{(p)}$ for every *i*. Let $(a'_i, b'_i) = (1, b_i/a_i)$ if a_i is a unit and $p|b_i$, and $(a'_i, b'_i) = (a_i/b_i, 1)$ if b_i is a unit. In the first case we have $\nu_p(a_ib_j - b_ia_j) = \nu_p(b_j - b_ia_j/a_i) = \nu_p(a'_ib_j - b'_ia_j)$ for all *j* and similarly in the second case. Thus $\{(a'_i, b'_i) : i = 0, 1, 2, ...\}$ is a *p*-ordering with the same *p*-sequence as $\{(a_i, b_i) : i = 0, 1, 2, ...\}$.

Definition 6. Let S denote the subset of $\mathbb{Z}^2_{(p)}$ consisting of pairs (a, b) with either a = 1 and p|b or b = 1, and let $S_0 = \{(a, 1) : a \in \mathbb{Z}_{(p)}\}$ and $S_1 = \{(1, pb) : b \in \mathbb{Z}_{(p)}\}$.

Lemma 7. The set S is the disjoint union of S_0 and S_1 , and if $(a,b) \in S_0$ and $(c,d) \in S_1$ then $\nu_p(ad-bc) = 0$.

Proof. The first assertion is obvious and the second follows from the observation that d is a multiple of p, and b = c = 1, so p does not divide ad - 1.

Proposition 8. Any p-ordering of S is the shuffle of p-orderings of S_0 and S_1 into nondecreasing order. The shuffle of any pair of p-sequences of S_0 and S_1 into nondecreasing order gives a p-sequence of S and the corresponding shuffle of the p-orderings of S_0 and S_1 that gave rise to these p-sequences gives a p-ordering of S.

Proof. Let $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ be a *p*-ordering of *S* and $\{(a_{\sigma(i)}, b_{\sigma(i)}) : i = 0, 1, 2, ...\}$ the subsequence of elements which are in S_0 . The previous lemma implies that for any *i*, we have $\nu_p(\prod_{j < \sigma(i)} (a_{\sigma(i)}b_j - a_jb_{\sigma(i)})) = \nu_p(\prod_{j < i} (a_{\sigma(i)}b_{\sigma(j)} - a_{\sigma(j)}b_{\sigma(i)}))$, so that $\{(a_{\sigma(i)}, b_{\sigma}(i)) : i = 0, 1, 2, ...\}$ is a *p*-ordering of S_0 . A similar argument shows that the subsequence of elements in S_1 gives a *p*-ordering of S_1 . Since *S* is the disjoint union of S_0 and S_1 it follows that $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ is the shuffle of these two subsequences.

Conversely, suppose that $\{(a'_i, b'_i) : i = 0, 1, 2, ...\}$ is a *p*-ordering of S_0 with associated *p*-sequence $\{d'_i : i = 0, 1, 2, ...\}$ and that $\{(a''_i, b'') : i = 0, 1, 2, ...\}$ and $\{d''_i : i = 0, 1, 2, ...\}$ are the corresponding objects for S_1 . Assume as the induction hypothesis that the first n + m + 2 terms in a *p*-sequence of *S* are the nondecreasing shuffle of $\{d'_i : i = 0, 1, 2, ..., n\}$ and $\{d''_i : i = 0, 1, 2, ..., m\}$ into nondecreasing order and that the corresponding shuffle of $\{(a'_i, b'_i) : i = 0, 1, 2, ..., n\}$ and $\{d''_i : i = 0, 1, 2, ..., m\}$ into nondecreasing order and that the corresponding shuffle of $\{(a'_i, b'_i) : i = 0, 1, 2, ..., n\}$ and $\{(a''_i, b''_i) : i = 0, 1, 2, ..., m\}$ is the first n + m + 2 terms of a *p*-ordering of *S*. Since (a'_{n+1}, b'_{n+1}) minimizes $\nu_p(\prod_{j < n+m+2}(sb_j - ta'_j))$ over S_0 and $\nu_p(a'_{n+1}b''_j - b'_{n+1}a''_j) = 0$, it also minimizes $\nu_p(\prod_{j < n+m+2}(sb_j - ta_j))$ over S_0 . Similarly (a''_{m+1}, b''_{m+1}) minimizes this product over S_1 . Since *S* is the union of these two sets, the minimum over *S* is realized by the one of these giving the smaller value.

Lemma 9. (a) the map $\phi : \mathbb{Z}_{(p)} \to S_0$ given by $\phi(x) = (x, 1)$ gives a 1 to 1 correspondence between p-orderings of \mathbb{Z} and projective p-orderings of S_0 and preserves p-sequences.

(b) The map $\psi : p\mathbb{Z}_{(p)} \to S_1$ given by $\psi(x) = (1, x)$ gives a one-to-one correspondence between p-orderings of $p\mathbb{Z}$ and projective p-orderings of S_1 and preserves p-sequences.

Proof. If (a, b) and (c, d) are in S_0 then $\nu_p(ad - bc) = \nu_p(a - c)$ since b = d = 1. Thus the map ϕ is a bijection, which preserves the *p*-adic norm and so preserves *p*-orderings and *p*-sequences. A similar argument applies to ψ .

Proposition 10. (a) A p-ordering of $\mathbb{Z}^2_{(p)}$ is given by the periodic shuffle of the sequences $\{(i,1): i = 0, 1, 2, ...\}$ and $\{(1,pi): i = 0, 1, 2, ...\}$ which takes one element of the second sequence after each block of p elements of the first. The corresponding p-sequence is $\{\nu_p(\lfloor pi/(p+1) \rfloor)!: i = 0, 1, 2, ...\}$.

(b) The p-sequence of $\mathbb{Z}^2_{(p)}$ is independent of the choice of p-ordering used to compute it.

Proof. p-orderings of $\mathbb{Z}_{(p)}$ and $p\mathbb{Z}_{(p)}$ are given in Proposition 3 and so, by Lemma 9, give *p*-orderings of S_0 and S_1 whose shuffle gives a *p*-ordering of *S*. The *p*-sequences of these two *p*-orderings are $\{\nu_p(i!) : i = 0, 1, 2, ...\}$ and $\{\nu_p(pi!) : i = 0, 1, 2, ...\}$ for which the nondecreasing shuffle is periodic taking one element of the second sequence after each *p* elements of the first. The result of this shuffle is the formula given.

Since the *p*-sequences of $\mathbb{Z}_{(p)}$ and $p\mathbb{Z}_{(p)}$ are independent of the choices of *p*-orderings, those of S_0 and S_1 are also. The *p*-sequence of *S*, being the shuffle of these two, is unique and so is independent of the chosen *p*-orderings. Finally, by Lemma 5 (b) any *p*-sequence of $\mathbb{Z}_{(p)}^2$ is equal to one of *S*, hence it is independent of the chosen *p*-ordering.

4. Homogeneous Integer-Valued Polynomials in Two Variables

A *p*-ordering of a subset of \mathbb{Z} or $\mathbb{Z}_{(p)}$ gives rise to a sequence of polynomials that are integer – or $\mathbb{Z}_{(p)}$ – valued on *S*. The analogous result for projective orderings is:

Proposition 11. If $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ is a projective *p*-ordering of $\mathbb{Z}^2_{(p)}$ then the polynomials

$$f_n(x,y) = \prod_{i=0}^{n-1} \frac{xb_i - ya_i}{a_n b_i - b_n a_i}$$

are homogeneous and $\mathbb{Z}_{(p)}$ -valued on $\mathbb{Z}_{(p)}^2$.

Proof. The minimality condition used to define projective *p*-orderings implies that for any $(a,b) \in \mathbb{Z}^2_{(p)}$, the *p*-adic value of $\prod_{i=0}^{n-1} a_n b_i - b_n a_i$ is less than or equal to that of $\prod_{i=0}^{n-1} ab_i - ba_i$.

For *p*-orderings of subsets of \mathbb{Z} or $\mathbb{Z}_{(p)}$ we have the further result that the polynomials produced in this way give a regular basis for the module of integer-valued polynomials. To obtain an analogous result in the projective case we restrict our attention to the particular projective *p*-ordering of $\mathbb{Z}_{(p)}^2$ constructed in the previous section and, for a fixed nonnegative integer *m*, make the following definition:

Definition 12. For $0 \le n \le m$ and $\{(a_i, b_i) : i = 0, 1, 2, ...\}$, the projective *p*-ordering of $\mathbb{Z}^2_{(n)}$ constructed in Proposition 10, let

$$g_n^m(x,y) = \begin{cases} y^{m-n} \prod_{i=0}^{n-1} \frac{xb_i - ya_i}{a_n b_i - b_n a_i} & \text{if} \quad (a_n, b_n) \in S_0 \\ x^{m-n} \prod_{i=0}^{n-1} \frac{xb_i - ya_i}{a_n b_i - b_n a_i} & \text{if} \quad (a_n, b_n) \in S_1. \end{cases}$$

Lemma 13. The polynomials $g_n^m(x, y)$ have the properties

$$g_n^m(a_i, b_i) = \begin{cases} 0 & \text{if } i < n \\ 1 & \text{if } i = n \end{cases}$$

Proposition 14. The set of polynomials $\{g_n^m(x,y) : n = 0, 1, 2, ..., m\}$ forms a basis for the $\mathbb{Z}_{(p)}$ -module of homogeneous polynomials in $\mathbb{Q}[x,y]$ of degree m which take values in $\mathbb{Z}_{(p)}$ when evaluated at points of $\mathbb{Z}_{(p)}^2$.

Proof. First note that a homogeneous polynomial is $\mathbb{Z}_{(p)}$ -valued on $\mathbb{Z}_{(p)}^2$ if and only if it is $\mathbb{Z}_{(p)}$ -valued on S. To see this suppose that g(x, y) is homogeneous of degree m and $\mathbb{Z}_{(p)}$ -valued on S and that $(a, b) \in \mathbb{Z}_{(p)}^2$. If (a, b) = (0, 0) then g(a, b) = 0. If $(a, b) \neq (0, 0)$ then $(a, b) = p^k(a', b')$ for some k with either a' or b' a unit in $\mathbb{Z}_{(p)}$. Since g(x, y) is homogeneous, $g(a, b) = p^{km}g(a', b')$, and so if $g(a', b') \in \mathbb{Z}_{(p)}$ then $g(a, b) \in \mathbb{Z}_{(p)}$. If a' is a unit in $\mathbb{Z}_{(p)}$ and p|b' then (a', b') = a'(1, b'/a'), and so $g(a', b') = (a')^m g(1, b'/a')$. Since g(x, y) is $\mathbb{Z}_{(p)}$ -valued on S_0 we have $g(1, b'/a') \in \mathbb{Z}_{(p)}$, and so $g(a', b') \in \mathbb{Z}_{(p)}$ since a' is a unit. A similar argument applies if b' is a unit.

Since no two of the elements of the *p*-ordering $\{(a_i, b_i) : i = 0, 1, 2, ...\}$ are rational multiples of each other the previous lemma shows that the given set is rationally linearly independent and forms a basis for the rational vector space of homogeneous polynomials of degree m in $\mathbb{Q}[x, y]$. Let M be the $(m + 1) \times (m + 1)$ matrix whose (i, j)-th entry is $g_i^m(a_j, b_j)$. If $g(x, y) \in \mathbb{Q}[x, y]$ is homogeneous and of degree m, then there exists a unique vector on $A = (a_0, \ldots, a_m) \in \mathbb{Q}^{m+1}$ such that g(x, y) = $\sum a_i g_i^m(x, y)$. Let V be the vector $V = (v_0, \ldots, v_m) = (g(a_0, b_0), \ldots, g(a_m, b_m))$ so that V = AM. If g(x, y) is $\mathbb{Z}_{(p)}$ -valued then $V \in \mathbb{Z}_{(p)}^{m+1}$. By the previous lemma, M is lower triangular with diagonal entries 1, and hence invertible over $\mathbb{Z}_{(p)}$. Thus $A \in \mathbb{Z}_{(p)}^{m+1}$ also, i.e., the set $\{g_n^m(x, y) : n = 0, 1, 2, \ldots, m\}$ spans the $\mathbb{Z}_{(p)}$ -module

of homogeneous, $\mathbb{Z}_{(p)}$ -valued polynomials of degree m and so forms a basis as required.

Example 15. Let p = 2 and m = 3. By Proposition 10, the following is a projective 2-ordering of $\mathbb{Z}^2_{(2)}$:

(0, 1),	(1,1),	(1,0),
(2,1),	(3,1),	(1,2),
(4, 1),	(5,1),	

With this projective 2-ordering, we construct $g_n^3(x, y)$ for n = 0, 1, 2, 3:

$$\left\{y^3, xy^2, x^2(x-y), \frac{xy(x-y)}{2}\right\}.$$

This set, by Proposition 14, forms a basis for the $\mathbb{Z}_{(2)}$ -module of homogeneous polynomials in $\mathbb{Q}[x, y]$ of degree 3 which take values in $\mathbb{Z}_{(2)}$ when evaluated at points of $\mathbb{Z}_{(2)}^2$.

References

- A. Baker, F. Clarke, N. Ray, and L. Schwartz, On the Kummer congruences and the stable homotopy of BU, Trans. Amer. Math. Soc. 316 (1989), 385-432.
- M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. (Crelle) 490 (1997), 101-127.
- [3] M. Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), 783-799.
- [4] J. Boulanger, J.-L. Chabert, S. Evrard, and G. Gerboud, The characteristic sequence of integer-valued polynomials on a subset, *Lect. Notes in Pure and Appl. Math.* 205 (1999), 161-174.
- [5] P.-J. Cahen and J.-L. Chabert, Integer Valued Polynomials, American Math. Society, Providence, R.I., 1997.
- [6] F. Clarke, Self Maps of BU, Math. Proc. Cam. Phil. Soc. 89 (1981), 491-500.
- [7] K. Johnson, P-orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics 30 (2009), 233-253.
- [8] G. Polya, Über ganzwertige Polynome in algebraischen Zahlkörper, J. Reine Angew. Math. (Crelle) 149 (1919), 97-116.