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Abstract
Bhargava defined p-orderings of subsets of Dedekind domains and with them stud-
ied polynomials which take integer values on those subsets. In analogy with this
construction for subsets of Z(p) and p-local integer-valued polynomials in one vari-
able, we define projective p-orderings of subsets of Z2

(p). With such a projective
p-ordering for Z2

(p) we construct a basis for the module of homogeneous, p-local
integer-valued polynomials in two variables.

1. Introduction

Let p be a fixed prime and denote by νp the p-adic valuation with respect to p,
i.e., νp(m) is the largest power of p dividing m. If S is a subset of Z or Z(p)

then a p-ordering of S, as defined by Bhargava in [2] and [3], is a sequence
{a(i) : i = 0, 1, 2, . . . } in S with the property that for each n > 0 the element
a(n) minimizes {νp(

�n−1
i=0 (s − a(i))) : s ∈ S}. The most important property of

p-orderings is that the Lagrange interpolating polynomials based on them give a
Z(p)-basis for the algebra Int(S, Z(p)) = {f(x) ∈ Q[x] : f(S) ⊆ Z(p)}, of p-local
integer-valued polynomials on S. In this paper we will extend this idea to give
p-orderings of certain subsets of Z2 or Z2

(p) in such a way as to give a construction
of a Z(p)-basis for the module of p-local integer-valued homogeneous polynomials in
two variables.

One reason the algebra of homogeneous integer-valued polynomials is of interest
is because of its occurence in algebraic topology as described in [1]. Let CP∞

denote infinite complex projective space. Computing the homotopy groups of this
space shows that it is an Eilenberg-MacLane space K(Z, 2) and so is the classifying
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space, BT 1, of the circle group. It follows that (CP∞)n is the classifying space
of the n-torus, BTn. It was shown in [6] that the complex K-theory, K0(CP∞),
is isomorphic to Int(Z, Z) from which it follows that K0(BTn) = Int(Zn, Z) =
{f(x1, . . . , xn) ∈ Q[x1, . . . , xn] : f(Zn) ⊆ Z}. For any space X the complex K-
theory, K0(X), has the structure of a comodule with respect to the Hopf algebroid
of stable cooperations for complex K-theory, K0K. In [1] it was shown that the
primitive elements in K0(BTn) with respect to this coaction are the homogeneous
polynomials and this was used to give an upper bound on the K-theory Hurewicz
image of BU . Projective p-orderings give an alternative to the recursive construction
used in Theorem 1.11 of that paper.

The paper is organized as follows: In Section 2 we recall some of the basic
properties of p-orderings of subsets of Z(p) which allow their computation in specific
cases. Section 3 contains the definition of projective p-orderings for subsets of Z2

(p)

and the construction of a specific p-ordering of Z2
(p) using the results of Section

2 and their extensions. Section 4 defines a sequence of homogeneous polynomials
associated to a projective p-ordering and shows that in the case of p-orderings of
Z2

(p) these polynomials are Z(p)-valued when evaluated at points in Z2
(p). From these

a basis is constructed for the Z(p)-module of homogeneous p-local integer-valued
polynomials in two variables of degree m for any nonnegative integer m.

2. p-Orderings in Z and Z(p)

As in the introduction we have the basic definitions:

Definition 1. [3] If p is a prime then a p-ordering of a subset S of Z(p) is an ordered
sequence {ai, i = 0, 1, 2, . . . |S|} of elements of S with the property that for each
i > 0 the element ai minimizes νp(

�
j<i(s− aj)) among all elements s of S.

and

Definition 2. [3] If {ai}∞i=0 is a p-ordering of a set S ⊆ Z(p) then the p-sequence of
S is the sequence of integers D = {di}∞i=0 with d0 = 0 and di = νp(

�
j<i(ai − aj)).

These objects have the following properties:

Proposition 3. (a) The p-sequence of a set S is independent of the p-ordering used

to compute it, i.e., any two p-orderings of S have the same p-sequence.

(b) The p-sequence of a set characterizes the p-orderings of S, i.e., if {di : i =
0, 1, 2, . . . } is the p-sequence of S and {ai : i = 0, 1, 2, . . . } is a sequence in S with

the property that di = νp(
�

j<i(ai − aj)) for all i, then {ai : i = 0, 1, 2, . . . } is a

p-ordering of S.

(c) The increasing order on the non-negative integers is a p-ordering of Z(p) for any

prime p, and the p-sequence of Z(p) is given by {νp(i!) : i = 0, 1, 2, . . . }.
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(d) The increasing order on the non-negative integers divisible by p is a p-ordering

of pZ(p) and the p-sequence of pZ(p) is given by {i + νp(i!) : i = 0, 1, 2, . . . }.
(e) If the set S is the disjoint union S = S0∪S1 of sets S0 and S1 with the property

that if a ∈ S0 and b ∈ S1 then νp(a − b) = 0, then the p-sequence of S is equal to

the shuffle of those of S0 and S1, i.e., the disjoint union of the p-sequences of S0

and S1 sorted into nondecreasing order. Furthermore, the same shuffle applied to

p-orderings of S0 and S1 will yield a p-ordering of S and any p-ordering of S occurs

in this way.

Proof. Statement (a) is Theorem 5 of citeB1. Statement(b) is Lemma 3.3(a) of [7].
Statement(c) follows from Proposition 6 of [2] and the observation that the minimum
of νp(

�
j<i(s− aj)) for s ∈ Z is equal to the minimum for s ∈ Z(p). Statement (d)

follows from Statement (c) by Lemma 3.3(c) of [7]. (e) is a generalization of Lemma
3.5 of [7] for which the same proof holds.

In the next section, we define projective p-orderings for pairs in Z(p) and show
that there are analogs to some of the properties of p-orderings given above. Specifi-
cally, part (e) in Proposition 3 generalizes to projective p-orderings and allows Z2

(p)

to be divided into disjoint subsets whose p-orderings are obtained from parts (c)
and (d) of Proposition 3. While there is no analog to part (a) in Proposition 3, we
show that any projective p-ordering of all of Z2

(p) (and some other specific subsets)
will produce the same p-sequence, and so the p-sequence of Z2

(p) is independent of
the projective p-ordering used to compute it.

3. Projective p-Orderings in Z2
(p)

Definition 4. A projective p-ordering of a subset S of Z2
(p) is a sequence {(ai, bi) :

i = 0, 1, 2, . . . } in S with the property that for each i > 0 the element (ai, bi)
minimizes νp(

�
j<i(sbj − taj)) over (s, t) ∈ S. The sequence {di : i = 0, 1, 2, . . . }

with di = νp(
�

j<i(aibj − biaj)) is the p-sequence of the p-ordering.

Lemma 5. a) If {(ai, bi) : i = 0, 1, 2, . . . } is a p-ordering of Z2
(p), then for each i

either νp(ai) = 0 or νp(bi) = 0.

(b) If {(ai, bi) : i = 0, 1, 2, . . . } is a p-ordering of Z2
(p), then there is another p-

ordering {(a�i, b�i) : i = 0, 1, 2, . . . } with the property that for each i either a�i = 1 and

p|b�i or b�i = 1 and {(a�i, b�i) : i = 0, 1, 2, . . . } has the same p-sequence as {(ai, bi) :
i = 0, 1, 2, . . . }.

Proof. (a) Since νp(psbj − ptaj) = 1 + νp(sbj − taj), the pair (s, t) would always be
chosen in place of the pair (ps, pt) in the construction of a p-ordering.
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(b) By part (a) either ai or bi is a unit in Z(p) for every i. Let (a�i, b�i) = (1, bi/ai)
if ai is a unit and p|bi, and (a�i, b�i) = (ai/bi, 1) if bi is a unit. In the first case we
have νp(aibj − biaj) = νp(bj − biaj/ai) = νp(a�ibj − b�iaj) for all j and similarly
in the second case. Thus {(a�i, b�i) : i = 0, 1, 2, . . . } is a p-ordering with the same
p-sequence as {(ai, bi) : i = 0, 1, 2, . . . }.

Definition 6. Let S denote the subset of Z2
(p) consisting of pairs (a, b) with either

a = 1 and p|b or b = 1, and let S0 = {(a, 1) : a ∈ Z(p)} and S1 = {(1, pb) : b ∈ Z(p)}.

Lemma 7. The set S is the disjoint union of S0 and S1, and if (a, b) ∈ S0 and

(c, d) ∈ S1 then νp(ad− bc) = 0.

Proof. The first assertion is obvious and the second follows from the observation
that d is a multiple of p, and b = c = 1, so p does not divide ad− 1.

Proposition 8. Any p-ordering of S is the shuffle of p-orderings of S0 and S1

into nondecreasing order. The shuffle of any pair of p-sequences of S0 and S1 into

nondecreasing order gives a p-sequence of S and the corresponding shuffle of the

p-orderings of S0 and S1 that gave rise to these p-sequences gives a p-ordering of

S.

Proof. Let {(ai, bi) : i = 0, 1, 2, . . . } be a p-ordering of S and {(aσ(i), bσ(i)) : i =
0, 1, 2, . . . } the subsequence of elements which are in S0. The previous lemma
implies that for any i, we have νp(

�
j<σ(i)(aσ(i)bj−ajbσ(i))) = νp(

�
j<i(aσ(i)bσ(j)−

aσ(j)bσ(i))), so that {(aσ(i), bσ(i)) : i = 0, 1, 2, . . . } is a p-ordering of S0. A similar
argument shows that the subsequence of elements in S1 gives a p-ordering of S1.
Since S is the disjoint union of S0 and S1 it follows that {(ai, bi) : i = 0, 1, 2, . . . }
is the shuffle of these two subsequences.

Conversely, suppose that {(a�i, b�i) : i = 0, 1, 2, . . . } is a p-ordering of S0 with
associated p-sequence {d�i : i = 0, 1, 2, . . . } and that {(a��

i , b
��
) : i = 0, 1, 2, . . . } and

{d��

i : i = 0, 1, 2, . . . } are the corresponding objects for S1. Assume as the induction
hypothesis that the first n+m+2 terms in a p-sequence of S are the nondecreasing
shuffle of {d�i : i = 0, 1, 2, . . . , n} and {d��

i : i = 0, 1, 2, . . . ,m} into nondecreas-
ing order and that the corresponding shuffle of {(a�i, b�i) : i = 0, 1, 2, . . . , n} and
{(a��

i , b
��

i ) : i = 0, 1, 2, . . . ,m} is the first n + m + 2 terms of a p-ordering of S. Since
(a�n+1, b

�
n+1) minimizes νp(

�
j<n+1(sb

�
j−ta�j)) over S0 and νp(a�n+1b

��

j −b�n+1a
��

j ) = 0,
it also minimizes νp(

�
j<n+m+2(sbj − taj)) over S0. Similarly (a

��

m+1, b
��

m+1) mini-
mizes this product over S1. Since S is the union of these two sets, the minimum
over S is realized by the one of these giving the smaller value.

Lemma 9. (a) the map φ : Z(p) → S0 given by φ(x) = (x, 1) gives a 1 to 1 corre-

spondence between p-orderings of Z and projective p-orderings of S0 and preserves

p-sequences.
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(b) The map ψ : pZ(p) → S1 given by ψ(x) = (1, x) gives a one-to-one corre-

spondence between p-orderings of pZ and projective p-orderings of S1 and preserves

p-sequences.

Proof. If (a, b) and (c, d) are in S0 then νp(ad − bc) = νp(a − c) since b = d = 1.
Thus the map φ is a bijection, which preserves the p-adic norm and so preserves
p-orderings and p-sequences. A similar argument applies to ψ.

Proposition 10. (a) A p-ordering of Z2
(p) is given by the periodic shuffle of the

sequences {(i, 1) : i = 0, 1, 2, . . . } and {(1, pi) : i = 0, 1, 2, . . . } which takes one

element of the second sequence after each block of p elements of the first. The

corresponding p-sequence is {νp(�pi/(p + 1)�)! : i = 0, 1, 2, . . . }.
(b) The p-sequence of Z2

(p) is independent of the choice of p-ordering used to compute

it.

Proof. p-orderings of Z(p) and pZ(p) are given in Proposition 3 and so, by Lemma 9,
give p-orderings of S0 and S1 whose shuffle gives a p-ordering of S. The p-sequences
of these two p-orderings are {νp(i!) : i = 0, 1, 2, . . . } and {νp(pi!) : i = 0, 1, 2, . . . },
for which the nondecreasing shuffle is periodic taking one element of the second
sequence after each p elements of the first. The result of this shuffle is the formula
given.

Since the p-sequences of Z(p) and pZ(p) are independent of the choices of p-
orderings, those of S0 and S1 are also. The p-sequence of S, being the shuffle of
these two, is unique and so is independent of the chosen p-orderings. Finally, by
Lemma 5 (b) any p-sequence of Z2

(p) is equal to one of S, hence it is independent of
the chosen p-ordering.

4. Homogeneous Integer-Valued Polynomials in Two Variables

A p-ordering of a subset of Z or Z(p) gives rise to a sequence of polynomials that
are integer – or Z(p) – valued on S. The analogous result for projective orderings
is:

Proposition 11. If {(ai, bi) : i = 0, 1, 2, . . . } is a projective p-ordering of Z2
(p) then

the polynomials

fn(x, y) =
n−1�

i=0

xbi − yai

anbi − bnai

are homogeneous and Z(p)-valued on Z2
(p).

Proof. The minimality condition used to define projective p-orderings implies that
for any (a, b) ∈ Z2

(p), the p-adic value of
�n−1

i=0 anbi − bnai is less than or equal to
that of

�n−1
i=0 abi − bai.
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For p-orderings of subsets of Z or Z(p) we have the further result that the poly-
nomials produced in this way give a regular basis for the module of integer-valued
polynomials. To obtain an analogous result in the projective case we restrict our
attention to the particular projective p-ordering of Z2

(p) constructed in the previous
section and, for a fixed nonnegative integer m, make the following definition:

Definition 12. For 0 ≤ n ≤ m and {(ai, bi) : i = 0, 1, 2, . . . }, the projective
p-ordering of Z2

(p) constructed in Proposition 10, let

gm
n (x, y) =






ym−n
n−1�

i=0

xbi − yai

anbi − bnai
if (an, bn) ∈ S0

xm−n
n−1�

i=0

xbi − yai

anbi − bnai
if (an, bn) ∈ S1.

Lemma 13. The polynomials gm
n (x, y) have the properties

gm
n (ai, bi) =

�
0 if i < n
1 if i = n.

Proposition 14. The set of polynomials {gm
n (x, y) : n = 0, 1, 2, . . . ,m} forms a

basis for the Z(p)-module of homogeneous polynomials in Q[x, y] of degree m which

take values in Z(p) when evaluated at points of Z2
(p).

Proof. First note that a homogeneous polynomial is Z(p)-valued on Z2
(p) if and only

if it is Z(p)-valued on S. To see this suppose that g(x, y) is homogeneous of degree
m and Z(p)-valued on S and that (a, b) ∈ Z2

(p). If (a, b) = (0, 0) then g(a, b) = 0.
If (a, b) �= (0, 0) then (a, b) = pk(a�, b�) for some k with either a� or b� a unit in
Z(p). Since g(x, y) is homogeneous, g(a, b) = pkmg(a�, b�), and so if g(a�, b�) ∈ Z(p)

then g(a, b) ∈ Z(p). If a� is a unit in Z(p) and p|b� then (a�, b�) = a�(1, b�/a�), and so
g(a�, b�) = (a�)mg(1, b�/a�). Since g(x, y) is Z(p)-valued on S0 we have g(1, b�/a�) ∈
Z(p), and so g(a�, b�) ∈ Z(p) since a� is a unit. A similar argument applies if b� is a
unit.

Since no two of the elements of the p-ordering {(ai, bi) : i = 0, 1, 2, . . . } are ratio-
nal multiples of each other the previous lemma shows that the given set is rationally
linearly independent and forms a basis for the rational vector space of homogeneous
polynomials of degree m in Q[x, y]. Let M be the (m + 1)× (m + 1) matrix whose
(i, j)-th entry is gm

i (aj , bj). If g(x, y) ∈ Q[x, y] is homogeneous and of degree m,
then there exists a unique vector on A = (a0, . . . , am) ∈ Qm+1 such that g(x, y) =�

aigm
i (x, y). Let V be the vector V = (v0, . . . , vm) = (g(a0, b0), . . . , g(am, bm)) so

that V = AM . If g(x, y) is Z(p)-valued then V ∈ Zm+1
(p) . By the previous lemma,

M is lower triangular with diagonal entries 1, and hence invertible over Z(p). Thus
A ∈ Zm+1

(p) also, i.e., the set {gm
n (x, y) : n = 0, 1, 2, . . . ,m} spans the Z(p)-module



INTEGERS 11 (2011) 7

of homogeneous, Z(p)-valued polynomials of degree m and so forms a basis as re-
quired.

Example 15. Let p = 2 and m = 3. By Proposition 10, the following is a projective
2-ordering of Z2

(2):
(0, 1), (1, 1), (1, 0),
(2, 1), (3, 1), (1, 2),
(4, 1), (5, 1), . . . .

With this projective 2-ordering, we construct g3
n(x, y) for n = 0, 1, 2, 3:

�
y3, xy2, x2(x− y),

xy(x− y)
2

�
.

This set, by Proposition 14, forms a basis for the Z(2)-module of homogeneous
polynomials in Q[x, y] of degree 3 which take values in Z(2) when evaluated at
points of Z2

(2).
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