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Abstract
We study the previously introduced bracketed tiling construction and obtain direct

proofs of some identities for the Fibonacci and Lucas numbers. By adding a new

type of tile we call a superdomino to this construction, we obtain combinatorial

proofs of some formulas for the Fibonacci and Lucas polynomials, which we were

unable to find in the literature. Special cases of these formulas occur in the text

by Benjamin and Quinn, where the question of finding their combinatorial proofs

is raised. In the process, we also show, via direct bijections, that the bracketed

(2n)-bracelets as well as the linear bracketed (2n + 1)-tilings both number 5n.

1. Introduction

Let Fn and Ln denote the Fibonacci and Lucas numbers defined, respectively, by

F0 = 0, F1 = 1 with Fn = Fn−1 + Fn−2 if n ≥ 2 and by L0 = 2, L1 = 1 with

Ln = Ln−1 + Ln−2 if n ≥ 2. As recently popularized by Benjamin and Quinn in

their text [5], proofs which use tilings can explain a variety of identities involving

Fibonacci and Lucas numbers and their relatives. See, for example, [1, 2, 4, 7]. In

this paper, we provide tiling proofs of the following four identities where m ≥ 0,

n ≥ 1:
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These four identities occur, respectively, as V80, V81, V83, and V84 on p. 145

of Proofs that Really Count [5], where Benjamin and Quinn raise the question of

finding their combinatorial proofs. See Vajda [8] for algebraic proofs. In this paper,

we continue our study of the bracketed tiling construction introduced in [6] and use

it to provide direct arguments for some identities involving Fibonacci and Lucas

numbers. Next, we show that there are 5n bracketed (2n)-bracelets as well as 5n

linear bracketed (2n + 1)-tilings via explicit bijections. As a consequence of our

analysis, we obtain the requested proofs for (1) and (2) above. By adding a new

kind of object we call a superdomino to the bracketed tiling construction, we are able

to provide combinatorial proofs of some identities involving Fibonacci and Lucas

polynomials which seem to be new from which formulas (3) and (4) above will follow

as special cases.

2. Preliminaries

Consider a board of length n with cells labeled 1 to n. A tiling of this board (termed

an n-tiling) is an arrangement of indistinguishable squares and indistinguishable

dominos which cover it completely, where pieces do not overlap, a domino is a

rectangular piece covering two cells, and a square is a piece covering a single cell.

Let Fn denote the set of all (linear) n-tilings. When the board is circular, meaning

that a domino may wrap around from cell n back to cell 1, we denote the set of all

n-tilings by Ln. Members of Ln are also called bracelets. It is clear that Fn ⊆ Ln.
Recall that

| Fn | = Fn+1, n ≥ 1,

and

| Ln | = Ln, n ≥ 1.

(If we let F0 = {∅}, the “empty tiling,” and L0 consist of two empty tilings of

opposite orientation, then these relations hold for n = 0 as well.)

Now assign the weight x to every square in a tiling and the weight y to every

domino. Given T ∈ Fn (or Ln), define the weight ω(T ) of the tiling to be the

product of the weights of its tiles. The Fibonacci and Lucas polynomials (see, e.g.,



INTEGERS 11 (2011) 3

[5]) are given, respectively, as

Fn(x, y) :=

�

T∈Fn

ω(T )

and

Ln(x, y) :=

�

T∈Ln

ω(T ).

As an example, when n = 3, we have F3 = {sss, slr, lrs} so that F3(x, y) =

x3 + 2xy, and L3 = {sss, slr, lrs, rsl} so that L3(x, y) = x3 + 3xy, where s is

a square and l and r are the left and right halves of a domino. The Fn(x, y) and

Ln(x, y) both satisfy a two-term recurrence of the form

an+2 = xan+1 + yan, n ≥ 1,

upon considering whether a tiling starts with a square or a domino. By defining

F0(x, y) = 1 and L0(x, y) = 2, the recurrence holds for n = 0 as well. Note that

when x = y = 1, all tilings have unit weight, which implies that Fn(1, 1) =| Fn |=
Fn+1 and Ln(1, 1) =| Ln |= Ln.

The Fibonacci and Lucas polynomials have the well-known explicit formulas

Fn(x, y) =

�n
2 ��

k=0

ykxn−2k

�
n− k

k

�
, n ≥ 0, (5)

and

Ln(x, y) =

�n
2 ��
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n− k

�
n− k

k

�
, n ≥ 1. (6)

The Fibonacci and Lucas polynomials are sometimes defined as polynomials of one

variable only, but can always be completed to the version presented here, for fixing

the number of squares in a square-and-domino n-tiling fixes the number of dominos

as well.

We will need the values of Fn(x, y) and Ln(x, y) when x = Lm and y = (−1)m+1.

The following relations are equivalent to special cases of a more general result which

was established in [3] and given both algebraic and combinatorial proofs. They may

also be proven directly using Binet formulas.

Lemma 1. If m,n ≥ 1, then

Fn(Lm, (−1)
m+1

) =
F(n+1)m

Fm
(7)

and
Ln(Lm, (−1)

m+1
) = Lnm. (8)
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We will also need the following, which is Identity 53 from [5]:

L2
m + 4(−1)

m+1
= 5F 2

m, m ≥ 0. (9)

(This has a direct combinatorial proof.)

3. Bracketed Tilings

3.1. Definitions and Properties

Introducing an object we call a bracket into the square-and-domino tilings described

in the prior section yields a new construction we call a bracketed tiling. See [6] for

further details. In this section, we review definitions.

A bracket is an object that occupies a single cell, like a square. They come in

two varieties, which we denote by < and >, and must be placed according to the

following criterion:

Every group of consecutive brackets must be properly paired and nested in a man-
ner identical to parentheses. Such groups may occur even between the left and right
halves of a domino.

Bracketed tilings of length n with k bracket pairs, where 0 ≤ k ≤ �n
2 �, may be

formed as follows. First select the k positions to be occupied by the < on a board

of length n. This uniquely determines the positions of the > since they must follow

the < without gaps. For once you have selected the slots to be occupied by left

brackets, you fill in the gaps in such a way so that the first right bracket goes in

the first available slot to the right of the first left bracket, the second right bracket

goes in the first now available slot to the right of the second left bracket, and so on.

If one runs out of spaces in which to place right brackets, then continue searching

for spaces from left to right at the beginning of the tiling. Once they are placed,

the left and right brackets are paired in a manner identical to parentheses. Below

are two examples when n = 8 and k = 3:

< < < −→ < < > < > >

< < < −→ > < > < < >

Note that in the second example, the < in the sixth slot is paired with the > in

the first slot. We will say that a bracket pair <> wraps around if the > occurs to

the left of the corresponding <. Once the positions of the k pairs of brackets are

determined, cover the remaining n− 2k cells with a tiling of squares and dominos,

where the left and the right halves of a domino may be separated by a group of

consecutive brackets. This subtiling of squares and dominos may either be a linear

tiling or a bracelet containing a wraparound domino.
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One might wonder, a priori, whether the bracket pairs <> are uniquely deter-

mined once the brackets have been placed as described above. To see that they

are, regard a group of 2i consecutive brackets, starting with the leftmost < (and

wrapping around, if necessary), as a lattice path from (0, 0) to (2i, 0) in which each

< stands for a (1, 1) upstep and each > stands for a (1,−1) downstep. Given any <,

the position of the matching bracket > within this group can be gotten by drawing

a horizontal line to the right starting from the upstep position (corresponding to

the <) and noting the (downstep) position where this line first intersects the lattice

path again.

We now differentiate two types of bracketed tilings. A straight bracketed n-tiling
consists of k bracket pairs for some k, none of which wrap around, and whose

subtiling of squares and dominos belongs to Fn−2k. A bracketed n-bracelet consists

of k bracket pairs, some of which may wrap around, and whose subtiling of squares

and dominos belongs to Ln−2k (except when n is even and k =
n
2 , in which case

there is just one possibility for the subtiling, not two). Let BFn denote the set

of straight bracketed n-tilings and let BLn denote the bracketed n-bracelets. It is

clear that BFn ⊆ BLn. Below are some examples:

{l <<>><> r, slr <><> s, <<><<>>>} ⊂ BF8,

{rl <><<>>, > rsslrl <, <>><<<>>} ⊂ BL8 −BF8.

The following are not bracketed tilings at all:

<><, < lr >, < s >, ll <> rr, slr ><<> .

As a convention, we will assume when n = 0 that both BFn and BLn consist of

only the empty tiling and thus have cardinality one.

We extend the weights defined above for Fn and Ln to BFn and BLn by assigning

every bracket pair the weight y and defining the weight of a bracketed tiling to be

the product of the weights of all of its tiles and brackets. Define the polynomials

F ∗
n(x, y) and L∗

n(x, y) by

F ∗
n(x, y) :=

�

T∈BFn

ω(T )

and

L∗
n(x, y) :=

�

T∈BLn

ω(T ).

When n = 3, for example, we have BF3 = {sss, slr, lrs, s <>, <> s} so that

F ∗
3 (x, y) = x3 + 4xy and BL3 = {sss, slr, lrs, rsl, s <>, <> s, > s <} so that

L∗
3(x, y) = x3 + 6xy. By convention, F ∗

0 (x, y) = L∗
0(x, y) = 1.

We conclude this section by recalling two formulas for L∗
2n(x, y) from [6] which

we will need later. The proofs are included here for completeness. Similar formulas

hold in the odd case. Recall the notation [m] := {1, 2, . . . ,m} if m ≥ 1, with

[0] := ∅.
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Proposition 2. If n ≥ 0, then

L∗
2n(x, y) = yn

�
2n

n

�
+

n−1�

k=0

yk

�
2n

k

�
L2n−2k(x, y) (10)

and

L∗
2n(x, y) =

n�

k=0

yk

�
2n + 1

k

�
F2n−2k(x, y). (11)

Proof. For (10), first select k cells of a (2n)-board to be occupied by a < in
�2n

k

�
ways,

which uniquely determines the positions of the >, and then cover the remaining

2n − 2k cells with a (weighted) member of L2n−2k. The cases when k = n and

k < n must be differentiated. The k bracket pairs contribute yk.

For (11), first choose an arbitrary subset S of [2n+1] of size k, where 0 ≤ k ≤ n.
If 2n+1 /∈ S, then place a < in the positions on an (2n)-board corresponding to the

elements of the subset, which uniquely determines the >. If 2n+1 ∈ S, place a < in

the k−1 positions on an (2n)-board corresponding to the elements of S−{2n+1},
which determines the >; then add the left half of a domino to the rightmost cell not

occupied by a bracket and the right half of a domino to the leftmost unoccupied

cell. In either case, fill in the remaining 2n− 2k cells with a (weighted) member of

F2n−2k. If n = 4, for example, the bracketed tilings > sl <> rs < and >> rssl <<
would be members of BL8 which correspond, respectively, to the subsets S = {4, 8}
and S = {7, 8, 9} of [9].

3.2. Some Identities

In this section, we derive some relations involving Fibonacci and Lucas polynomials

using combinatorial arguments by placing a restriction on the positions to be occu-

pied by the bracket pairs. Throughout this section, the sign of a bracketed tiling

will be defined as (−1)k, where k denotes the number of bracket pairs. The results

of this section will not be used in the sequel. Our first identity is a formula for the

Fibonacci polynomial involving an alternating sum.

Proposition 3. If n ≥ 0, then

xpFq(x, y) =

p�

k=0

(−1)
kyk

�
p

k

�
Fn−2k(x, y), (12)

where p = �n
2 � and q = �n+1

2 �.

Proof. We establish only the odd case, which, by (5), is equivalent to showing

�n+1
2 ��

k=0

ykx2n+1−2k

�
n + 1− k

k

�
=

n�

k=0

(−1)
kyk

�
n

k

�
F2n+1−2k(x, y), n ≥ 0, (13)
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upon replacing n with 2n + 1. The even case is similar. Note that the left side of

(13) is xnFn+1(x, y) = xpFq(x, y). For the right side, we consider the total signed

weight of all members of BF2n+1 in which bracket pairs can only occupy consecutive

cells 2i−1 and 2i for some i. Upon choosing k members of the set {1, 3, . . . , 2n−1}
to be occupied by a <, we see that the weight of all such members of BF2n+1 is

given by the sum
�n

k=0(−1)kyk
�n

k

�
F2n+1−2k(x, y).

We now define a sign-reversing, weight-preserving involution on this subset of

BF2n+1 as follows. First identify the leftmost position t occupied by either the left

half of a domino or by a <. If t is odd, then cells t and t+1 are covered by either a

domino or by a bracket pair <>, in which case we switch to the other option. If t
is even, then cell t must be covered by the left half l of a domino and there are the

three possibilities: (i) t + 1 is covered by r and either t = 2n or t + 2 is covered by

s; (ii) t + 1 is covered by r and t + 2 is covered by l, which is followed by exactly

i ≥ 0 bracket pairs and then r; or (iii) t + 1 and t + 2 are covered by <>, followed

by i ≥ 0 additional bracket pairs and then r. If t is even, then replace the subtiling

lrl <> · · · <> r of length 2i + 4 covering cells t through t + 2i + 3 in case (ii)
above with the subtiling l <><> · · · <> r covering the same cells in case (iii) and

vice-versa.

The set of survivors of the involution above are those tilings containing no bracket

pairs and where the set of numbers covered by the left halves of dominos comprise

a subset of {2, 4, . . . , 2n} with no consecutive members allowed. Since such subsets

with exactly k elements are synonymous with compositions of the form x1 + x2 +

· · · + xk+1 = n− k, where x1 ≥ 0, xk+1 ≥ 0, and xi ≥ 1 if 2 ≤ i ≤ k, they number�(n−2k+1)+k
k

�
=

�n+1−k
k

�
. Thus, the set of survivors has total weight given by the

sum
��n+1

2 �
k=0 ykx2n+1−2k

�n+1−k
k

�
. Equating this with the above expression for the

total weight yields (13), as desired.

Taking x = Lm and y = (−1)m+1 in (12), and applying (7), yields the following

relation.

Corollary 4. If m,n ≥ 0, then

Lp
mF(q+1)m =

p�

k=0

(−1)
mk

�
p

k

�
F(n+1−2k)m, (14)

where p = �n
2 � and q = �n+1

2 �.

Taking m = 1 in (14) gives the following identity:

Fq+1 =

p�

k=0

(−1)
k

�
p

k

�
Fn+1−2k. (15)

We now prove a formula comparable to (12) for Lucas polynomials.
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Proposition 5. If n ≥ 0, then

xpLq(x, y) =

p�

k=0

(−1)
kyk

�
p

k

�
Ln−2k(x, y), (16)

where p = �n
2 � and q = �n+1

2 �.

Proof. We prove only the odd case, rewritten as

xnLn+1(x, y) =

n�

k=0

(−1)
kyk

�
n

k

�
L2n+1−2k(x, y), n ≥ 0, (17)

upon replacing n with 2n + 1. Similar reasoning applies to the even case. The

n = 0 and n = 1 cases of (17) are easily verified, so we may assume n ≥ 2. Let

S ⊆ BL2n+1 comprise those tilings in which a bracket pair must occupy positions

2i − 1 and 2i for some i. Then the right side of (17) gives the total signed weight

of all members of S. We define a sign-reversing involution on S whose survivors

have weight xnLn+1(x, y). To do so, first apply the mapping used for (13) above

to the subset T of S comprised of linear tilings, the survivors of which have weight

xnFn+1(x, y). Since Ln+1(x, y) = Fn+1(x, y)+yFn−1(x, y), to prove (17), it suffices

to define a sign-reversing involution of S − T whose set of survivors has weight

xnyFn−1(x, y).

First observe that if λ ∈ S−T , then the numbers 2n+1, 1, 2, . . . , 2t+1 are covered

by l, followed by t bracket pairs <>, and then r, for some t, 0 ≤ t ≤ n− 1. Let λ�

be the linear subtiling of λ which covers cells 2t+2 through 2n. Upon applying the

involution used for (13) above (slightly modified), we may assume that λ� contains

no bracket pairs and that the left halves of any dominos within λ� cover only even

numbers, with no two dominos directly adjacent.

We define an involution in this case as follows. Suppose that the number 2n− 2

is covered by the left half of a domino in λ (which implies t ≤ n− 2). We pick up

this domino and change it to a bracket pair <>, leaving a gap of two cells (at 2n−2

and 2n− 1). We then insert this bracket pair into the tiling so that it covers cells

2t + 1 and 2t + 2, sliding the right half of the wraparound domino which previously

covered 2t + 1 (and any pieces coming after it) two cells to the right (so as to fill in

the gap). Note that if cells 2n−2 and 2n−1 are not covered by a domino, then they

must be covered by squares or by > r (in the latter case, we must have t = n− 1),

which implies that the above operation can be reversed. Neither the operation nor

its inverse is defined in the case when t = 0 and cells 2n− 2 and 2n− 1 are covered

by squares.

Thus, the set of survivors of the involution consists of those members of S − T
containing no bracket pairs in which (i) the left half of any non-wraparound domino

covers an even number; (ii) no two non-wraparound dominos are directly adjacent;

and (iii) cells 2n− 2 and 2n− 1 are covered by squares. Reasoning as in the proof
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of Proposition 3 above, we see that this set has weight x2y · xn−2Fn−1(x, y) =

xnyFn−1(x, y), which completes the proof of (17).

Setting x = Lm and y = (−1)m+1 in (16), and using (8), yields the following

result.

Corollary 6. If m,n ≥ 0, then

Lp
mLqm =

p�

k=0

(−1)
mk

�
p

k

�
L(n−2k)m, (18)

where p = �n
2 � and q = �n+1

2 �.

Taking m = 1 in (18) yields the following identity:

Lq =

p�

k=0

(−1)
k

�
p

k

�
Ln−2k. (19)

4. Proofs of (1) Through (4)

4.1. Proofs of (1) and (2)

In this section, we provide combinatorial proofs of formulas (1) and (2), see Propo-

sition 10 below. They will follow from a more general result, namely L∗
2n(x, y) =

(x2 + 4y)n, which we establish below. Note that by the definition of L∗
2n(x, y),

this implies |BL2n| = 5n, upon taking x = y = 1. In addition, we show that

F ∗
2n+1(x, y) = x(x2+4y)n, which implies |BF2n+1| = 5n as well. On the other hand,

there do not appear to be comparable formulas for the polynomials L∗
2n+1(x, y) and

F ∗
2n(x, y).

As a first step, we count members of BL2n containing no squares.

Lemma 7. If n ≥ 0, then the total weight of all members of BL2n not containing
a square is equal to (4y)n.

Proof. Let P be the set of all words of length 2n in the alphabet {<,>}, where

n ≥ 1. Let BL�
2n ⊆ BL2n consist of those tilings containing no squares. Within

a member of BL2n, we will call a domino in-phase if its left half l covers an odd-

numbered cell and out-of-phase if l covers an even-numbered cell. No members of

BL�
2n can contain both kinds of domino. We define a mapping f between BL�

2n

and P by replacing each in-phase domino with << and each out-of-phase domino

with >>.

The inverse may be found by first counting the number of < versus the number

of > within a member of P . If they are equal in number, then we already have
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a member of BL�
2n and we are finished. Otherwise, erase the set that is in the

majority (replace them with blanks to be filled in). Now give each remaining bracket

a mate, as described at the beginning of the second section, and fill in the remaining

cells with in-phase dominos (if < were erased) or out-of-phase dominos (if > were

erased). Note that the brackets in the minority could not have come from dominos

originally; hence, they determine the positions of the bracket pairs. Thus, the

mapping f is a bijection, which implies BL�
2n has cardinality 22n and total weight

22nyn = (4y)n.

Lemma 8. The total weight of all members of BF2n with a square on cell 1 and
containing exactly one other square is equal to x2(4y)n−1.

Proof. We’ll show that each of the following sets contains 4n−1 members:

X: The set of all words having n letters in the alphabet {ss,<<,<>,><,>>},
where the first letter is ss and no other letter is ss;

X2: The set of all lattice paths in the plane starting from the origin and having

2(n− 1) steps, each of which is either a (1, 1) upstep or a (1,−1) downstep;

X3: The members of X2 above in which all path minima occur after an even

number of steps and in which exactly one path minimum is marked;

X4: The set of pairs (S, T ), where S and T are square free tilings belonging to BF2j

and BF2k, respectively, for some j ≥ 0 and k ≥ 0 such that k + j = n− 1;

BFo
2n: The members of BF2n having a square on cell 1 and containing exactly one

other square.

Since it is obvious that |X| = 4n−1, we need only show

|X| = |X2| = |X3| = |X4| = |BFo
2n|.

That |X| = |X2| is trivial; simply ignore the initial ss and transform < into upsteps

and > into downsteps. So is the equality |X4| = |BFo
2n|; just insert a square between

S and T , and another at the beginning which becomes cell 1.

(|X2| = |X3|): Consider the following map from X2 to X3. Given P ∈ X2, if

the minima are even, mark the last one. If they are odd, let P1 be the sub-path

from the first minimum to the last one. Now invert the downstep and upstep which,

respectively, precede and follow P1; this causes P1 to be “raised” 2 units. Place the

mark on the newly created minimum just to the left of P1 (which is even).

There is also a newly created minimum to the right of P1, and there can be none

in between. Therefore we can invert this map as follows: given any Q ∈ X3, if the

mark appears on the last minimum, simply remove it. Otherwise, let Q1 be the

sub-path from the marked minimum to the next one, and “lower” Q1 by inverting

its first and last steps.
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(|X3| = |X4|): For this step, it will be convenient to view each member of X3 as a

pair of words (Q1, Q2), both of which have an even number of letters in the alphabet

{<,>} and whose combined length is 2(n− 1). Now consider applying the bracket-

to-domino transformation f−1 from the previous lemma to Q2. Because the lattice

path corresponding to Q2 never drops below the zero level, we can successfully erase

the < and mate off the > without having to use wraparound. Fill in the remaining

blanks with in-phase dominos as usual. Apply the obvious dual transformation to

Q1, and we have a pair (S, T ) ∈ X4. This map can be inverted because of the

fact that the transformation f applied to a straight tiling (rather than a bracelet)

always creates a path where the origin is a minimum.

Composing the above mappings yields an explicit bijection g : X �→ BFo
2n, which

implies BFo
2n has total weight 4n−1 · x2yn−1 = x2(4y)n−1.

We may now establish the main result of the section.

Theorem 9. If n ≥ 0, then

L∗
2n(x, y) = (x2

+ 4y)
n. (20)

Proof. Let R be the set of words of length n in the alphabet {ss,<<,<>,><,>>},
where each letter ss is assigned the weight x2 and each of the four other letters is

assigned the weight y. We define a weight-preserving bijection λ �→ λ� between the

sets R and BL2n when n ≥ 1 as follows. If λ ∈ R does not have an occurrence

of ss, then apply the transformation f−1 used in the proof of Lemma 7 above to

obtain a member λ� ∈ BL�
2n ⊆ BL2n. If λ ∈ R does contain an occurrence of ss,

then decompose λ as w1ssw2ssw3 · · · sswj , where j ≥ 2 and each wi is a (possibly

empty) word in the alphabet {<<,<>,><,>>}. In this case, let λ� be the member

of BL2n −BL�
2n obtained by applying the mapping g from the proof of Lemma 8,

independently, to each group of consecutive letters sswi, 2 ≤ i ≤ j − 1, as well as

to the group sswjw1 (wrapping around, if necessary). For example, we have

λ = ><<>ss<>ss>>ss>>

�→ >s<>ss<>s>>ss>><

�→ >s<>ss<>slrsslr< = λ�.

Formulas (1) and (2) are now direct consequences.

Proposition 10. Formula (20) implies formulas (1) and (2).

Proof. Substituting x = Lm and y = (−1)m+1 into (11) and (10), and applying

(7) and (8) to the right sides and (20) and (9) to the left sides, yields (1) and (2),

respectively.
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We close this section with a formula for F ∗
2n+1(x, y) similar to (20) above.

Theorem 11. If n ≥ 0, then

F ∗
2n+1(x, y) = x(x2

+ 4y)
n. (21)

Proof. Given λ ∈ BF2n+1, insert a square at the beginning (which becomes cell

1). Decompose the tiling sλ as w1w2 · · ·wr, where each wi is a member of BFo
2ni

for some ni ≥ 1 with n1 + n2 + · · · + nr = n + 1 (where BFo
s is as in the proof of

Lemma 8). Independently apply the mapping g−1 implicit in the proof of Lemma 8

to each subtiling wi to obtain the word g−1(w1)g−1(w2) · · · g−1(wr). This operation

defines a weight-preserving bijection between the members of BF2n+2 starting with

a square and the words in the alphabet {ss,<<,<>,><,>>} of length n + 1

starting with ss, which implies xF∗2n+1(x, y) = x2(x2 + 4y)n.

4.2. Proofs of (3) and (4)

In this section, we establish formulas for the Fibonacci and Lucas polynomials

which we were unable to find in the literature from which (3) and (4) will follow as

special cases (see Proposition 15 below) by adding a certain feature to the bracketed

tiling construction described above. A superdomino is an object which occupies two

adjacent cells (on either a linear or circular board) and having assigned weight y.

They will be the innermost object in the nesting hierarchy, which now reads

superdominos < brackets < squares and dominos.

Each object can only nest inside other objects that are higher on the list–with the

exception of brackets, which are also self-nesting. Consequently, we may create a

“bracketed superdomino tiling” by first choosing the positions for the superdominos

and then filling in the remaining positions with a bracketed tiling. In the three

propositions which follow, the sign of a bracketed superdomino tiling will be defined

as (−1)k, where k denotes the number of superdominos.

Proposition 12. If n ≥ 0, then

F2n+1(x, y) = x
n�

k=0

(−1)
kyk

�
2n + 1− k

k

�
(x2

+ 4y)
n−k. (22)

Proof. The sum on the right side gives the total signed weight of all linear bracketed

superdomino tilings of length 2n+1, where a superdomino is not allowed to cover the

first and last cells and where a member of BF2n+1−2k is used to cover the remaining

cells once the positions for the k superdominos have been determined (starting with

the lowest numbered cell not covered by a superdomino). Note that there are�2n+1−k
k

�
choices regarding the positions of the k superdominos and x(x2 + 4y)n−k

choices regarding the remaining positions to be filled in, by Theorem 11.
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Define an innermost tile to be either a superdomino or a bracket pair covering

two adjacent cells and the first innermost tile to be the one whose first half covers

the cell of lowest number. Define a sign-changing, weight-preserving involution by

replacing the first innermost tile with its opposite. The survivors of this involution

are the tilings of length 2n + 1 comprised solely of squares and dominos, which all

have positive sign and hence have total weight F2n+1(x, y).

Proposition 13. If n ≥ 0, then

F2n(x, y) = (x2
+ 4y)

n
+

n�

k=1

(−1)
kyk 2n + 1

k

�
2n− k

k − 1

�
(x2

+ 4y)
n−k. (23)

Proof. Consider now the set of linear bracketed superdomino tilings of length 2n+1

as in the prior proof except that we may circle a superdomino covering cells 1 and 2.

If 1 ≤ k ≤ n, then there are
2n+1

k

�2n−k
k−1

�
ways in which to position k superdominos

within a tiling of length 2n + 1. This is apparent once we observe that

2n + 1

k

�
2n− k

k − 1

�
=

�
2n− k

k − 1

�
+

�
2n + 1− k

k

�
,

where
�2n−k

k−1

�
and

�2n+1−k
k

�
are the total number of possibilities with and without a

circled superdomino. By Theorem 11, note that x times the right side of (23) then

gives the total signed weight of all possible tilings.

If a superdomino tiling does not start with a circled superdomino, then apply the

involution used in the prior proof. If a tiling does start with a circled superdomino,

then apply this involution to only the final 2n − 1 cells, ignoring the initial two

cells. The set of survivors of this extended involution consists of those superdomino

tilings having no brackets and having no superdominos with the possible exception

of a circled superdomino on cells 1 and 2. Within this set of survivors, those tilings

starting with a domino pair off with those starting with a superdomino. This leaves

only the square-and-domino tilings of length 2n + 1 starting with a square, which

have weight xF2n(x, y). Equating this with the prior expression for the total weight

and canceling x yields (23).

Proposition 14. If n ≥ 1, then

L2n(x, y) = (x2
+ 4y)

n
+

n�

k=1

(−1)
kyk 2n

k

�
2n− 1− k

k − 1

�
(x2

+ 4y)
n−k. (24)

Proof. The sum on the right side of (24) gives the total signed weight of all circular

bracketed superdomino tilings of length 2n, where a superdomino is allowed to

cover the first and last cells and where a member of BL2n−2k is used to cover the

remaining cells once the positions for the k superdominos have been determined.

Note that if 1 ≤ k ≤ n, then there are
2n
k

�2n−1−k
k−1

�
choices for the positions of k
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superdominos and (x2 + 4y)n−k choices for the remaining positions to be filled in,

by Theorem 9. The involution used is the proof of (22) again applies, the survivors

now being the members of L2n.

Formulas (3) and (4) are now easy consequences.

Proposition 15. Formulas (23) and (24) imply formulas (3) and (4).

Proof. Substituting x = Lm and y = (−1)m+1 into (23) and (24), and applying

(9) to the right sides and applying (7) and (8) to the left sides, yields (3) and (4),

respectively.

Still other identities follow directly from the above propositions.

Remarks Taking x = y = 1 in the above propositions, we obtain combinatorial

proofs for identities such as

F2n =

n−1�

k=0

(−1)
k

�
2n− 1− k

k

�
5

n−1−k, n ≥ 1. (25)

Taking x = 1 and y = −1 in (22), for example, and using the well-known fact (see,

e.g., Identity 172 of [5]) that

Fn(1,−1) =

�n
2 ��

k=0

(−1)
k

�
n− k

k

�
=






(−1)n, if n ≡ 0 (mod 3) ;

(−1)n+1, if n ≡ 1 (mod 3) ;

0, if n ≡ 2 (mod 3) ,
(26)

we get direct proofs of identities like

n�

k=0

(−3)
n−k

�
2n + 1− k

k

�
=






1, if n ≡ 0 (mod 3) ;

−1, if n ≡ 1 (mod 3) ;

0, if n ≡ 2 (mod 3) .
(27)

Substituting x = Lm and y = (−1)m+1 into (22), and applying (7) and (9), yields

the following formula for F(2n+2)m which seems to be new:

F(2n+2)m = FmLm

n�

k=0

(−1)
mk

�
2n + 1− k

k

�
(5F 2

m)
n−k, m, n ≥ 0. (28)
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