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Abstract
We use a probabilistic method to evaluate the limit of

∑n
x=1 φ(x)xr−1 n−(r+1),

where φ(x) is the Euler totient function and r is a nonnegative integer. We extend
the probabilistic method to evaluate two other generalized types of series that in-
volve Euler’s totient function. In addition to the probabilistic method, an analytic
approach is presented to evaluate the series when the exponent parameter r is a
positive real number.

1. Introduction

Let x be a positive integer. The Euler totient function φ(x) counts the number
of positive integers not exceeding x and coprime to x. It is known that the se-
ries

∑n
x=1

φ(x)
x

1
n converges to 6/π2 as n → ∞, and the limiting value 6/π2 can

be interpreted as the probability that two randomly chosen positive integers are
coprime.

We need to be precise about how numbers are randomly chosen. Here, we con-
sider two different versions of choosing two positive integers at random. The first
version is to pick a random number X uniformly from the set {1, 2, . . . n}, where n
is a positive integer, and then to pick another random number Y uniformly from
{1, 2, . . . ,X}. Because Y can not exceed X, the two randomly chosen numbers X
and Y are not statistically independent. For x ≤ n, the value φ(x)/x is the con-
ditional probability that X and Y are coprime given the occurrence of the event
{X = x}. Let (X,Y ) = gcd(X,Y ) denote the greatest common divisor of X and
Y , and let Pn be the joint probability measure of X and Y . Using the law of total
probability and conditioning on random variable X, the probability that X and Y
are coprime can be expressed as

Pn{(X,Y ) = 1} =
n∑

x=1

Pn{(x, Y ) = 1|X = x} 1
n

=
n∑

x=1

φ(x)
x

1
n

. (1)
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The series in (1) is extensively studied in number theory. The discovery of its
limiting value 6/π2 = 1/ζ(2) can be traced back to Dirichlet [1], and Euler’s product
formula for the Riemann zeta function

ζ(s) =
∞∑

k=1

1
ks

=
∏

all primes p

(1− 1
ps

)−1

is used with s = 2.
The second version of selecting two positive integers at random is to have two

independent random numbers X and W chosen uniformly from {1, 2, . . . n}, where
n is a positive integer. There are n2 equally likely sample points under this second
sampling scheme, whereas there are n(n+1)/2 sample points under the first version.
Again, let Pn be the joint probability measure of X and W . Partitioning the event
{(X,W ) = 1} based on the order between X and W and using symmetry, we have

Pn{(X,W ) = 1}
= Pn{(X,W ) = 1,X ≥W}+Pn{(X,W ) = 1,X ≤W}−Pn{(X,W ) = 1,X = W}
= 2× Pn{(X,W ) = 1,X ≥W}− Pn{X = W = 1}

= 2×
n∑

x=1

Pn{(x,W ) = 1,X = x,W ≤ x}− 1
n2

= 2×
n∑

x=1

φ(x)
n2

− 1
n2

. (2)

The series in (1) and (2) are related, but different. Notice that with 1 ≤ x ≤ n,
the convergence of

∑n
x=1

φ(x)
x

1
n implies the covergence of

n∑

x=1

φ(x)
x

(
x

n
)r 1

n
, (3)

for any real number r ≥ 0. If we set r = 1 in (3), the series becomes
∑n

x=1
φ(x)
n2 ,

which appears in (2). Our main goal is to introduce a probabilistic method to
evaluate the series in (3) for any positive integer r. For the special case r = 1,
our evaluation will yield the result that

∑n
x=1

φ(x)
n2 converges to 3/π2 as n → ∞.

So the asymptotic probability that two randomly chosen integers are coprime is
6/π2 under either of the two sampling schemes. We then extend the probabilistic
interpretation of the series in (3) to evaluate two other generalized types of series
involving Euler’s totient function.

The formula we are going to establish for the series in (3) is not new in the sense
that it can be deduecd using the Euler summation formula. We will also present
this analytic approach to evaluate the series in (3) for any positive real exponent
parameter r. Without further explanation in this note, we will use Pn to denote
the joint probability measure for the random variables assuming values in the set
{1, 2, . . . n}, where n is a positive integer.
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2. Probabilistic Evaluation of Series Involving φ(x)

First, we will evaluate the series in (3) using a probabilistic method. Under the first
version of sampling two positive integers, we pick a random number X uniformly
from the set {1, 2, . . . , n}, and then we pick another random number Y uniformly
from {1, 2, . . . ,X}. Additionally, statistically independent of X and Y , we generate
another set of r random numbers Z1, Z2, . . . , Zr that are independent and uniformly
selected from {1, 2, . . . , n}. There are nr+1(n + 1)/2 equally likely sample points in
the sample space. Let {X = Zk} denote the set of all sample points representing
the occurrence of the outcome X = Zk for some k = 1, 2, . . . , r. Then we have
Pn{X = Zk} = 1/n for any k = 1, 2, . . . , r. Thus the probability of any subset of
{X = Zk} converges to zero at a rate no slower than 1/n as n→∞.

Now, let Aj be the event that X is a jth order statistic among X,Z1, . . . , Zr,
where j = 1, 2, . . . , r + 1. That is, Aj is the event that exactly (j − 1) of Z’s are
no larger than X and the rest (r − j + 1) of Z’s are no less than X. In particular,
Ar+1 = {Z1 ≤ X,Z2 ≤ X, . . . , Zr ≤ X} is the event that X is a maximum among
X,Z1, . . . , Zr. Let Ω be the sample space, and let B = {(X,Y ) = 1}. The events
A1, A2, . . . , Ar+1 are not mutually disjoint due to possible ties among X,Z1, . . . , Zr.
But every sample point belongs to at least one of those events. Thus Ω = ∪r+1

j=1Aj

and {(X,Y ) = 1} = B = ∪r+1
j=1(Aj∩B). Let us write Ej = Aj∩B, j = 1, 2, . . . , r+1.

Applying the inclusion-exclusion principle on E1, E2, . . . , Er+1, we have

Pn{(X,Y ) = 1} = Pn[∪r+1
j=1(Aj ∩B)] = Pn[∪r+1

j=1Ej ]

=
r+1∑

j=1

Pn[Ej ]−
∑

1≤j1<j2≤r+1

Pn[Ej1 ∩Ej2 ]

+
∑

1≤j1<j2<j3≤r+1

Pn[Ej1 ∩Ej2 ∩Ej3 ]

− · · · + (−1)r Pn[E1 ∩E2 ∩ . . . ∩Er+1]. (4)

On the left hand of equation (4), we know Pn{(X,Y ) = 1} converges to 6/π2

as n → ∞ under the first version of selecting X and Y at random. On the right
hand of equation (4), there are totally (2r+1 − 1) probability terms with either a
positive or a negative sign. Let us first look at Pn[Ej ], j = 1, 2, . . . , r + 1. Because
X,Z1, . . . , Zr are independent and identically distributed (we may label X by Zr+1),
the events A1, A2, . . . , Ar+1 have an equal probability of occurrence. By a similar
argument, we can show that all the events Ej = Aj ∩ B, j = 1, 2, . . . , r + 1, have
an equal probability of occurrence as well. For the other (2r+1 − r− 2) probability
terms, we want to prove that all of them converge to zero as n→∞. It is sufficient
to show Pn[E1 ∩ E2] converges to zero as n → ∞. Clearly E1 ∩ E2 is a subset of
A1∩A2. The event A1∩A2 means X is both a minimum and a second order statistic
among X,Z1, . . . , Zr, which implies X = Zk for some k = 1, 2, . . . , r. Because the
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probability of any subset of {X = Zk} converges to zero at a rate no slower than
1/n as n → ∞, this establishes that Pn[E1 ∩ E2] converges to zero as n → ∞.
Hence, the right-hand side of (4) converges to (r + 1) times the limiting value of
Pn[Er+1] as n → ∞. It follows that Pn[Er+1] = Pn[Ar+1 ∩ B] = Pn{(X,Y ) =
1, Z1 ≤ X,Z2 ≤ X, . . . , Zr ≤ X} converges to 1/(r + 1) times 6/π2 as n → ∞ in
equation (4). We can express this probability as

Pn{(X,Y ) = 1, Z1 ≤ X,Z2 ≤ X, . . . , Zr ≤ X}

=
n∑

x=1

Pn{(x, Y ) = 1, Z1 ≤ x,Z2 ≤ x, . . . , Zr ≤ x | X = x} 1
n

(5)

=
n∑

x=1

φ(x)
x

(
x

n
)r 1

n
. (6)

This is the series in (3). Notice that from (5) to (6), we need the assumption of
statistical independence among random numbers Y,Z1, Z2, . . . , Zr. We have proved
the first series involving Euler’s totient function, which is recapitulated below.

Formula 1. Let φ(x) be the Euler totient function. Let r be a positive integer.
Then

lim
n→∞

n∑

x=1

φ(x)
x

(
x

n
)r 1

n
=

6
(r + 1)π2

.

For r = 1, we have the special case that
∑n

x=1
φ(x)
n2 converges to 3/π2 as n→∞.

This shows that the series in (2) also converges to 6/π2, and hence the limiting
probability of choosing two coprime positive integers at random under both versions
of sampling scheme is 6/π2.

We have just looked at the event {(X,Y ) = 1, Z1 ≤ X,Z2 ≤ X, . . . , Zr ≤ X}
probabilistically to derive Formula 1. While we take n → ∞ in equation (4), the
same argument can be used to show that the probability

Pn[Ej ] = Pn{(X,Y ) = 1,X is a jth order statistic among X,Z1, Z2, . . . , Zr} (7)

has the same limiting value (r + 1)−1 × 6/π2 for any j = 1, 2, . . . , r + 1. As we
have explained, the event that X is a jth order statistic means exactly j − 1 of
Z1, Z2, . . . , Zr are no larger than X and the rest (r− j +1) of Z1, Z2, . . . , Zr are no
less than X. There are

( r
j−1

)
distinct subsets of size j−1 chosen from Z1, Z2, . . . , Zr.

Using the law of total probability again, we can express the probability in (7) as
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follows:

Pn{(X,Y ) = 1,X is a jth order statistic among X,Z1, Z2, . . . , Zr}

=
n∑

x=1

Pn{(x, Y ) = 1, j − 1 of Z1, . . . , Zr ≤ x, (r − j + 1) of Z1, . . . , Zr ≥ x | X = x}
n

=
n∑

x=1

φ(x)
x

(
r

j − 1

)
(
x

n
)j−1(

n− x + 1
n

)r−j+1 1
n

.

This proves the second series involving Euler’s totient function, which generalizes
Formula 1.

Formula 2. Let φ(x) be the Euler totient function. Let r be a positive integer.
Then for any j = 1, 2, . . . , r + 1,

lim
n→∞

n∑

x=1

φ(x)
x

(
r

j − 1

)
(
x

n
)j−1(

n− x + 1
n

)r−j+1 1
n

=
6

(r + 1)π2
.

Next, we use a similar probabilistic argument to evaluate the limit of the series

n∑

x=1

(
φ(x)

x
)l

(
r

j − 1

)
(
x

n
)j−1(

n− x + 1
n

)r−j+1 1
n

, (8)

where l and r are both positive integers, and j = 1, 2, . . . , r + 1. The convergence
of the series in (8) follows from the convergence of

∑n
x=1

φ(x)
x

1
n and the fact that

φ(x)/x, x/n, and (n − x + 1)/n are all between 0 and 1. We now give a proba-
bilistic interpretation for the term (φ(x)/x)l. Start with a random integer X drawn
uniformly from the set {1, 2, . . . , n}. This time, we generate a set of l random
integers Y1, Y2, . . . , Yl that are independent and uniformly distributed over the set
{1, 2, . . . ,X}. The quantity (φ(x)/x)l is the conditional probability that (X,Yi) = 1
for all i = 1, 2, . . . , l, given the occurrence of the event {X = x}. In fact, we have

Pn{(X,Y1) = 1, (X,Y2) = 1, . . . , (X,Yl) = 1}

=
n∑

x=1

Pn{(x, Y1) = 1, (x, Y2) = 1, . . . , (x, Yl) = 1 | X = x} 1
n

=
n∑

x=1

(
φ(x)

x
)l 1

n
.

For any positive integer l, Kac ([3], pp. 57-58) justified the following formula due
to I. Schur:

lim
n→∞

n∑

x=1

(
φ(x)

x
)l 1

n
=

∏

all primes p

[1− 1
p

+
1
p
(1− 1

p
)l], (9)
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where the infinite product is taken over all prime numbers. Let us label the value
in (9) by C(l), which stands for the limiting probability that a random positive
integer X is coprime to each of the l positive integers Y1, Y2, . . . , Yl that are drawn
independently and uniformly from {1, 2, . . . ,X}. There is no closed-form expression
for C(l) found in the literature except for the case C(1) = 1/ζ(2) = 6/π2.

As for the term
( r
j−1

)
(x/n)j−1((n−x+1)/n)r−j+1 in the series of (8), we can use

the same argument that establishes Formula 2. That is, we introduce another set of
r independent integers Z1, Z2, . . . , Zr selected uniformly from the set {1, 2, . . . , n},
and they are independent of X, Y1, Y2, . . . , Yl. We consider events Aj that X is
a jth order statistic among X,Z1, Z2, . . . , Zr, j = 1, 2, . . . , r + 1. Then we apply
the principle of inclusion-exclusion and the argument of symmetry on events Aj ∩
{(X,Y1) = 1, (X,Y2) = 1, . . . , (X,Yl) = 1}, j = 1, 2, . . . , r + 1, to establish the
following result, which is the third series involving Euler’s totient function.

Formula 3. Let φ(x) be the Euler totient function. Let l and r be two positive
integers. Then for any j = 1, 2, . . . , r + 1,

lim
n→∞

n∑

x=1

(
φ(x)

x
)l

(
r

j − 1

)
(
x

n
)j−1(

n− x + 1
n

)r−j+1 1
n

=
1

r + 1
C(l),

where C(l) is the value given in (9).

3. Series Evaluation Using an Analytic Approach

For the three formulas presented in the previous section, Formula 2 generalizes For-
mula 1, and Formula 3 generalizes both Formula 1 and Formula 2. The probabilistic
method we used to evaluate the three related series is based on introducing a fi-
nite number of independent and identically distributed random variables and the
argument of symmetry. Nevertheless, the probabilistic interpretation can not be
applied to the cases when any of l, r, and j is not an integer. The following Euler
summation formula can be used to prove Formula 3 for any real numbers l, r and
j with l ≥ 1, r > 0, and 0 ≤ j ≤ r.

Euler Summation Formula Let an be an arithmetic function with

lim
n→∞

1
n

n∑

x=1

ax = C.

For any real-valued differentiable function f(t) defined in interval [0, 1], we have

lim
n→∞

1
n

n∑

x=1

axf(x/n) = C

∫ 1

0
f(t) dt.
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Proof . Let A(n) =
∑n

x=1 ax, and let χA(t) = 1 if t ∈ A and zero elsewhere. The
condition that the Cesaro sum of an converges to C is equivalent to the statement
that A(n) = Cn + o(n). We can rewrite

∑n
x=1 ax[f(x/n)− f(0)] as follows.

n∑

x=1

ax[f(x/n)− f(0)] =
n∑

x=1

ax

∫ x/n

0
f ′(t) dt

=
∫ 1

0

n∑

x=1

axχ[0,x/n](t)f ′(t) dt

=
∫ 1

0
f ′(t)

∑

nt<x≤n

ax dt

=
∫ 1

0
f ′(t)A(n) dt−

∫ 1

0
f ′(t)A(nt) dt

= A(n)[f(1)− f(0)]−
∫ 1

0
f ′(t)A(nt) dt.

It follows that
n∑

x=1

axf(x/n) = A(n)f(1)−
∫ 1

0
f ′(t)A(nt) dt

= [Cn + o(n)]f(1)−
∫ 1

0
f ′(t)[Cnt + o(nt)] dt

= Cn[f(1)−
∫ 1

0
f ′(t) t dt] + o(n)

= Cn

∫ 1

0
f(t) dt + o(n).

Now divide both sides of the above equation by n and let n→∞. !

Now, the three formulas presented in the previous section become corollaries
to the Euler summation formula. For Formula 1, we can use ax = φ(x)/x and
f(t) = tr. Formula 2 follows with ax = φ(x)/x and f(t) =

( r
j−1

)
tj−1(1 − t)r−j+1.

Formula 3, the most generalized one, is justified with ax = (φ(x)/x)l and f(t) =( r
j−1

)
tj−1(1− t)r−j+1.

4. Concluding Remarks

For the three formulas presented in this note, Formula 2 generalizes Formula 1, and
Formula 3 generalizes both Formula 1 and Formula 2. Equipped with the value
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C(l) given in (9) and Formula 3, we can show that as n→∞, the limit of the series

n∑

x=1

φ(x)lxj−l(n− x + 1)r−jn−(r+1)

is
(r

j

)−1(r + 1)−1C(l) for any positive integers l and r, and any j = 0, 1, . . . , r. The
Euler summation formula is employed to evaluate the series for any real numbers l,
r and j with l ≥ 1, r > 0.

We have computed the limiting probability that a random positive integer X cho-
sen uniformly from {1, 2, . . . , n} is coprime to each of a set of l random positive inte-
gers Y1, Y2, . . . Yl that are chosen independently and uniformly from {1, 2, . . . ,X}.
Because none of the Yi can exceed X, those l random positive integers are not
independent of X. Would this limiting probability change if the set of l random
positive integers is independent of X? That is, if X, W1,W2, . . . ,Wl are generated
independently and uniformly from {1, 2, . . . , n}, would the limiting value of

Pn{(X,W1) = 1, (X,W2) = 1, . . . , (X,Wl) = 1} (10)

be equal to C(l) given in (9) as n → ∞? For l = 1, we have shown the answer is
C(1) = 6/π2 under both versions of sampling scheme. For l ≥ 2, we need a way to
count the number of positive integers not exceeding n and coprime to x. This calls
for the Legendre totient function φ(n, x) that denotes the number of positive integers
that are less than or equal to n and coprime to x. The Euler totient function is a
special case of the Legendre totient function with φ(x) = φ(x, x). We can express
the probability in (10) in terms of the Legendre totient function as shown below.

Pn{(X,W1) = 1, (X,W2) = 1, . . . , (X,Wl) = 1}

=
n∑

x=1

Pn{(x,W1) = 1, (x,W2) = 1, . . . , (x,Wl) = 1 | X = x} 1
n

=
n∑

x=1

(
φ(n, x)

n
)l 1

n
. (11)

In [2] and [4], the asymptotic behavior of φ(n, x) is investigated when x is large.
Here we need to assess φ(n, x) when n is large. We conjecture that the series in
(11) converges to C(l) for any l ≥ 2, and leave it as a future research problem.

The most commonly adopted assumption for random numbers means that they
are chosen independently and uniformly from a given set of numbers. We like to
conclude by remarking that the probability of choosing two coprime positive integers
at random could depend upon how the two numbers are generated.
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