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Abstract

If E is a subset of Z then the n-th characteristic ideal of the algebra of rational
polynomials taking integer values on E, Int(E,Z), is the fractional ideal consisting
of 0 and the leading coefficients of elements of Int(FE,Z) of degree no more than n.
For p a prime the characteristic sequence of Int(E,Z) is the sequence of negatives
of the p-adic values of these ideals. We give recursive formulas for these sequences
for the sets {n?:n =0,1,2,...} by describing how to recursively p-order them in
the sense of Bhargava. We describe the asymptotic behavior of these sequences and
identify primes, p, and exponents, d, for which there is a formula in closed form for
the terms.

1. Introduction
For any subset E of Z the ring of integer-valued polynomials on F is defined to be
Int(E,Z) = {f(x) € Qlz] : f(E) € Z}.

Associated to this ring is its sequence of characteristic ideals, {I, : n =0,1,2,...},
with I,, the fractional ideal formed by 0 and the leading coefficients of the elements
of Int(E,Z) of degree no more than n. For p a prime the sequence of negatives
of the p-adic valuations of the ideals I,,, {a(n) : n = 0,1,2,...}, is called the
characteristic sequence of E with respect to p. In this paper we will give a recursive
method for computing these sequences, and so the characteristic ideals, of the power
sets £ = {n?:n=0,1,2,...} for any prime p and any positive integer exponent d
and identify cases in which a nonrecursive formula exists.

Our results are based on the idea of a p-ordering of a subset E of Z as introduced
in [1], [2] and we will, in the course of establishing our results, also give recursive
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methods for constructing p-orderings of these sets. A p-ordering of E is a sequence
{a, : n = 0,1,2,...} C E with the property that for each n the element a,
minimizes the p-adic valuation VP(H?:_Ol (x —a;)) over x € E. It is shown in [1],
[2] that the sequence {Vp(H?;OI(an —a;)) :n = 0,1,2,...} coincides with the
characteristic sequence of F for the prime p. To state our main result we use the
following notation:

Definition 1. If E is a subset of Z, p a prime, and 0 < s < p, let Es ={zx € E:
z =s (mod p)}. Also, if {a(n) : n =0,1,2,...} is the characteristic sequence of
E with respect to p, let {as(n) :n=0,1,2,...} denote the characteristic sequence
of Es.

Theorem 2. If d is a positive integer and E = {n? : n = 0,1,2,...}, then the
characteristic sequence {as(n)} has the properties:

(a) ap(n) =dn+ a(n).
(b) if s #0, and p1d, then as(n) =n+ vp(n!).

(¢) ifp|dandd=p°d; withptd, then as(n) = (c+1)n+wv,(n!) forp >3 and
as(n) = (c+2)n+wva(n!) ifp=2.

(d) if s # 0 and a is such that a® = s (mod p), then the increasing order on
{(np+a):n=0,1,2,...} is a p-ordering for Es.

(e) the map ¢(n?) = (pn)? from E to Ey gives a one-to-one correspondences
between the p-orderings of these two sets.

Since, by Lemma 3.5 of [6], the characteristic sequence {a(n) : n =0,1,2,...}
of E is the shuffle of the sequences {as(n) :n =0,1,2,...} for s =0,1,...,p—1
into nondecreasing order, it follows that for each n the value of a(n) is equal to
as(m) for some s and some m < n and so that parts (a), (b) and (c) of this theorem
determine «(n) for all n. Also, a p-ordering of E is given by combining p-orderings
of the Ey’s using the same shuffle and so is determined as well by parts (d) and (e).

For example, for d = 3 and p = 2 the sequence {a(n) : n = 0,1,2,...} is the
nondecreasing shuffle of the sequence

{a1(n):n=0,1,2,...} ={n+wr(n):n=0,1,2,...}
=1{0,1,3,4,7,8,10,11,15,...}

with the sequence {ag(n) : n = 0,1,2,...} which satisfies the equation ag(n) =
3n + a(n). Thus

{ap(n):n=0,1,2,...} = {0,3,7,12,15,19,25,28,32,... }

and
{a(n) :n=0,1,2,...}={0,0,1,3,3,4,7,7,8,... }.
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The corresponding 2-ordering is {0,1,27,8,125,343,216,729,1331,...}. Similar
calculations for the primes 3, 5, and 7 show that the sequence of inverses of char-
acteristic ideals of the set of cubes is

{(1), (1), (2), (72), (72), (2160), (51840), (362880), (6531840), ... }.

Combining the results of Theorem 2 with those of [7] allows us to determine the
asymptotic behavior of the characteristic sequences, i.e., the values of the limits
limy, 00 (1) /n.

Theorem 3. If E = {n? : n = 0,1,2,...}, the sets E, are nonempty for e + 1
distinct residue classes modulo p and L = lim,, . a(n)/n, then

(a) if ptd, then L satisfies the equation

e(p—1)L? +ed(p — 1)L — pd = 0.

(b) if p | d and d = p°dy with p t dy, then for p > 3 the limit L satisfies the
equation

e(p— 1)L +ed(p — D)L - d((p - 1)(c+ 1) + 1) =0,
while for p = 2 it satisfies
L* +dL —d(c+3)=0.
The question of whether or not these limits are rational can be settled by exam-

ining the discriminants of the quadratic equations above.

Theorem 4. If S = {n? : n = 0,1,2,...} and {a(n) : n = 0,1,2,...} is the
characteristic sequence of S for the prime p, then the limit L = lim,_, a(n)/n is
rational if and only if d |p—1 ord =p=2.

In those cases where this limit is rational there is a closed form formula for the
characteristic sequence:

Theorem 5. Ifd|p—1 and {a(n):n=0,1,2,...} is the characteristic sequence
of the set S = {n?:n=0,1,2,...} then a(n) = v,((dn)!).

2. Characteristic Sequences and p-Orderings

The assertions in Theorem 2, parts (a) and (e), concerning Fy and ag(n) are obvious.
We will, therefore, assume from this point on that s # 0 and provide a proof of the
other assertions in the theorem. For this we need some preliminary results about
the sets FE.
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Lemma 6. The congruence ¢ = 1 (mod p) has ged(d,p — 1) distinct solutions
modulo p.

Proof. Let t = ged(d,p — 1). The multiplicative group (Z/(p))* is cyclic of order
p — 1 and so has a unique subgroup of order ¢ consisting of those elements of Z/(p)
whose multiplicative order divides ¢. Since t is a divisor of d, all elements of this
subgroup are solutions of the given congruence. On the other hand, if z € Z/(p) is
a solution of this congruence then its order must be a divisor of d and also of the
order of (Z/(p))*, i.e., of t. O

Let r be a generator of the cyclic subgroup of (Z/(p))* consisting of the solutions
of 24 =1 (mod p) and, for 0 < i < ged(d,p — 1) — 1, let r; be the representative of
i

r* (mod p) which is between 1 and p — 1 (so that in particular ro = 1 and r; = r).

Corollary 7. If a? = s (mod p), then the set Ey is the disjoint union of the sets
Esi={(np+ria)d:n=0,1,2,...} for 0 <i < ged(d,p— 1) together with a finite
(possibly empty) set. In particular, the disjoint union of the sets Es; is p-adicly
dense in E.

Lemma 8. If a? = s (mod p) and Es and the sets E,; are as above, then Ey g is
p-adicly dense in F.

Proof. In order to prove that F o is p-adicly dense in I, we need only prove that for
every k € N, every i such that 0 < i < ged(d,p—1) — 1 and every (yp+r;a)? € Es ;,
there exists (zp + a)? € Es such that v,((yp + r;a)? — (zp + a)?) > k.
k
Let o € Z be a solution of the congruence 7 x =y (mod p*~1). Such a solution
k

p

exists because r; is not divisible by p and so r; is a unit modulo pF~1. For such

an x we have i

ply—r? x)=0= a(rfk —r;) (mod p*)
which is equivalent to
(py+ria) =77 (pr+a) (mod p)
and so we have, taking d-th powers,
(py +ria)d = rgpk (pz + a)? = (pz +a) (mod p*)
as required. O

Since E g is p-adicly dense in E,, a p-ordering of E, ¢ will be one of E; also and
these sets will have the same characteristic sequences. To calculate this character-
istic sequence some preliminary results concerning p-adic values of d-th powers are
needed.
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Let o € Z, \ {1} be such that v,(aw —1) > 1 and let d > 1. We then have
al—1=(a—1)( g_l(ak — 1) + d) and so, in particular, if p does not divide d,
then v,(a? — 1) = v, (o — 1). If p does divide d, then we have the following:

Lemma 9. [([4], Prop 8)] If a € Z, \ {1} is such that vp,(a — 1) > 1, then for
every d € N such that p divides d we have

d_ 1) vpla—1)+vp(d) ifp>3 orp=2and vp(a—1)>2
vp(af —1) = vpla+1)+vp(d) ifp=2andvy(a—1)=1

Lemma 10. If a® = s (mod p) and (zp + a)? and (yp + a)? are elements of Es o,
then:

i. if p > 3 then,
vp ((zp +a)? = (yp + a)?) = 1+ wp(z — ) +1,(d).
. ifp=2 and v,(x —y) > 1, then
vp ((zp + )" = (yp +a)*) =1+ wp(x — y) + vp(d).
iti. if p=2 and vp(x —y) =0, then
vp ((zp+ @) = (yp + a)?) = 1+ vp(a +y + a) + v (d).

Proof. We have:

vp ((pr+a)' — (py + a)?) =1, <<px+a>d — 1) .

Py +a

Since v, <(p:z: + a) — 1) =1 <M> > 1, using Lemma 9 we have:
py+a py+a

i. if p>3orvy(r—y)>1, then

d_ ol = o (PEZ9N L,
vp ((pz 4 a)® = (py + a)?) p<py+a>+p(d)

o((552) ) o

= 1+yp(r—y) +vp(d).

ii. if p=2and v,(x —y) > 1, then

vp ((pr +a) = (py + a)*) = 1+ vp(z —y) + v (d).
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iii. if p=2and v,(z —y) =0, then

pr+a
vp ((p +a)* = (py + a)?) Vp <(py+a) - 1) + 1,(d)
= l+4+y(x+y+a)+ryd). O

In fact, if p = 2 and d = 2m, then

o (0 + 0) = (py + a)) =, ((p““)m - 1)

Py +a

=y, ((px+a+1> (pa:—|—a —1)> + vp(m)
py+a py+a

=vp, (PP (@ +y+a)(z—y)) +vp(m)
=1+ ((372 + ax) — (y2 + ay)) + vp(d).

We are now ready to prove Theorem 2.

Proof. Since, as previously noted, Es ( is dense in E these two sets have the same
characteristic sequence. For parts (b) and (d) we show by induction on n that the
sequence {((np+a)?) :n=0,1,2,...} is a p-ordering for E; . Since p{d it follows
from Lemma 10 that

n—1 n—1
Z vp ((zp+ a)* — (ip+a)*) =n+ Z vp(x — ).
i=0 1=0

The term n in this sum is independent of xz and the remaining sum is the same
as that occurring in showing that the usual increasing order is a p-ordering of the
integers. It is, therefore, minimized by taking £ = n in which case the value of the
sum, which equals a,(n), is n + vy(n!) .

For part (c), if p > 3 and p | d with d = p°d; and p 1 d;, then the same argument
shows that

n

|
—

vp ((xp + a)® — (ip + a)d) =n+ nvp(d) + i: vp(x —1)
i=0

Il
=]

i
is minimized by taking « = n which results in as(n) = (¢ + 1)n + v, (n!).
For p =2 and s = 1 we may take a = 1. The corresponding expression is

|
—

n

vp (22 4+ 1)% — (20 + 1)%) = n + nwa(d) + ”2 vy (2% + ) — (4% +1))
i=0

Il
<3

i
and, since the increasing ordering on {n? +n | n € N} is known to be a 2-ordering,
it follows that = n minimizes the sum in this case also. O
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3. Limits

By Proposition 7 of [7] the limit L = lim,,_, o, a(n)/n satisfies the equation

1 1

=21
if Ls = lim, o as(n)/n and the sum is taken over the residue classes for which
E; is infinite. Recall that if the expression of n in base p is n = > n;p’, then

vp(nl) = (n—>_n;)/(p —1). It thus follows from part (b) of Theorem 2 that for
s#0and ptd

(n+ ”%Zlni)
Ls; = lim (n+vp(n!))/n= lim + =p/(p—1)
while for s = 0 part (a) implies
Lo=L+d.

We thus have that

1 1 p—1
L d+L + Z P
in which the sum has e = (p — 1)/ ged(d,p — 1) terms. Simplifying this equation
yields the quadratic
e(p—1)L* 4+ ed(p — 1)L — pd = 0.
If d = p°d; with ¢ > 0, then for p > 3 we have
Ly = lim ((c+)n +vp(nl))/n=((c+1)(p—-1) +1)/(p 1)

and, for p = 2,
Ly = lim ((¢+2)n 4+ va(n!)) = c+ 3.

This gives, for p > 3, the equation

1 1 p—1
f_d+L+Z(c+1)(p—1)+1
and, for p = 2,

1 1 1

A R s
The corresponding quadratics are, for p > 3,

e(p—1)L? +ed(p— 1)L — d((p— 1)(c+1) +1) =0

and, for p = 2,

L? +dL —d(c+3) =0.

The fact that these limits are roots of quadratic equations raises the natural

question of whether or not these limits are rational. The answer is as follows:
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Proposition 11. If {a(n) : n = 0,1,2,...} is the characteristic sequence for the
set {nd:n =0,1,2,...} with respect to the prime p and L = lim, . a(n)/n, then
L €Q if and only if d dividesp—1 ord=p = 2.

Proof. We consider separately the four cases p > 2 andptd,p>2and p|d, p=2
and d odd, and p = 2 and d even. In each case we determine whether or not the
discriminant of the quadratic equation given above is a square.

If p > 2 does not divide d, then the discriminant in question is (ed(p — 1)) +
ded(p —1)p = (ed(p — 1) + 2p)? — 4p®. If this is a square, y? say, then (2p,y, ed(p —
1)+2p) is a Pythagorean triple. A general Pythagorean triple with common divisor
k is of the form (kz,ky, kz) with ged(z,y,2) = 1 and exactly one of z or y even.
By a theorem of Euler if y is even, then there exist m,n such that x = m? — n?,
y = 2mn and z = m? + n2. In our case k = 2, since p is an odd prime, and so we
must have p = m? —n? = (m —n)(m + n). Since p is prime the only solution is
m = (p+1)/2 and n = (p — 1)/2. Since 2(m? + n?) = ed(p — 1) + 2p we have

(p+12/24+(p-1)22=p*+1=ed(p—1)+2p

and so p— 1 = ed. Since ed = d(p — 1)/ ged(d,p — 1) = lem(d, p — 1) this can occur
if and only if d is a divisor of p — 1.

If p > 2 divides d with d = p°/, then the discriminant is (ed(p — 1))? + 4de(p —
D~ 1)(e+1)+1) = (ed(p— 1) +2((p— 1)(e+ 1)+ 1)* ~ 4((p — e+ 1)+ 1)°.
As in the previous case, if this forms a Pythagorean triple (2((p — 1)(c¢ + 1) +
1),y,ed(p—1)+2((p—1)(c+1)+1)), then the greatest common divisor, k, is even
and there exist integers m > n such that 2((p — 1)(c+ 1) + 1) = k(m? — n?) and
k(m?>+n?) =ed(p—1)+2((p —1)(c+1) +1). Let D =2((p—1)(c+ 1)+ 1). If
k(m? —n?) = D, then k(m? 4+ n?) = 2kn? + D. This is an increasing function of
n and so is largest when n is largest subject to the constraint m > n, i.e., when
m = n+1 in which case n = ((D/k)—1)/2 and m = ((D/k)+1)/2. For these values
k(m?+n?) = (D?/2k)+ (k/2) which is largest if k = 2 (since k is even). Combining
this with our second equation we have the inequality D?/4 +1 > D +ed(p — 1) or

p—172c+12=1 > (p—Dlem(d,p—1)

_ (p — Dplem(l,p — 1)
> (p—1)%p"

This implies (¢ + 1)? > p¢ which can occur only if p=3 and c=1or c = 2. In
both of these cases no pair m,n exists.

If p =2 and d is odd, then the discriminant is d? + 8d = (d + 4) — 42. In this
case in order for (4,y,d + 4) to be a Pythagorean triple there must exist integers k
and m > n such that 4 = 2kmn and k(m? + n?) = 4 + d. Since the first equation
implies m = 2 and k = n = 1 the only possible value of d is d = 1.
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If p = 2 and d = 2¢/, then the discriminant is d?+4d(c+3) = (d+2(c+3))?—4(c+
3)? and so we must consider possible Pythagorean triples (2(c + 3),y, 2(c + 3) + d).
Since d is even the greatest common divisor, k, must be even also and either vo(2(c+
3)+d) < va(2(c+3)) or v2(2(c+3) +d) = v2(2(c+3)). In the first case there exist
integers m > n such that c+3 = kmn with k(m?+n?) = d+2(c+3) = 2¢0+2(c+3).
The quantity k(m? + n?) is subject to the constraints ¢ + 3 = kmn, m > n and
k even and so is largest if n = 1, k = 2 and m = (c + 3)/2. We thus have
2(((c+3)/2)% + 1) > 2°¢ + 2(c + 3), which implies (¢ + 1)* > 2°*! and so ¢ < 3.
The only value of ¢ in this range for which there is a solution is ¢ = 1 with k = 2,
=1, m=2and n=1. In the second case there must exist integers m > n such
that 2(c + 3) = k(m? —n?) and k(m? +n?) =d+2(c+3) =20 +2(c+3). Asin
the case p > 2, above, the first of these equations implies that

c+?%—ly+(ﬂo+?M+1y)

The right-hand side is largest if k = 2 and simplifies to give

k(m? 4+ n2) < k(X

E(m? +n?) < (c+3)% + 1.
Combining this with the second equation gives the inequality
(c+3)2+1>2(c+3)+d

or
(c+2)*>d=2%
which occurs only if ¢ < 6 and no value for ¢ in this range has v2(2(c +3) +d) =

v2(2(c+ 3)). O

Proposition 12. If d divides p — 1, then the characteristic sequence {a(n) : n =
0,1,2,...} of the set {n? :n =0,1,2,...} is given by a(n) = v,((dn)!).

Proof. Let e = (p — 1)/d and let B(n) = v,((dn)!). Also let ¢ and {35 : s =
1,2,...,e} be the following maps from Z=0 to Z=°:

o(n) =dn

Ys(n) =en+ |n/d] + s.

It is straightforward to verify that these e + 1 maps define a shuffle, i.e., that each
is strictly increasing and that any element of Z=Y is in the image of exactly one of
them. By Theorem 2 {a(n) : n = 0,1,2,...} is the nondecreasing shuffle of the e
sequences {as(n) : n=10,1,2,...} with as(n) = n+v,(n!) for s =1,2,...,e and
the sequence {ap(n) : n=0,1,2,...} with ag(n) = dn + a(n). Thus it will suffice,
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by induction on n, to show that {#(n):n=0,1,2,...}, which is nondecreasing, is
the (¢, 1, ...,9s)-shuffle of dn + B(n) and the sequences ag, ..., as.

For the first of these let >_n;p® be the base p expansion of dn and note that the
base p expansion of pdn will then be > n;p'*!. We thus have

B(o(n)) = Blpn)
— yy(pdnl)
pdn — > n;
p—1

_ dn—i—dn_%ni

= dn+ B(n).

For the others, note that for 0 < r < d we have ¥s(dn+r) = pn+er + s and so,
that

B(s(dn+1)) = B(pn +er + s) = vp((pdn + (p — L)r + ds)!)
while
as(dn +1) = vp((p(dn +1))!) = vp((pdn + pr)!).

Since (p — )r +ds — pr =ds —r and 1 < ds — r < p these two p-adic norms are
equal, i.e., B(¢s(dn+ 1)) = as(dn + ). O
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