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Abstract
For all positive integers s and t, Brown et al. defined f(s, t) to be the smallest posi-
tive integer N such that every 2-coloring of [1, N ] has a monochromatic homothetic
copy of {1, 1 + s, 1 + s + t}. They proved that f(s, t) ≤ 4(s + t) + 1 for all s, t and
that equality holds in the case where both s/g "≡ 0 (mod 4) and t/g "≡ 0 (mod 4)
with g = gcd(s, t) and in many other cases. They also proved that for all positive
integers m, f(4mt, t) = f(t, 4mt) = 4(4mt + t) − t + 1 or 4(4mt + t) + 1. In this
paper, we show that f(4mt, t) = f(t, 4mt) = 4(4mt + t)− t + 1 and that for all the
other (s, t), f(s, t) = 4(s + t) + 1.

1. Introduction

Van der Waerden’s theorem on arithmetic progressions [5] states that for every
positive integer k there is a smallest positive integer w(k) such that every 2-coloring
of [1, w(k)] = {1, 2, . . . , w(k)} has a monochromatic k-term arithmetic progression.
There are lots of results on the estimation of w(k) for large k (see [3], for example).

Let s, t, m be positive integers. A homothetic copy of {1, 1+s, 1+s+t} is any set
of the form {x, x+ys, x+ys+yt} where x and y are positive integers. Regarding 3-
term arithmetic progressions as homothetic copies of {1, 1+1, 1+1+1}, Brown et al.
[2] considered van der Waerden’s theorem on homothetic copies of {1, 1+s, 1+s+t}.
They defined f(s, t) to be the smallest positive integer N such that every 2-coloring
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of [1, N ] has a monochromatic homothetic copy of {1, 1 + s, 1 + s + t}. As they
have noted, f(s, t) = f(t, s) and hence we assume that s ≥ t. They proved that
f(s, t) ≤ 4(s + t) + 1 for all s, t and that the equality holds in the case where both
s/g "≡ 0 (mod 4) and t/g "≡ 0 (mod 4) with g = gcd(s, t) and in many other cases.
Also they proved that f(4mt, t) = 4(4mt + t) − t + 1 or 4(4mt + t) + 1. In this
paper, we show that f(4mt, t) = 4(4mt + t)− t + 1 and that for all the other (s, t),
f(s, t) = 4(s + t) + 1.

The following lemma is stated as Theorem 1 in [2].

Lemma 1. (Brown, Landman, Mishna) Let s, t and c be positive integers. Then
f(cs, ct) = c(f(s, t)− 1) + 1.

The following lemma is from the Chinese Remainder Theorem.

Lemma 2. Let s, t be positive integers such that gcd(s, t) = 1. Then any integer
in [1, 4s + 4t] is equal to 1 + is + jt for some unique 0 ≤ j < s and −jt/s ≤ i <
4 + (4− j)t/s.

Let s, t be positive integers and C be a 2-coloring of [1, N ]. Due to Lemma 1
we may assume that gcd(s, t) = 1. As in Lemma 2, any integer in [1, N ] is equal to
1 + is + jt for some 0 ≤ j ≤ N−is−1

t . For those (i, j), construct Table 1 where each
column consists of {C(1+is+jt)} for fixed i over increasing j and each row consists
of {C(1+ is+jt)} for fixed j over increasing i. Note that in Table 1, a triple {C(x),
C(x + ys), C(x + ys + yt)} composes an isosceles right triangle whose right angle
is on the right top, which is recognized geometrically. For simplicity we call such
a triangle an IRT. This geometric viewpoint is also helpful to solve the following
problem which was raised by Bialostocki et al. [1]: Find the smallest positive integer
N such that every 2-coloring of [1, N ] has a monochromatic triple {x, x+d, x+2d+b}.
To solve this problem construct a table like Table 1 which contains C(1 + id + jb)
instead of C(1 + is + jt). Then in that table, {C(x), C(x + d), C(x + 2d + b)}
composes a triangle we get from an IRT by moving its lower vertex to the right for
its length of base.

C(1) C(1 + s) C(1 + 2s) C(1 + 3s) . . .
. . . C(1 + t) C(1 + s + t) C(1 + 2s + t) C(1 + 3s + t) . . .

...
...

...
...

Table 1

2. f(4mt, t) = 4(4mt + t) − t + 1.

The following lemma is stated as Theorem 4 in [2].
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Lemma 3. (Brown, Landman, Mishna) We have: f(4mt, t) = 4(4mt + t) − t + 1
or 4(4mt + t) + 1 for all positive integers m and t.

To show that f(4mt, t) = 4(4mt+t)−t+1, it is enough to prove that f(4m, 1) <
16m + 5 by Lemma 1 and Lemma 3. Let s = 4m and t = 1. We prove that
f(s, t) < 16m + 5 in Theorem 6 by showing that Table 1 for N = 16m + 4 always
contains an IRT which is composed of the same values. For simplicity we call such
a triangle an MIRT. Each element of [1, N ] is 1 + is + jt for 0 ≤ i ≤ 4 if 0 ≤ j ≤ 3,
and 0 ≤ i ≤ 3 if j ≥ 4 by Lemma 2. Therefore in Table 1, each of the first four
rows which corresponds to some 0 ≤ j ≤ 3 contains five elements and each of the
other rows which corresponds to some j ≥ 4 contains four elements. In particular
the elements corresponding to i = 4 of Table 1 are C(1 + 16m + j) for 0 ≤ j ≤ 3.

From Table 1 we construct Table 2 where each row contains exactly four elements.
For Table 2 to contain all C(x) for all x ∈ [1, 16m+4], we extend it to the (4+4m)-
th row. Note that for 0 ≤ i ≤ 2 and 4m + 1 ≤ j ≤ 4m + 4, each C(1 + is + jt) is
the same as C(1 + (i + 1)s + (j − 4m)t), i.e., it is located in two different places in
Table 2.

C(1) C(1 + 4m) C(1 + 8m) C(1 + 12m)
C(2) C(2 + 4m) C(2 + 8m) C(2 + 12m)

...
...

...
...

C(4 + 4m) C(4 + 8m) C(4 + 12m) C(4 + 16m)
Table 2

The idea of the proof of Theorem 6 is as follows. Suppose Table 2 does not
contain an MIRT. Then by (1) of Lemma 4, we show that no row which is not
one of the last two rows and no column which is not one of the first two columns
contains three consecutive elements which are of the same value. By the other
parts of Lemma 4, we can show that the value of a row affects those of the following
rows. This in turn shows that the table contains some consecutive rows as stated
in Lemma 5. As a result, we obtain the rows of this table inductively. From these
rows, we can find at least one element which has different value in its alternative
location and we get a contradiction.

Throughout this section let N , s, t be positive integers and C : [1, N ] → {0, 1}
be a coloring without a monochromatic triple {x, x + sy, x + (s + t)y} for y = 1, 2
or 3. Define V (a) = (C(a), C(a + s), C(a + 2s), C(a + 3s)) for a ∈ [1, N − 3s]. In
the following lemmas, considering that C(x) ∈ {0, 1} for each x ∈ [1, N ], we denote
it by u or 1− u for some u ∈ {0, 1}.

Lemma 4. The following are true for each u ∈ {0, 1}.
(1) For 1 ≤ a ≤ N − 2s− 2t, if C(a) = C(a + s) = u, then C(a + 2s) = 1− u.
For 2s + 1 ≤ a ≤ N − 2t, if C(a) = C(a + t) = u, then C(a + 2t) = 1− u.
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(2) For 1 ≤ a ≤ N − 3s− 6t, if V (a) = (u, u, 1− u, u), then V (a + t) = (1− u, 1−
u, u, u), V (a + 2t) = (1− u, u, u, 1− u) and V (a + 3t) = (u, u, 1− u, 1− u).
(3) For 1 ≤ a ≤ N − 3s − 5t, if V (a) = (u, 1 − u, u, u), then V (a + 2t) = (u, 1 −
u, 1− u, u) and V (a + 3t) = (1− u, u, u, 1− u).
(4) For 1 ≤ a ≤ N − 3s− 4t, if V (a) = (u, 1− u, 1− u, u), then either V (a + t) =
(1− u, u, u, 1− u), V (a + 2t) = (u, 1− u, 1− u, u) or V (a + t) = (1− u, 1− u, u, u),
V (a + 2t) = (1− u, u, u, 1− u). Moreover in the latter case, if 1 ≤ a ≤ N − 3s− 6t,
then V (a + 3t) = (u, u, 1− u, 1− u).

Proof. Throughout the proof, we may assume that u = 0. Arranging elements C(x)
for x ∈ [1, N ] as in Table 1 gives a geometrical viewpoint.
(1) Suppose C(a+s+t) = 0 also. Then each of C(a+s+t), C(a+2s+t), C(a+2s+2t)
composes an IRT together with a pair from C(a), C(a + s), C(a + 2s) and hence
C(a + s + t) = C(a + 2s + t) = C(a + 2s + 2t) = 1. Then C(a + s + t), C(a + 2s +
t), C(a + 2s + 2t) compose an MIRT, a contradiction. Thus C(a + s + t) = 1. The
other statement can be proved similarly.
(2) As V (a) = (0, 0, 1, 0), each of C(a+s+t), C(a+3s+2t), C(a+3s+3t) composes
an IRT together with a pair of C(a), C(a + s), C(a + 3s) and hence C(a + s + t) =
C(a+3s+2t) = C(a+3s+3t) = 1. Then by (1), C(a+3s+t) = C(a+3s+4t) = 0.
This implies C(a + t) = 1 as it composes an IRT together with C(a + 3s + t) and
C(a+3s+4t). Again by (1), V (a+ t) = (1, 1, 0, 0). Similarly, V (a+2t) = (1, 0, 0, 1)
and V (a + 3t) = (0, 0, 1, 1). Statements (3) and (4) are proved similarly by using
the fact that there is no MIRT and (1).

From (4) of Lemma 4, we get the following lemma.

Lemma 5. Let a ∈ [1, N−3s−4t]. Then the following are true for each u ∈ {0, 1}.
(1) If V (a) = (u, 1− u, 1− u, u) and V (a + t) = (1− u, 1− u, u, u), then

V (a + !t) =






(u, 1− u, 1− u, u), ! ≡ 0 (mod 4)
(1− u, 1− u, u, u), ! ≡ 1 (mod 4)
(1− u, u, u, 1− u), ! ≡ 2 (mod 4)
(u, u, 1− u, 1− u), ! ≡ 3 (mod 4)

(1)

for all ! such that 0 ≤ ! ≤ 2(N−a−3s−2t
2t ).

(2) If V (a) = (u, 1− u, 1− u, u) and V (a + t) = (1− u, u, u, 1− u), then

V (a + !t) =
{

(u, 1− u, 1− u, u), ! ≡ 0 (mod 2)
(1− u, u, u, 1− u), ! ≡ 1 (mod 2) (2)

for all ! such that 0 ≤ ! ≤ (N−a−3s−2t
t ).

Proof. Throughout the proof, we may assume that u = 0.
(1) Let k be the largest integer such that the equality (1) holds for all 0 ≤ ! ≤ k.

Assume k ≡ 0 (mod 4). Then V (a + (k − 2)t) = (1, 0, 0, 1) and V (a + (k − 1)t) =
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(0, 0, 1, 1). Suppose k < 2(N−a−3s−2t
2t ). Then a + (k − 2)t ≤ N − 3s − 6t and

hence by (4) of Lemma 4, V (a+(k +1)t) = (1, 1, 0, 0), which is a contradiction. So
k ≥ 2(N−a−3s−2t

2t ). Similarly, k ≥ 2(N−a−3s−2t
2t ) if k ≡ 1, 2, 3 (mod 4). Thus the

equality (1) holds.
Statement (2) is proved similarly.

Theorem 6. For all m, t ∈ Z+, f(4m, 1) < 16m + 5.

Proof. Suppose not. Let N = 16m + 4, s = 4m and t = 1. Then there is a coloring
C of [1, N] which has no monochromatic homothetic copy of {1, 4m + 1, 4m + 2}.
We may assume that C(1) = 0. There are five cases to consider by (1) of Lemma
4. In each case we have a contradiction by using Lemma 4 and Lemma 5.
Case 1: V (1) = (0, 0, 1, 0). Then V (2) = (1, 1, 0, 0), V (3) = (1, 0, 0, 1) and V (4) =
(0, 0, 1, 1) by (2) of Lemma 4. So for all 0 ≤ ! ≤ 4m− 2,

V (3 + !) =






(1, 0, 0, 1), ! ≡ 0 (mod 4)
(0, 0, 1, 1), ! ≡ 1 (mod 4)
(0, 1, 1, 0), ! ≡ 2 (mod 4)
(1, 1, 0, 0), ! ≡ 3 (mod 4)

(3)

by (1) of Lemma 5. In particular, V (4m+1) = (0, 1, 1, 0) and hence C(12m+1) = 1,
which contradicts V (1) = (0, 0, 1, 0).
Case 2: V (1) = (0, 1, 0, 0). Then V (3) = (0, 1, 1, 0) and V (4) = (1, 0, 0, 1) by (3)
of Lemma 4. By using (2) of Lemma 5, each of V (3 + !) for 0 ≤ ! ≤ 4m − 1 is
determined and by the same method as in Case 1, we get a contradiction.
Case 3: V (1) = (0, 1, 1, 0). Then V (2) is (1, 1, 0, 0) or (1, 0, 0, 1) by (4) of Lemma
4. In each case, we can prove the theorem similarly as in Case 1.
Case 4: V (1) = (0, 0, 1, 1). Then V (4m + 1) = (0, 1, 1, 0) "= (0, 0, 1, 1). So there is
the minimum 2 ≤ k ≤ 4m + 1 such that

V (k) "=
{

(0, 0, 1, 1), k is odd
(1, 1, 0, 0), k is even.

Consider the case where k is odd. As k ≥ 3, V (2) = (1, 1, 0, 0) and hence
V (4m+2) = (1, 0, 0, 1) by (1) of Lemma 4. As V (k−1) = (1, 1, 0, 0), C(4m+k) = 0
and C(12m + k) = 1. So V (k) is (1, 0, 1, 1) or (1, 0, 0, 1) and k "= 4m + 1. Therefore
k ≤ 4m− 1.

First assume that V (k) = (1, 0, 1, 1). Then V (k +2) = (1, 0, 0, 1) and V (k +3) =
(0, 1, 1, 0) by (3) of Lemma 4. So for all 0 ≤ ! ≤ 4m − k − 1, V (k + 2 + !) is the
same as V (a + !) in (2) of Lemma 5. In particular V (4m + 1) is (1, 0, 0, 1), which
is a contradiction.

Second assume that V (k) = (1, 0, 0, 1). Then V (k + 1) is (0, 1, 1, 0) or (0, 0, 1, 1)
by (4) of Lemma 4. In each case, we can proceed similarly as in Case 1.
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When k is even, we get a contradiction similarly.
Case 5: V (1) = (0, 1, 0, 1). Thus V (2) is (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1),
(1, 0, 1, 0), (1, 0, 1, 1) or (1, 1, 0, 1).

If V (2) = (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1), (1, 0, 1, 1) or (1, 1, 0, 1), then we get a
contradiction as in Case 1 - Case 4.

If V (2) = (0, 1, 0, 1), then by (1) of Lemma 4, V (3) = (1, 0, 1, 0). Since C(4m +
1) = 1, V (4m + 1) "= (0, 1, 0, 1). So there is the minimum k such that

V (k) "=
{

(0, 1, 0, 1), k ≡ 1, 2 (mod 4)
(1, 0, 1, 0), k ≡ 0, 3 (mod 4).

If k ≡ 1 (mod 4), then V (k − 2) = V (k − 1) = (1, 0, 1, 0) and therefore V (k) =
(0, 1, 0, 1), a contradiction. Similarly we get a contradiction if k ≡ 3 (mod 4).
Assume that k ≡ 2 (mod 4). Then k ≤ 4m − 2. From V (k − 2) = (1, 0, 1, 0) and
V (k−1) = (0, 1, 0, 1), we get C(8m+k) = 0, C(8m+k+1) = 1, C(12m+k) = 1 and
C(12m+ k +1) = 0. Suppose C(4m+ k) = 1. Then C(12m+ k +2) = 0 and hence
by (1) of Lemma 4, C(12m + k + 3) = 1. Thus C(k) = 0, i.e., V (k) = (0, 1, 0, 1),
a contradiction. Therefore C(4m + k) = 0 and hence V (k) = (1, 0, 0, 1) by (1) of
Lemma 4. By (4) of Lemma 4, V (k +1) = (0, 1, 1, 0). So for all 0 ≤ ! ≤ 4m− k +2,
by (2) of Lemma 5, V (k + !) takes the same value as V (a + !) as in Case 2. In
particular, V (4m + 1) = (0, 1, 1, 0), which contradicts V (1) = (0, 1, 0, 1).

If V (2) = (1, 0, 1, 0), then we get a contradiction similarly.

Remark 7. Investigating the proof of Theorem 6, we see that only in Case 4 we
may have a coloring C of [1, 16m + 3] which has no monochromatic homothetic
copy of {1, 4m + 1, 4m + 2} under the following conditions: Either (i) k is even,
k ≤ 4m−2, V (k) = (0, 1, 1, 0) and V (k+1) = (1, 1, 0, 0); or (ii) k is odd, k ≤ 4m−1,
V (k) = (1, 0, 0, 1) and V (k + 1) = (0, 0, 1, 1). In fact it is only under the conditions
stated in (ii) with another restriction of k ≡ 3 (mod 4) that we have such a coloring
which satisfies

V (!) =






(0, 0, 1, 1), ! ≡ 1 (mod 2), ! < k
(1, 1, 0, 0), ! ≡ 0 (mod 2), ! < k
(1, 0, 0, 1), ! ≡ 3 (mod 4), k ≤ ! ≤ 4m
(0, 0, 1, 1), ! ≡ 0 (mod 4), k ≤ ! ≤ 4m
(0, 1, 1, 0), ! ≡ 1 (mod 4), k ≤ ! ≤ 4m
(1, 1, 0, 0), ! ≡ 2 (mod 4), k ≤ ! ≤ 4m

(4)

C(16m + 1) = C(16m + 2) = 0 and C(16m + 3) = 1.
We can dispose of the coloring as shown in Table 3 with C(4mi+!) in the !-th row

and the (i + 1)-th column. Note that for distinct values of k satisfying 1 ≤ k ≤ 4m
and k ≡ 3 (mod 4), the corresponding colorings C are distinct. Also for each of
those C, 1 − C has no monochromatic homothetic copy of {1, 4m + 1, 4m + 2}.
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Thus we have altogether 2m colorings of [1, 16m + 3] that have no monochromatic
homothetic copies of {1, 4m + 1, 4m + 2}.

! = 1 0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

...
0 0 1 1
1 1 0 0

! = k 1 0 0 1
0 0 1 1
0 1 1 0
1 1 0 0

...
1 0 0 1

! = 4m 0 0 1 1
! = 4m + 1 0 1 1 0
! = 4m + 2 1 0 0 0
! = 4m + 3 0 1 1 1

Table 3

3. f(s, t) = 4(s + t) + 1, if s "= 4mt.

Let s, t, m be positive integers where s "= 4mt for any m. We prove that f(s, t) =
4(s + t) + 1. The following two lemmas and one theorem are stated as Theorem 2,
Theorem 3 and Theorem 5, respectively in [2]. In particular Lemma 9 implies that
f(s, t) = 4(s + t) + 1 if t divides s and s/t "≡ 0 (mod 4).

Assume t does not divide s. By Theorem 10, it is sufficient to consider the case
where (s/t) and (2s/t) are both odd and s/t ∈ (1.5, 2). By Lemma 1 and Lemma
9, we need to prove only the case when s ≡ 0 (mod 4) or t ≡ 0 (mod 4); this is
accomplished in Theorem 11.

Lemma 8. (Brown, Landman, Mishna) f(s, t) ≤ 4(s+t)+1 for all positive integers
s and t.

Lemma 9. (Brown, Landman, Mishna) Let s, t be positive integers with g =
gcd(s, t). If s/g "≡ 0 (mod 4) and t/g "≡ 0 (mod 4), then f(s, t) = 4(s + t) + 1.

Theorem 10. (Brown, Landman, Mishna) Let s, t be positive integers such that
s > t > 1 and t does not divide s. If (s/t) is even or (2s/t) is even, then f(s, t) =
4(s + t) + 1. If (s/t) and (2s/t) are both odd, then f(s, t) = 4(s + t) + 1 provided
that s, t satisfy the additional condition s/t /∈ (1.5, 2).
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Theorem 11. Let s, t be positive integers such that s > t > 1 and t does not divide
s. Assume (s/t) and (2s/t) are both odd and s/t ∈ (1.5, 2). Also assume s ≡ 0
(mod 4) or t ≡ 0 (mod 4). Then f(s, t) = 4(s + t) + 1.

Proof. By Lemma 1, it is enough to consider the case where gcd(s, t) = 1. By
Lemma 8, f(s, t) ≤ 4(s + t) + 1 for all positive integers s and t. We will consider
three cases according to the values of s (mod 4) and t (mod 4). In each case, we show
that the equality holds by proposing a 2-coloring C of [1, 4s + 4t] that contains no
monochromatic homothetic copy of {1, 1+s, 1+s+t}, which is obtained by using the
three steps described below. By Lemma 2, for each 1+is+jt ∈ [1, 4s+4t], 0 ≤ j < s
and −jt/s ≤ i < 4 + (4− j)t/s. Also, any homothetic copy of {1, 1 + s, 1 + s + t}
is a triple {1 + is + jt, 1 + (i + y)s + jt, 1 + (i + y)s + (j + y)t} where y = 1, 2 or 3.

In the first step, we assign a coloring C in such a way that

V (1 + jt) =
{

(0, 0, 1, 1), j ≡ 0 (mod 2)
(1, 1, 0, 0), j ≡ 1 (mod 2) (5)

or
V (1 + jt) =

{
(0, 1, 1, 0), j ≡ 0 (mod 2)
(1, 0, 0, 1), j ≡ 1 (mod 2) (6)

for 0 ≤ j ≤ s− 1 and −jt/s ≤ i < 4 + (4− j)t/s. If j ≤ s− 4, then j + y ≤ s− 1
and hence the above triple is not monochromatic as C(1 + (i + y)s + jt) "= C(1 +
(i + y)s + (j + y)t) for y = 1, 3 and C(1 + is + jt) "= C(1 + (i + y)s + jt) for
y = 2. Assume s − 3 ≤ j ≤ s − 1. If j + y ≥ s, then 1 + (i + y)s + (j + y)t =
1+(t+i+y)s+(j+y−s)t ∈ [1, 4s+4t]. Note that the color of this integer is shown
in the (j + y + 2 − s)-th row instead of the (j + y + 2)-th row in Table 1 and we
must make sure that {C(1+ is+ jt), C(1+ (i+ y)s+ jt), C(1+ (i+ y)s+(j + y)t)}
does not compose an MIRT. To help recognize such an MIRT, we extend Table 1
to the (s + 3)-th row by taking C(1 + (t + i + y)s + (j + y − s)t) which is in the
(j + y + 2 − s)-th row for C(1 + (i + y)s + (j + y)t) in the (j + y + 2)-th row.
Certainly, C has no monochromatic homothetic copy of {1, 1 + s, 1 + s + t} if the
extended table contains no MIRT. However, it turned out that in some cases, with
the coloring given by equation (5) or (6), the extended table contains MIRT’s.

In the second step, to get rid of the MIRT’s in the extended table, in each case
we consider two subcases depending on whether s/t ≥ 5/3 or not. In each subcase,
an integer 1 + (−t + 7)s + (s− 1)t or 1 + (−t + 3)s + (s− 5)t is not in [1, 4s + 4t].
We put a mark @ or @′ in the position of its color in the extended table. In the
first subcase, any integer in [1, 4s + 4t] is less than 1 + (−t + 7)s + (s− 1)t and has
its color on the left of or above the @ mark in the extended table. Similarly in the
second subcase, each entry is on the right of or below the @′ mark in the extended
table.

In the third step, we change the values of some elements below or to the left side
of the double lines. Of course for each of them, we change the value of the same
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element in the other location of the extended table too.
After going through these three steps, finally we obtain Table 4 - Table 8 as shown

in the appendix, which contain no MIRT. In each of these tables, the smallest value
of i in between two consecutive vertical lines is shown in the first row. Below we
list cases and subcases.
Case 1: s ≡ 0 (mod 4) and t ≡ 3 (mod 4). Consider the following two subcases.
Case 1a: s/t ≥ 5/3. Table 4 shows C without a monochromatic homothetic copy of
{1, 1+s, 1+s+t}. Note that there is an @ mark instead of C(1+(−t+7)s+(s−1)t)
and each entry of the table is on the left of or above that @.
Case 1b: s/t < 5/3. Table 5 shows C without a monochromatic homothetic copy of
{1, 1+s, 1+s+t}. Note that there is an @′ mark instead of C(1+(−t+3)s+(s−5)t)
and each entry of the table is on the right of or below that @′.
Case 2: s ≡ 0 (mod 4) and t ≡ 1 (mod 4). We consider two subcases where
s/t ≥ 5/3 and s/t < 5/3, respectively. Table 6 or Table 7 shows C without a
monochromatic homothetic copy of {1, 1 + s, 1 + s + t} in each subcase.
Case 3: s ≡ 1, 3 (mod 4) and t ≡ 0 (mod 4). We also consider two subcases
depending on whether s/t ≥ 5/3 or not. In each subcase, the coloring we obtain
from the one shown in Table 8 by replacing @′ with C(1+(−t+3)s+(s−5)t) = 1,
or @ with C(1 + (−t + 7)s + (s− 1)t) = 1 contains no monochromatic homothetic
copy of {1, 1 + s, 1 + s + t}.

From Lemma 9 and Theorem 11, we conclude the following.

Theorem 12. For each pair of positive integers (s, t),

f(s, t) =
{

4s + 3t + 1, s ≡ 0 (mod 4t) or t ≡ 0 (mod 4s)
4s + 4t + 1, otherwise.

Remark 13. For r ≥ 2, Brown et al. introduced the r-color van der Waerden’s
number f (r)(s, t) on homothetic copies of {1, 1 + s, 1 + s + t} as the minimum
integer N such that every r-coloring of [1, N ] has a monochromatic homothetic
copy of {1, 1 + s, 1 + s + t} [2]. The values of f (3)(1, 1) and f (4)(1, 1) are known [4].
The problem of finding f (r)(s, t) for r ≥ 5 is still open.

Acknowledgements We are grateful to the anonymous referee for useful remarks
and comments.
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Appendix

i=-t-1 i=-t+3 i=-t+7 i=0 i=4
j=0 0 0 1 1 0 0 1

1 1 0 0 1 1
1 0 0 1 1 0 0
0 1 1 0 0 1

A
...

... . . .
...

...

j=s-8 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 . . . 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

j=s-4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

j=s-3 0 0 1 1 0 1 1 0 0 . . . 1 1 0 0 1 1 0 0
1 1 0 0 1 0 0 1 1

B 1 0 0 1 1 0 @

j=s 0 0 1 1 0 0 1
1 1 0 0 1 1

1 0 0 1 1 0 0

Table 4. s ≡ 0(mod 4), t ≡ 3(mod 4) and s/t ≥ 5/3.
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i=-t+1 i=-t+3 i=-t+7 i=0 i=4
j=0 0 1 0 1 1 0 1

0 0 1 1 0 1

j=2 0 0 1 1 0 1 0
1 1 0 0 1 0

1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 . . . 1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1
...

... . . .
...

...
j=s-8 1 0 0 1 1 0 0 1 1 0

0 0 1 1 0 0 1 . . . 1 0 0 1
1 1 0 0 1 1 0 0 1 1 0

j=s-5 @′ 0 0 1 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 . . .
0 1 0 0 1 0

0 1 0 0 1 0 1

j=s 0 1 1 0 1
1 1 0 1
1 0 1 0

Table 5. s ≡ 0(mod 4), t ≡ 3(mod 4) and s/t < 5/3.

i=-t+1 i=-t+5 i=-t+9 i=0 i=4
j=0 0 1 1 0 0 1 0

1 0 0 1 1 0
0 0 1 1 0 0 1
1 1 0 0 1 1

j=4 1 1 0 0 1 0
. . . 0 0 1 1 0 1

0 1 1 0 0 1
1 0 0 1 1 0

...
... . . .

...
...

j=s-8 0 0 1 1 0 0 1
0 1 1 0 0 1 1 . . .
1 0 0 1 1 0 0

0 0 1 1 0 0 1
j=s-4 1 1 0 0 1 1

1 1 0 0 1 0 0 . . .
0 0 1 1 0 1

0 0 1 1 0 1 @

j=s 1 1 0 0 1 0
0 0 1 1 0
1 1 0 0 1

Table 6. s ≡ 0(mod 4), t ≡ 1(mod 4) and s/t ≥ 5/3.
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i=-t+1 i=-t+5 i=-t+9 i=0 i=4
j=0 0 1 0 1 1 0 0

1 0 1 0 0 1

j=2 0 0 1 1 0 1 0
1 1 0 0 1 0

0 1 1 0 0 1 1 0
. . . 1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1

...
... . . .

...
...

j=s-8 0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1 . . .

1 0 1 1 0 0 1 1
j=s-5 @′ 0 1 0 0 1 1 0

j=s-4 1 1 0 0 1 0 0
1 0 0 1 1 0 1
0 1 1 0 0 1

1 1 0 0 1 1 0

j=s 1 0 1 1 0 0
0 1 0 0 1
1 1 0 1 0

Table 7. s ≡ 0(mod 4), t ≡ 1(mod 4) and s/t < 5/3.

i=-t+1 i=-t+4 i=-t+8 i=0 i=4
j=0 0 1 1 0 0 1 0

1 0 0 1 1 0
0 0 1 1 0 0 1
1 1 0 0 1 1

j=4 1 1 0 0 1 0
. . . 1 0 0 1 1 0 1

0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

. . . . . . 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0

... . . .
...

...
j=s-5 @′ 0 0 1 1

0 1 1 0 0 . . .
1 1 0 0 1 1
0 0 1 1 0 0

j=s-1 0 0 1 1 0 1 @

j=s 1 1 0 0 1 0 . . .
0 0 1 1 0
1 1 0 0 1

Table 8. s ≡ 1, 3(mod 4) and t ≡ 0(mod 4).


