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Abstract
We obtain several versions of the sum-product theorem with k-fold sums and prod-
uct sets. We also give several applications of these estimates.

1. Introduction

Let IF,, denote the finite field of p elements. For a set A C IF,, and a rational function
F(X1,...,X.) € Fp(Xy,...,X), which has no poles in A, we define the set

F(A,...,A) ={F(a1,...,am) : a1,...,am € A}.

In particular, for an integer k, kA and A* denote k-fold sums and product sets,
respectively.

The most interesting and well studied case in the classical sum-product problem
where the goal is to show that at least one of sets A? = A- A and 24 = A+ A is of
size substantially larger than |.A|. This direction, initiated by the pioneering work
of Bourgain, Katz & Tao [6], has been developed in a various directions and has
had several important applications, see [2, 4, 5, 13, 14, 18, 23, 24, 25] and references
therein.

Here, motivated by some new applications, we consider the case of a k-fold sum
and product sets A* and k.A. We note that several results of these types for sets of
integer and real numbers have been given by various authors, see [10] and references
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therein. For finite fields, there are also several results for multiple sum and product
sets, see [10, 15, 16, 17], however this direction has not yet been systematically
studied. Here we present several general results of this type. In particular, we use
the method of Garaev [13], which in turn has its roots in the work of Elekes [11] on
the sum-product problem over the reals, to show that for any integer k > 2 there is
a constant C' > 0 such that

2k
A¥] - |kA] > C min {p|A|, 'pi}'l } ,

which with k& = 2 recovers [13, Theorem 1].
We also give several new applications. For example, we improve one of the
estimates of [1] on the number of solutions of exponential congruences

¥ =a (mod p), 1<z<p-1 (1)

We use the following notations. Throughout the paper, the implied constants in
the symbols ‘O’ ‘<’, >’ and ‘<’ may depend on the integer parameters k and v
and normally are for p — oo through primes. Recall that the notations U <« V and
V > U are equivalent to U = O(V). By e,(u) we mean as usual exp(2miu/p). If
A is a finite set, |A| represents the number of elements of A.

2. Estimates from Arithmetic Combinatorics

2.1. Sum-Product Estimates

We start with the following standard result on double exponential sums, see [4,
Bound (1.4)].

Lemma 1. Let p be prime and A,B CF,. Then

max E Zep(mcy) < /p|Al|lB|.

(p)=b) S A e
We now present the following simple modification of the result of Garaev [13].
Theorem 2. For arbitrary sets A,B,C CFp, with 0 ¢ B, we have

3 Al?|B||C
A-B|-|A+C| > —min{p|.A|, @}
8 P
Proof. As in [13], we consider the solutions of the equation
1
s~g—|—c:t7 beB, cel, seS, teT, (2)

where S=A-Band T = A+C.
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For any triplet (a,b,¢) € A x B x C there is a unique solution, namely s = ab,
t = a+c So (2) has at least |A||B||C| solutions. On the other hand, as in [13],
using the bound for bilinear exponential sums given by Lemma 1 to estimate the
total number of solutions to (2), one derives

sl < BESIEL 2 pmTsT el Q
which implies the result (in fact with the constant (3 —+/5)/2 > 3/8). O
Corollary 3. For an arbitrary subset A C F, and integer k > 1, we have
A A2 i { e, <
where ¢ = 3/8.

Proof. We prove the desired estimate by induction on k. For k = 2, it is essentially
the results of [13] (and it also follows from Theorem 2 with B =C = A).
Now, we assume that

pk72

k—2 2k—2
AR [k — 1A > min{cp|A|, ¢} .

Then for k > 3 we use Theorem 2 with B = A*~1 and C = (k — 1)A, getting

JAF| - kA > cmm{p|,4|7 A|2|«4’”I(k—1),4|}
p
k—1 2k
- min{CpM'vCQMPv%}'
p

Since for |A] < (p/c)'/? the result is trivial (as ¢*~1|.A|?¢ /pF~1 < |A|?) and for
|A| > (p/c)'/? we have cp|A| < ¢?|AJ]%, the result now follows. 0

We also note that as in [26] one can use multiplicative character sums to estimate
the number of solutions to (2). In particular we recall a result of Karatsuba [21] (see
also [22, Chapter VIII, Problem 9]), (which in turn follows from the Weil bound
and the Holder inequality) asserting that for a nontrivial multiplicative character x
modulo p and arbitrary sets X', Y C F, we have

Z Z X(m _ y) < ‘Xll_l/Qu‘y|p1/4y + |X|1_1/2V|y|1/2p1/2u, (4)
reX yey

with any fixed integer v > 1. With this, instead of the bound (3) we derive
Bl|ICIIS||T] 1 1o , s )
|A|B||C|<W+;\/p|8|\/p|8| (\T|1 V2 |e|pt/ 4 4 | T|1= 12| /2 pl/2 D’

which leads to another version of Theorem 2 (that is stronger if |C| is small).
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Our second approach depends on the following estimate of Bourgain & Garaev [4,
Theorem 1.2].

Lemma 4. For arbitrary subsets X,Y,2Z CF,, as p — o0,

Z Z Z ep xyz |X‘|y||Z|)13/16 5/18+0(1)

reEX yeY zeZ
We are now ready to prove the following estimate:

Theorem 5. For arbitrary sets A,B,C,D C F,, we have
max{|A-B-C|,| A+ D[} > min{\/p|Al, |A|**/2(|B]|C|)}/T|D|?/?*p=40/189+0()y

Proof. We use a modification of the argument of Theorem 2. For the setstd = A-B-C
and V = A+ D, we consider the the number J of solutions (b, ¢, d,u,v) to the
equation
ub~'e ' +d=v, bEB, c€C,deED, ueU, vEV.
Clearly for a € A, b€ B, c € C, d € D, the vector (b,c,d,abc,a + d) is a solution.
Thus
J = |AllBl[C||D]. (5)

On the other hand, we obviously have

J = ZZZZZ Zep ble !t +d—v)).

beB ceC deD ucld UEV AeF,

Changing the order of summation, separating the term |B||C||D||U/||V|/p correspond-

ing to A = 0, we obtain
BIICIDIIVI

p

J = R, (6)

where

IR < ]19 ST Y Y e, (b ie )

AEF;, lueU beB ceC

Z ey (Ad)

deD

Z e, (A\)]|.

veY

By Lemma 4 we obtain

p—1
Rl < (IBliC|ju])!/1op= 131+ TS ey (Ad)| D e ()| (7)
A=1 |deD veEY

Applying Cauchy’s inequality (and extending the summation over A to Fp,) we
derive

D

AEF:

2

D

A€EF,,

2

> ey (M)

deD

Z e, (\v)

veY

<Z

AeF,

> ey (M)

deD

Z e, (Av)

veY
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Clearly

= > Y ep(Mdi—da)) =p|D|

d1,d2 €D AEF,

D

A€EF,

> ey (M)

deD

and similarly
2

=pV|.

>

A€EF,

Z e, (M)

veV

Thus collecting the previous inequalities and recalling (7), we see from (6).

_ [Bliciplu|v
B p

J O ((Bllci /oDl V)2 15t . (g)

Thus denoting M = max {|U/|,|V|} and comparing (5) with (8), we derive

|Bl[C|[D]M>
p

|AJ|BJ|C||D] < + (IBI[C]) /10 D2 M2 18 18+

and the result now follows. O

In particular, taking A = B = C = D we see that Theorem 5 implies that for an
arbitrary set A C [F7, we have

maX{|A3\7 ‘2.A|} > min{ /p|A|, |A‘10/7p_40/189+0(1)}.

However this bound seems weaker that the one which one can derive using a com-
bination of the bounds of Garaev [13]

max{|A°), [2A[} > max{ A%, [24]} 3> min{ /Pl AL |APp /),
and Rudnev [24]
ma{|A°], (241} 2 max{ 42|, 241} > (min{| 4], yph) 2/ (9)

2.2. Sum Inversion Estimates

In Theorem 2 we can replace A by A~! and B by B~! to easily obtain an analogue
of that result: For arbitrary sets A, B,C C [y, we have

3 Al?|B||C
|A-Bl- \Afl +C| > -~ min {p.A|, M}
8 p
Lemma 6. For arbitrary sets X,V CFp, and a non-zero element A € ¥,

o> e (Ma—y) )| < 2v/plXY]

zeX yey
yF#
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Theorem 7. For arbitrary sets A, B,C C F*, we have

p7
1 2
A+ B|-|A™ 4] = 2 min {p|A|, '“‘”Lﬂ} .

Proof. We now mimic the argument of Garaev [13] and consider the equation

c+(s=b)t=t, (becs,t)eBxCxSxT. (10)

where S= A+ Band 7 = A1 +C.

For any triplet (a, b, c) € Ax B xC there is a unique solution, namely t = a~! +¢,
s = a+b. So (10) has at least |A||B||C]| solutions. On the other hand, as in [13],
using Lemma 6 to estimate the total number of solutions to (10), one derives

B||C|IS||T| 2
Asiie) < BIEITLL 2. Tl
which implies the result (in fact with the constant 3 — /8 > 1/6) O

Then as in Section 2.1 we obtain:

Corollary 8. For an arbitrary set A CFy, we have
k=1 g2k
o A~ > min {oll, <5
p

where ¢ = 1/6.

Furthermore, taking B = A~! and C = A in Theorem 7, we derive:
Corollary 9. For an arbitrary set A C F,, we have

. Al?
A+ A7 >671/2 mln{\/p|A|, [l } )
VP
We also note that for smaller sets, Bourgain [3, Theorem 4.1] has shown that for
any € > 0 there exists § > 0 such for any set A C F; of cardinality |A] < pl—e,

max { | A+ A, [A7" + A7} > A

The dependence of § on ¢ has not been made explicit in [3], however using a recent
estimate of Helfgott & Rudnev [19, Theorem 2] or its improvement due to Jones [20]
in the argument of [3] one can easily derive such a result.

3. Applications

3.1. Exponential Congruence

For a prime p and an integer a € Z with ged(a,p) = 1 we denote by N(p;a) the
number of solutions to the congruence (1).
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By [1, Theorem 2] we have, uniformly for ¢ | p — 1,

> N(p;a) < max{t,p"/?t"/43pe®), (11)
a€Zy,
ordalt
as p — 00, where ord a denotes the multiplicative order of a € F. Furthermore, for
small values of ¢ by [1, Theorem 4] we also have

> N(p;a) < p'/PreMe?/3, (12)
a€Zy,
ordalt

as p — 0o. We now give an estimate that improves (11) and (12) for p*/4 <t < p?/3,

Theorem 10. Uniformly overt |p— 1, we have, as p — o0,

Z N(p;a) < max{t,p1/2}p°(1).

a€Zy,

ord alt
Proof. We fix a primitive root g € I, and for u € F}, (and so for any integer u # 0
(mod p)) we use ind u for its discrete logarithm modulo p, that is, the unique residue
class v (mod p — 1) with ¢” = u (mod p).

As in the proof of [1, Theorem 2], for d | (p — 1)/, we denote by YV, the set of

integers y satisfying the congruence

ind(dy) =0 (mod Ty), 1<y <D, ged (y, Ty) = 1,

where L 1
p— p—-
— d D=——.
a d
Furthermore, let Wy be the set of residue classes represented by the elements of ),

(that is, we embed Vg in IF,, in a canonical way). Then we have

Y Npa)y= > = > (Wl (13)
a€Z, dl(p—1)/t dl(p—1)/t
ordalt

Tg =

see [1, Equation (9)].

We note that for any integer & > 1 we have, |kW;| < kD and |W¥| < dt. (which
are straight forward generalisations of [1, Equations (10) and (11)], respectively,
that correspond to k = 2). Applying Corollary 3, we see that for every fixed k

min p|VVd‘7 pk:——l < Ddt < pt

or Wy < max{t,p*/?}t'/?* (which substitutes [1, Equation (12)]). Since k is
arbitrary, recalling (13), and the well-known bound m°®) on the number of integer
divisors of an integer m > 1, we derive the result. a
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3.2. Intersections of Almost Arithmetic and Geometric Progressions

We say that a set Z C F, is an almost arithmetic progression if for every fixed
integer k > 1 and real € > 0 there is a constant C (k,€) such that

[KZ] < Cy (K, )| Z]p"

We also say that a set G C F,, is an almost geometric progression if for every fixed
integer k > 1 and real € > 0 there is a constant Cx (k, €) such that

G"| < Cx(k,€)IGIp".

Theorem 11. For any almost arithmetic progression T C F) and almost geometric
progression G C ]F;; we have,

e .
IZng| < (—' |p| | +p1/2>p )

as p — oo.
Proof. Let A =7 NG then, for any fixed integer k& > 1 we see that |.A*| < |G|p°(V)
and |kA| < |Z|p°™). Applying Corollary 3, we derive
S IWIEL
g1z > min {ea, <51
where ¢ = 3/8 or

Al < ('g'm 1/2<g||:f|/p>“2‘“)po<l>.

Since k is arbitrary, the result now follows. O

We note that upper bounds for the number of residues modulo p of consecutive
powers ¢g* with z € [K + 1, K + M| in an interval of length M that belong to some
other interval [L+ 1, L+ M] of length M are given by Cilleruelo & Garaev [9]. The
estimates and methods of [9] improve those of [7]. However they do not seem to
apply to almost arithmetic and geometric progressions (while the approach of [7]
does and is actually used here). On the other hand, the bound (9) implies that for
M < pb/1 we have

‘Iﬂ g| < M11/12+0(1).

Using Corollary 8 we also derive:

Theorem 12. For any almost arithmetic progressions Z,J C Fy we have,

|Imj71| < <|I]|)‘7| +p1/2> po(l)

as p — oo.



INTEGERS: 12 (2012) 9

4. Comments

In relation to Corollary 8 it could be relevant to recall a well-known example given
in [8], that shows there are infinitely many pairs (p,.A) of primes p and sets A C [y,
with

JAJ ~ p!/2Ho) (14)

and such that for any fixed integer k,
max {|A¥|, [kA|} < p¥/4te), (15)

Indeed, let H be a multiplicative subgroup of F), of order |H| ~ p?/4+°() (there are
infinitely many primes for which such a subgroup exists, see [12]).
By the pigeon-hole principle, there exists an s € I, such that if we set

A=HO{ss+ 1,5+ [p/4])

we have 54
|A| ~ |H|p Np1/2+o(1).

It is now easy to see that (15) holds for any integer k. One can also obtain a similar

example limiting the possible growth of max{|k.A|,|kA~1|} by considering the set

J={i"'+ j=1,...,[p**|}, and defining A as the most “popular” intersection

(in Fp,) of J with one of the sets {s + 1,...,s+ [p*/*|}, s € F,. Therefore we see

that, for an infinite number of primes p, there is a set A C I} satisfying (14) and

such that, for any fixed integer k, max{|kA|, |[kA~Y|} < p*/4.
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