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Abstract
We obtain several versions of the sum-product theorem with k-fold sums and prod-
uct sets. We also give several applications of these estimates.

1. Introduction

Let Fp denote the finite field of p elements. For a set A ⊆ Fp and a rational function
F (X1, . . . ,Xm) ∈ Fp(X1, . . . ,Xm), which has no poles in A, we define the set

F (A, . . . ,A) = {F (a1, . . . , am) : a1, . . . , am ∈ A}.

In particular, for an integer k, kA and Ak denote k-fold sums and product sets,
respectively.

The most interesting and well studied case in the classical sum-product problem
where the goal is to show that at least one of sets A2 = A ·A and 2A = A+A is of
size substantially larger than |A|. This direction, initiated by the pioneering work
of Bourgain, Katz & Tao [6], has been developed in a various directions and has
had several important applications, see [2, 4, 5, 13, 14, 18, 23, 24, 25] and references
therein.

Here, motivated by some new applications, we consider the case of a k-fold sum
and product sets Ak and kA. We note that several results of these types for sets of
integer and real numbers have been given by various authors, see [10] and references
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therein. For finite fields, there are also several results for multiple sum and product
sets, see [10, 15, 16, 17], however this direction has not yet been systematically
studied. Here we present several general results of this type. In particular, we use
the method of Garaev [13], which in turn has its roots in the work of Elekes [11] on
the sum-product problem over the reals, to show that for any integer k ≥ 2 there is
a constant C > 0 such that

|Ak| · |kA| ≥ C min
{

p|A|, |A|
2k

pk−1

}
,

which with k = 2 recovers [13, Theorem 1].
We also give several new applications. For example, we improve one of the

estimates of [1] on the number of solutions of exponential congruences

xx ≡ a (mod p), 1 ≤ x ≤ p− 1. (1)

We use the following notations. Throughout the paper, the implied constants in
the symbols ‘O’, ‘'’, ‘(’ and ‘)’ may depend on the integer parameters k and ν
and normally are for p→∞ through primes. Recall that the notations U ' V and
V ( U are equivalent to U = O(V ). By ep(u) we mean as usual exp(2πiu/p). If
A is a finite set, |A| represents the number of elements of A.

2. Estimates from Arithmetic Combinatorics

2.1. Sum-Product Estimates
We start with the following standard result on double exponential sums, see [4,
Bound (1.4)].

Lemma 1. Let p be prime and A,B ⊆ Fp. Then

max
(n,p)=1

∣∣∣∣∣∣

∑

x∈A

∑

y∈B
ep(nxy)

∣∣∣∣∣∣
≤

√
p|A||B|.

We now present the following simple modification of the result of Garaev [13].

Theorem 2. For arbitrary sets A,B, C ⊆ Fp, with 0 ,∈ B, we have

|A · B| · |A+ C| ≥ 3
8

min
{

p|A|, |A|
2|B||C|
p

}
.

Proof. As in [13], we consider the solutions of the equation

s · 1
b

+ c = t, b ∈ B, c ∈ C, s ∈ S, t ∈ T , (2)

where S = A · B and T = A+ C.
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For any triplet (a, b, c) ∈ A × B × C there is a unique solution, namely s = ab,
t = a + c. So (2) has at least |A||B||C| solutions. On the other hand, as in [13],
using the bound for bilinear exponential sums given by Lemma 1 to estimate the
total number of solutions to (2), one derives

|A||B||C| ≤ |B||C||S||T |
p

+
1
p

√
p|B||S|

√
p|C|

√
p|T |, (3)

which implies the result (in fact with the constant (3−
√

5)/2 ≥ 3/8). /0

Corollary 3. For an arbitrary subset A ⊆ F∗p and integer k ≥ 1, we have

|Ak| · |kA| ≥ min
{

cp|A|, ck−1|A|2k

pk−1

}
,

where c = 3/8.

Proof. We prove the desired estimate by induction on k. For k = 2, it is essentially
the results of [13] (and it also follows from Theorem 2 with B = C = A).

Now, we assume that

|Ak−1| · |(k − 1)A| ≥ min
{

cp|A|, ck−2|A|2k−2

pk−2

}
.

Then for k ≥ 3 we use Theorem 2 with B = Ak−1 and C = (k − 1)A, getting

|Ak| · |kA| ≥ cmin
{

p|A|, |A|
2|Ak−1||(k − 1)A|

p

}

≥ min
{

cp|A|, c2|A|3, ck−1|A|2k

pk−1

}
.

Since for |A| < (p/c)1/2 the result is trivial (as ck−1|A|2k/pk−1 ≤ |A|2) and for
|A| ≥ (p/c)1/2 we have cp|A| < c2|A|3, the result now follows. /0

We also note that as in [26] one can use multiplicative character sums to estimate
the number of solutions to (2). In particular we recall a result of Karatsuba [21] (see
also [22, Chapter VIII, Problem 9]), (which in turn follows from the Weil bound
and the Hölder inequality) asserting that for a nontrivial multiplicative character χ
modulo p and arbitrary sets X ,Y ⊆ Fp we have

∑

x∈X

∑

y∈Y
χ(x− y)' |X |1−1/2ν |Y|p1/4ν + |X |1−1/2ν |Y|1/2p1/2ν , (4)

with any fixed integer ν ≥ 1. With this, instead of the bound (3) we derive

|A||B||C|≤ |B||C||S||T |
p

+
1
p

√
p|B|

√
p|S|

(
|T |1−1/2ν |C|p1/4ν + |T |1−1/2ν |C|1/2p1/2ν |

)
,

which leads to another version of Theorem 2 (that is stronger if |C| is small).
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Our second approach depends on the following estimate of Bourgain & Garaev [4,
Theorem 1.2].

Lemma 4. For arbitrary subsets X ,Y,Z ⊆ Fp, as p→∞,
∣∣∣∣∣∣

∑

x∈X

∑

y∈Y

∑

z∈Z
ep(xyz)

∣∣∣∣∣∣
≤ (|X ||Y||Z|)13/16p5/18+o(1).

We are now ready to prove the following estimate:

Theorem 5. For arbitrary sets A,B, C,D ⊆ F∗p, we have

max{|A · B · C|, |A+D|}( min{
√

p|A|, |A|16/21(|B||C|)1/7|D|8/21p−40/189+o(1)}.

Proof. We use a modification of the argument of Theorem 2. For the sets U = A·B·C
and V = A + D, we consider the the number J of solutions (b, c, d, u, v) to the
equation

ub−1c−1 + d = v, b ∈ B, c ∈ C, d ∈ D, u ∈ U , v ∈ V.

Clearly for a ∈ A, b ∈ B, c ∈ C, d ∈ D, the vector (b, c, d, abc, a + d) is a solution.
Thus

J ≥ |A||B||C||D|. (5)

On the other hand, we obviously have

J =
∑

b∈B

∑

c∈C

∑

d∈D

∑

u∈U

∑

v∈V

1
p

∑

λ∈Fp

ep

(
λ(ub−1c−1 + d− v)

)
.

Changing the order of summation, separating the term |B||C||D||U||V|/p correspond-
ing to λ = 0, we obtain

J =
|B||C||D||U||V|

p
+ R, (6)

where

|R| ≤ 1
p

∑

λ∈F∗p

∣∣∣∣∣
∑

u∈U

∑

b∈B

∑

c∈C
ep

(
λub−1c−1

)
∣∣∣∣∣

∣∣∣∣∣
∑

d∈D
ep (λd)

∣∣∣∣∣

∣∣∣∣∣
∑

v∈V
ep (λv)

∣∣∣∣∣ .

By Lemma 4 we obtain

|R| ≤ (|B||C||U|)13/16p−13/18+o(1)
p−1∑

λ=1

∣∣∣∣∣
∑

d∈D
ep (λd)

∣∣∣∣∣

∣∣∣∣∣
∑

v∈V
ep (λv)

∣∣∣∣∣ . (7)

Applying Cauchy’s inequality (and extending the summation over λ to Fp) we
derive




∑

λ∈F∗p

∣∣∣∣∣
∑

d∈D
ep (λd)

∣∣∣∣∣

∣∣∣∣∣
∑

v∈V
ep (λv)

∣∣∣∣∣




2

≤
∑

λ∈Fp

∣∣∣∣∣
∑

d∈D
ep (λd)

∣∣∣∣∣

2 ∑

λ∈Fp

∣∣∣∣∣
∑

v∈V
ep (λv)

∣∣∣∣∣

2

.
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Clearly
∑

λ∈Fp

∣∣∣∣∣
∑

d∈D
ep (λd)

∣∣∣∣∣

2

=
∑

d1,d2∈D

∑

λ∈Fp

ep (λ(d1 − d2)) = p|D|

and similarly
∑

λ∈Fp

∣∣∣∣∣
∑

v∈V
ep (λv)

∣∣∣∣∣

2

= p|V|.

Thus collecting the previous inequalities and recalling (7), we see from (6).

J =
|B||C||D||U||V|

p
+ O

(
(|B||C||U|)13/16(|D||V|)1/2p5/18+o(1)

)
. (8)

Thus denoting M = max {|U|, |V|} and comparing (5) with (8), we derive

|A||B||C||D|' |B||C||D|M2

p
+ (|B||C|)13/16|D|1/2M21/16p5/18+o(1)

and the result now follows. /0

In particular, taking A = B = C = D we see that Theorem 5 implies that for an
arbitrary set A ⊆ F∗p, we have

max{|A3|, |2A|}( min{
√

p|A|, |A|10/7p−40/189+o(1)}.

However this bound seems weaker that the one which one can derive using a com-
bination of the bounds of Garaev [13]

max{|A3|, |2A|} ≥ max{|A2|, |2A|}( min{
√

p|A|, |A|2p−1/2},

and Rudnev [24]

max{|A3|, |2A|} ≥ max{|A2|, |2A|} ≥ (min{|A|,√p})12/11+o(1). (9)

2.2. Sum Inversion Estimates

In Theorem 2 we can replace A by A−1 and B by B−1 to easily obtain an analogue
of that result: For arbitrary sets A,B, C ⊆ F∗p, we have

|A · B| · |A−1 + C| ≥ 3
8

min
{

p|A|, |A|
2|B||C|
p

}
.

Lemma 6. For arbitrary sets X ,Y ⊆ Fp, and a non-zero element λ ∈ F∗p,
∣∣∣∣∣∣∣∣

∑

x∈X

∑

y∈Y
y $=x

ep

(
λ(x− y)−1

)

∣∣∣∣∣∣∣∣
≤ 2

√
p|X ||Y|.
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Theorem 7. For arbitrary sets A,B, C ⊆ F∗p, we have

|A+ B| · |A−1 + C| ≥ 1
6

min
{

p|A|, |A|
2|B||C|
p

}
.

Proof. We now mimic the argument of Garaev [13] and consider the equation

c + (s− b)−1 = t, (b, c, s, t) ∈ B × C × S × T . (10)

where S = A+ B and T = A−1 + C.

For any triplet (a, b, c) ∈ A×B×C there is a unique solution, namely t = a−1+c,
s = a + b. So (10) has at least |A||B||C| solutions. On the other hand, as in [13],
using Lemma 6 to estimate the total number of solutions to (10), one derives

|A||B||C| ≤ |B||C||S||T |
p

+
2
p

√
p|S||B|

√
p|C|

√
p|T |,

which implies the result (in fact with the constant 3−
√

8 ≥ 1/6) /0

Then as in Section 2.1 we obtain:
Corollary 8. For an arbitrary set A ⊆ F∗p, we have

|kA| · |kA−1| ≥ min
{

cp|A|, ck−1|A|2k

pk−1

}
,

where c = 1/6.

Furthermore, taking B = A−1 and C = A in Theorem 7, we derive:
Corollary 9. For an arbitrary set A ⊆ F∗p, we have

|A+A−1| ≥ 6−1/2 min
{√

p|A|, |A|
2

√
p

}
.

We also note that for smaller sets, Bourgain [3, Theorem 4.1] has shown that for
any ε > 0 there exists δ > 0 such for any set A ⊆ F∗p of cardinality |A| ≤ p1−ε,

max
{
|A+A|, |A−1 +A−1|

}
( |A|1+δ.

The dependence of δ on ε has not been made explicit in [3], however using a recent
estimate of Helfgott & Rudnev [19, Theorem 2] or its improvement due to Jones [20]
in the argument of [3] one can easily derive such a result.

3. Applications

3.1. Exponential Congruence

For a prime p and an integer a ∈ Z with gcd(a, p) = 1 we denote by N(p; a) the
number of solutions to the congruence (1).
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By [1, Theorem 2] we have, uniformly for t | p− 1,
∑

a∈Z∗p
ord a|t

N(p; a) ≤ max{t, p1/2t1/4}po(1), (11)

as p→∞, where ord a denotes the multiplicative order of a ∈ F∗p. Furthermore, for
small values of t by [1, Theorem 4] we also have

∑

a∈Z∗p
ord a|t

N(p; a) ≤ p1/3+o(1)t2/3, (12)

as p→∞. We now give an estimate that improves (11) and (12) for p1/4 ≤ t ≤ p2/3.

Theorem 10. Uniformly over t | p− 1, we have, as p→∞,
∑

a∈Z∗p
ord a|t

N(p; a) ≤ max{t, p1/2}po(1).

Proof. We fix a primitive root g ∈ F∗p and for u ∈ F∗p (and so for any integer u ,≡ 0
(mod p)) we use indu for its discrete logarithm modulo p, that is, the unique residue
class v (mod p− 1) with gv ≡ u (mod p).

As in the proof of [1, Theorem 2], for d | (p − 1)/t, we denote by Yd the set of
integers y satisfying the congruence

ind (dy) ≡ 0 (mod Td), 1 ≤ y ≤ D, gcd (y, Td) = 1,

where
Td =

p− 1
dt

and D =
p− 1

d
.

Furthermore, let Wd be the set of residue classes represented by the elements of Yd

(that is, we embed Yd in Fp in a canonical way). Then we have
∑

a∈Z∗p
ord a|t

N(p; a) =
∑

d|(p−1)/t

|Yd| =
∑

d|(p−1)/t

|Wd|; (13)

see [1, Equation (9)].
We note that for any integer k ≥ 1 we have, |kWd| ≤ kD and |Wk

d | ≤ dt. (which
are straight forward generalisations of [1, Equations (10) and (11)], respectively,
that correspond to k = 2). Applying Corollary 3, we see that for every fixed k

min
{

p|Wd|,
|A|2k

pk−1

}
' Ddt ≤ pt

or |Wd| ' max{t, p1/2}t1/2k (which substitutes [1, Equation (12)]). Since k is
arbitrary, recalling (13), and the well-known bound mo(1) on the number of integer
divisors of an integer m ≥ 1, we derive the result. /0
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3.2. Intersections of Almost Arithmetic and Geometric Progressions

We say that a set I ⊆ Fp is an almost arithmetic progression if for every fixed
integer k ≥ 1 and real ε > 0 there is a constant C+(k, ε) such that

|kI| ≤ C+(k, ε)|I|pε.

We also say that a set G ⊆ Fp is an almost geometric progression if for every fixed
integer k ≥ 1 and real ε > 0 there is a constant C×(k, ε) such that

|Gk| ≤ C×(k, ε)|G|pε.

Theorem 11. For any almost arithmetic progression I ⊆ F∗p and almost geometric
progression G ⊆ F∗p we have,

|I ∩ G| ≤
(
|I||G|

p
+ p1/2

)
po(1)

as p→∞.

Proof. Let A = I ∩ G then, for any fixed integer k ≥ 1 we see that |Ak| ≤ |G|po(1)

and |kA| ≤ |I|po(1). Applying Corollary 3, we derive

|G||I|po(1) ≥ min
{

cp|A|, ck−1|A|2k

pk−1

}
,

where c = 3/8 or

|A| ≤
(
|G||I|

p
+ p1/2(|G||I|/p)1/2k

)
po(1).

Since k is arbitrary, the result now follows. /0

We note that upper bounds for the number of residues modulo p of consecutive
powers gx with x ∈ [K + 1,K + M ] in an interval of length M that belong to some
other interval [L+1, L+M ] of length M are given by Cilleruelo & Garaev [9]. The
estimates and methods of [9] improve those of [7]. However they do not seem to
apply to almost arithmetic and geometric progressions (while the approach of [7]
does and is actually used here). On the other hand, the bound (9) implies that for
M ≤ p6/11 we have

|I ∩ G| ≤M11/12+o(1).

Using Corollary 8 we also derive:

Theorem 12. For any almost arithmetic progressions I,J ⊆ F∗p we have,

|I ∩ J−1| ≤
(
|I||J |

p
+ p1/2

)
po(1)

as p→∞.
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4. Comments

In relation to Corollary 8 it could be relevant to recall a well-known example given
in [8], that shows there are infinitely many pairs (p,A) of primes p and sets A ⊆ F∗p
with

|A| ∼ p1/2+o(1) (14)

and such that for any fixed integer k,

max
{
|Ak|, |kA|

}
≤ p3/4+o(1). (15)

Indeed, let H be a multiplicative subgroup of F∗p of order |H| ∼ p3/4+o(1) (there are
infinitely many primes for which such a subgroup exists, see [12]).

By the pigeon-hole principle, there exists an s ∈ Fp such that if we set

A = H ∩ {s, s + 1, . . . , s +
⌊
p3/4

⌋
}

we have

|A| ∼ |H|p3/4

p
∼ p1/2+o(1).

It is now easy to see that (15) holds for any integer k. One can also obtain a similar
example limiting the possible growth of max{|kA|, |kA−1|} by considering the set
J = {j−1 : j = 1, . . . ,

⌊
p3/4

⌋
}, and defining A as the most “popular” intersection

(in Fp) of J with one of the sets {s + 1, . . . , s +
⌊
p3/4

⌋
}, s ∈ Fp. Therefore we see

that, for an infinite number of primes p, there is a set A ⊆ F∗p satisfying (14) and
such that, for any fixed integer k, max{|kA|, |kA−1|}' p3/4.
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