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Abstract

The number of frequencies of factors of length n + 1 in a recurrent aperiodic in-
finite word does not exceed 3∆C(n), where ∆C(n) is the first difference of factor
complexity, as shown by Boshernitzan. Pelantová together with the author derived
a better upper bound for infinite words whose language is closed under reversal.
In this paper, we further diminish the upper bound for uniformly recurrent infinite
words whose language is invariant under all elements of a finite group of symmetries
and we prove the optimality of the obtained upper bound.

1. Introduction

When studying factor frequencies, the Rauzy graph is a powerful tool. Using this
tool, the following results were obtained. Dekking in [8] described factor frequencies
of two famous infinite words – the Fibonacci word and the Thue-Morse word. Using
Rauzy graphs, it is readily seen that frequencies of factors of a given length of any
Arnoux-Rauzy word over an m-letter alphabet take at most m + 1 distinct values.
Explicit values of factor frequencies were derived by Berthé in [4] for Sturmian
words and by Wozny and Zamboni in [17] for Arnoux-Rauzy words in general.

Queffélec in [15] explored factor frequencies of fixed points of morphisms from
another point of view – as a shift invariant probability measure. She provided
a rather complicated algorithm for the computation of values of such a measure.
For some special classes of fixed points of morphisms (circular marked uniform
morphisms), Frid [10] described explicitly their factor frequencies.

A simple idea concerning Rauzy graphs lead Boshernitzan [5] to an upper bound
on the number of different factor frequencies in an arbitrary recurrent aperiodic in-
finite word. He showed that the number of frequencies of factors of length n+1 does
not exceed 3∆C(n), where ∆C(n) is the first difference of factor complexity. In [6],
it was shown that ∆C(n) is bounded for infinite words with sublinear complexity



INTEGERS: 12 (2012) 2

(for instance, fixed points of primitive substitutions is a subclass of infinite words
with sublinear complexity), therefore the number of different frequencies of factors
of the same length is bounded.

In our previous paper [2], making use of reflection symmetry of Rauzy graphs, we
diminished Boshernitzan’s upper bound for infinite words whose language is closed
under reversal.

This time, we generalize our result to infinite words whose language is invariant
under all elements of a group of symmetries and whose Rauzy graphs are therefore
invariant under all elements of a group of automorphisms. In Section 2, we introduce
basic notions, describe the main tool of our proofs – reduced Rauzy graphs – and
summarize in detail the known upper bounds on the number of factor frequencies.
In Section 3, we define symmetries preserving factor frequencies and show how all
such symmetries look like. In Section 4, we prove Theorem 20, which provides an
optimal upper bound on the number of factor frequencies of infinite words whose
language is invariant under all elements of a finite group of symmetries. Section 5
is devoted to the demonstration that the upper bound from the main theorem is
indeed optimal.

Finally, let us mention that the idea to exploit symmetries of the Rauzy graph was
already used in [3] in order to estimate the number of palindromes of a given length,
and, recently, it has been used profoundly in [12, 13, 16] for the generalization of the
so-called rich and almost rich words (see [11]) for languages invariant under more
symmetries than just reversal.

2. Preliminaries

An alphabet A is a finite set of symbols, called letters. A concatenation of letters
is a word. The length of a word w is the number of letters in w and is denoted
|w|. The set A∗ of all finite words (including the empty word ε) provided with
the operation of concatenation is a free monoid. The set of all finite words but
the empty word ε is denoted A+. We will also deal with right-sided infinite words
u = u0u1u2..., where ui ∈ A. A finite word w is called a factor of the word u (finite
or infinite) if there exist a finite word p and a word s (finite or infinite) such that
u = pws. The factor p is a prefix of u and s is a suffix of u. An infinite word
u is said to be recurrent if each of its factors occurs infinitely many times in u.
An occurrence of a finite word w in a finite word v = v1v2 . . . vm (in an infinite
word u) is an index i such that w is a prefix of the word vivi+1 . . . vm (of the word
uiui+1 . . . ). An infinite word u is called uniformly recurrent if for any factor w the
set {j − i | i and j are successive occurrences of w in u} is bounded.
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2.1. Complexity and Special Factors

The language L(u) of an infinite word u is the set of all factors of u. Let Ln(u)
denote the set of factors of length n of u. The factor complexity (or complexity) of
u is the mapping C : N → N which associates with every n the number of different
factors of length n of u, i.e., C(n) = #Ln(u).

An important role for the computation of factor complexity is played by special
factors. We say that a letter a is a right extension of a factor w ∈ L(u) if wa is
also a factor of u. Let Rext(w) denote the set of all right extensions of w in u, i.e.,
Rext(w) = {a ∈ A | wa ∈ L(u)}. If #Rext(w) ≥ 2, then the factor w is called right
special (RS for short). Analogously, we define left extensions, Lext(w), left special
factors (LS for short). Moreover, we say that a factor w is bispecial (BS for short)
if w is LS and RS.

With these notions in hand, we may introduce a formula for the first difference
of complexity ∆C(n) = C(n + 1)− C(n) (taken from [7]).

∆C(n) =
�

w∈Ln(u)

�
#Rext(w)− 1

�
=

�

w∈Ln(u)

�
#Lext(w)− 1

�
, n ∈ N. (1)

2.2. Morphisms and Antimorphisms

A mapping ϕ on A∗ is called

• a morphism if ϕ(vw) = ϕ(v)ϕ(w) for any v, w ∈ A∗,

• an antimorphism if ϕ(vw) = ϕ(w)ϕ(v) for any v, w ∈ A∗.

Let AM(A∗) denote the set of all morphisms and antimorphisms on A∗. Together
with composition, it forms a monoid (the unit element is the identity mapping Id).
The mirror (also called reversal) mapping R defined by R(w1w2 . . . wm−1wm) =
wmwm−1 . . . w2w1 is an involutive antimorphism, i.e., R2 = Id. It is obvious that
any antimorphism is a composition of R and a morphism.

A language L(u) is closed (invariant) under reversal if for every factor w ∈ L(u),
also its mirror image R(w) belongs to L(u). A factor w which coincides with its
mirror image R(w) is called a palindrome. More generally, a language L(u) is closed
(invariant) under an antimorphism or morphism Ψ ∈ AM(A∗) if for every factor
w ∈ L(u), Ψ(w) also belongs to L(u). If θ is an antimorphism on A∗, then any
word w such that w = θ(w) is called a θ-palindrome. It is not difficult to see that
an infinite word whose language is closed under an antimorphism θ of finite order,
i.e., such that there exists k ∈ N, k ≥ 1, satisfying θk = Id, is recurrent.

We define the θ-palindromic complexity of the infinite word u as the mapping
Pθ : N → N satisfying Pθ(n) = #{w ∈ Ln(u) | w = θ(w)}. If θ = R, we write
P(n) instead of PR(n). Clearly, P(n) ≤ C(n) for all n ∈ N. A non-trivial inequality
between P(n) and C(n) can be found in [1]. Here, we use a result from [3].
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Theorem 1. If the language of an infinite word is closed under reversal, then for
all n ∈ N, we have

P(n) + P(n + 1) ≤ ∆C(n) + 2. (2)

This result has been recently generalized in [13].

Theorem 2. Let G ⊂ AM(A∗) be a finite group containing an antimorphism and
let u be an infinite word whose language is invariant under all elements of G. If
there exists an integer N ∈ N such that any factor of u of length N contains all
letters of A, then

�

θ∈G(2)

�
Pθ(n) + Pθ(n + 1)

�
≤ ∆C(n) + #G for all n ≥ N,

where G(2) is the set of involutive antimorphisms in G.

In fact, even a weaker assumption on N in Theorem 2 may be imposed.

Definition 3. Let G ⊂ AM(A∗) be a finite group containing an antimorphism
and let u be an infinite word whose language is invariant under all elements of G.
We say that a number N ∈ N is G-distinguishing on u if for any w ∈ LN (u) the
following holds:

θ1 �= θ2 ⇒ θ1(w) �= θ2(w) for any two antimorphisms θ1, θ2 ∈ G.

As explained in [14], instead of the assumption on N from Theorem 2, it suffices
to assume that N is a G-distinguishing number on u.

Remark 4. If u is an infinite word whose language is closed under reversal, i.e.,
invariant under a morphism and an antimorphism of G = {Id, R}, then any number
N ≥ 1 is G-distinguishing, and hence the inequality from Theorem 2 holds for
n ≥ 1. Moreover, the inequality holds also for n = 0. Consequently, Theorem 1 is
indeed a particular case of Theorem 2.

2.3. Factor Frequency

If w is a factor of an infinite word u and if

lim
|v|→∞,v∈L(u)

#{occurrences of w in v}
|v|

exists, then it is denoted by ρ(w) and called the frequency of w.
Let us recall a result of Frid [10], which is useful for the calculation of factor

frequencies in fixed points of primitive morphisms. In order to introduce the result,
we need some further notions. Let ϕ be a morphism on A∗ = {a1, a2, . . . , am}∗.
We associate with ϕ the incidence matrix Mϕ given by [Mϕ]ij = |ϕ(aj)|ai , where
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|ϕ(aj)|ai denotes the number of occurrences of ai in ϕ(aj). The morphism ϕ is
called primitive if there exists k ∈ N satisfying that the power Mk

ϕ has all entries
strictly positive. As shown in [15], for fixed points of primitive morphisms,

• factor frequencies exist,

• it follows from the Perron-Frobenius theorem that the incidence matrix has
one dominant eigenvalue λ, which is larger than the modulus of any other
eigenvalue,

• the components of the unique eigenvector (x1, x2, . . . , xm)T corresponding to
λ normalized so that

�m
i=1 xi = 1 coincide with the letter frequencies, i.e.,

xi = ρ(ai) for all i ∈ {1, 2, . . . ,m}.

Let ϕ be a morphism on A∗. Let ψij : A+ → A+, where i, j ∈ N, denote the
mapping that associates with v ∈ A+ the word ψij(v) obtained from ϕ(v) by erasing
i letters from the left and j letters from the right, where i+ j < |ϕ(v)|. We say that
a word v ∈ A+ admits an interpretation s = (b0b1 . . . bm, i, j) if v = ψij(b0b1 . . . bm),
where bi ∈ A and i < |ϕ(b0)| and j < |ϕ(bm)|. The word a(s) = b0b1 . . . bm is an
ancestor of s. The set of all interpretations of v is denoted I(v). Now we can recall
the promised result of Frid [10].

Proposition 5. Let ϕ be a primitive morphism having a fixed point u and let λ be
the dominant eigenvalue of the incidence matrix Mϕ. Then for any factor v ∈ L(u),
we have

ρ(v) =
1
λ

�

s∈I(v)

ρ(a(s)).

2.4. Reduced Rauzy Graphs

Assume throughout this section that factor frequencies of infinite words in question
exist. The Rauzy graph of order n of an infinite word u is a directed graph Γn

whose set of vertices is Ln(u) and set of edges is Ln+1(u). An edge e = w0w1 . . . wn

starts in the vertex w = w0w1 . . . wn−1, ends in the vertex v = w1 . . . wn−1wn, and
is labeled by its factor frequency ρ(e).

Edge frequencies in a Rauzy graph Γn behave similarly as the current in a circuit.
We may formulate an analogy of the Kirchhoff current law: the sum of frequencies
of edges ending in a vertex equals the sum of frequencies of edges starting in this
vertex.

Observation 6. (Kirchhoff law for frequencies) Let w be a factor of an infinite
word u whose factor frequencies exist. Then

ρ(w) =
�

a∈Lext(w)

ρ(aw) =
�

a∈Rext(w)

ρ(wa).
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The Kirchhoff law for frequencies has some useful consequences.

Corollary 7. Let w be a factor of an infinite word u whose frequency exists.

• If w has a unique right extension a, then ρ(w) = ρ(wa).

• If w has a unique left extension a, then ρ(w) = ρ(aw).

Corollary 8. Let w be a factor of an aperiodic recurrent infinite word u whose
frequency exists. Let v be the shortest BS factor containing w, then ρ(w) = ρ(v).

The assumption of recurrence and aperiodicity in Corollary 8 is needed in order
to ensure that every factor can be extended to a BS factor.

Corollary 7 implies that if a Rauzy graph contains a vertex w with only one
incoming edge aw and one outgoing edge wb, then ρ := ρ(aw) = ρ(w) = ρ(wb) =
ρ(awb). Therefore, we can replace this triplet (edge-vertex-edge) with only one edge
awb keeping the frequency ρ. If we reduce the Rauzy graph step by step applying the
above described procedure, we obtain the so-called reduced Rauzy graph Γ̃n, which
simplifies the investigation of edge frequencies. In order to make this construction
precise this construction, we introduce the notion of a simple path.

Definition 9. Let Γn be the Rauzy graph of order n of an infinite word u. A factor
e of length larger than n such that its prefix and its suffix of length n are special
factors and e does not contain any other special factors is called a simple path. We
define the label of a simple path e as ρ(e).

Definition 10. The reduced Rauzy graph Γ̃n of u of order n is a directed graph
whose set of vertices is formed by LS and RS factors of Ln(u) and whose set of
edges is given in the following way. Vertices w and v are connected with an edge e
if there exists in Γn a simple path starting in w and ending in v. We assign to such
an edge e the label of the corresponding simple path.

For a recurrent word u, at least one edge starts and at least one edge ends in
every vertex of Γn. If u is moreover aperiodic, then all its Rauzy graphs contain
at least one LS and one RS factor. It is thus not difficult to see that for recurrent
aperiodic words, the set of edge labels in Γn is equal to the set of edge labels in
the reduced Rauzy graph Γ̃n. The number of edge labels in the Rauzy graph Γ̃n

is clearly less than or equal to the number of edges in Γ̃n. Let us calculate the
number of edges in Γ̃n in order to get an upper bound on the number of frequencies
of factors in Ln+1(u).

For every RS factor w ∈ Ln(u), we have that #Rext(w) edges begin in w and
for every LS factor v ∈ Ln(u) which is not RS, only one edge begins in v, thus we
get the following formula

#{e | e edge in Γ̃n} =
�

w RS in Ln(u)

#Rext(w) +
�

v LS not RS in Ln(u)

1. (3)
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We rewrite the first term using (1) and the second term using the definition of BS
factors in the following way

#{e | e edge in Γ̃n} = ∆C(n) +
�

v RS in Ln(u)

1 +
�

v LS in Ln(u)

1−
�

v BS in Ln(u)

1. (4)

Since #Rext(w)− 1 ≥ 1 for any RS factor w and, similarly, for LS factors, we have

#{w ∈ Ln(u) | w RS} ≤ ∆C(n) and #{w ∈ Ln(u) | w LS} ≤ ∆C(n). (5)

By combining (4) and (5), we obtain

#{e | e edge in Γ̃n} ≤ 3∆C(n)−X, (6)

where X is the number of BS factors of length n. This provides us with the result
already proved by Boshernitzan in [5].

Theorem 11. Let u be an aperiodic recurrent infinite word such that the frequency
ρ(w) exists for every factor w ∈ L(u). Then for every n ∈ N, we have

#{ρ(e) | e ∈ Ln+1(u)} ≤ 3∆C(n).

In the paper [2], we considered infinite words with language closed under reversal
and we lowered the upper bound from Theorem 11 for them.

Theorem 12. Let u be an infinite word whose language L(u) is closed under re-
versal and such that the frequency ρ(w) exists for every factor w ∈ L(u). Then for
every n ∈ N, we have

#{ρ(e) | e ∈ Ln+1(u)} ≤ 2∆C(n) + 1− 1
2X − 1

2Y, (7)

where X is the number of BS factors of length n and Y is the number of palindromic
BS factors of length n.

Corollary 13. Let u be an infinite word whose language L(u) is closed under
reversal and such that the frequency ρ(w) exists for every factor w ∈ L(u). Then
the number of distinct factor frequencies obeys for all n ∈ N,

#{ρ(e) | e ∈ Ln+1(u)} ≤ 2∆C(n) + 1, (8)

where the equality is reached if and only if u is purely periodic.

As shown by Ferenczi and Zamboni [9], m-iet words attain the upper bound
from (7) for all n ∈ N. Since Sturmian words are 2-iet words, they reach the upper
bound in (7) for all n ∈ N, too. Consequently, the upper bound from (7) is optimal
and cannot be improved while preserving the assumptions. However, as we will
show in the sequel, if the language of an infinite word u is invariant under more
symmetries, the upper bound from (7) may be lowered considerably.
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3. Symmetries Preserving Factor Frequency

We will be interested in symmetries preserving in a certain way factor occurrences
in u, and consequently, frequencies of factors of u. Let us call a symmetry on A∗
any mapping Ψ satisfying the following two properties:

1. Ψ is a bijection: A∗ → A∗,

2. for all w, v ∈ A∗

#{occurrences of w in v} = #{occurrences of Ψ(w) in Ψ(v)}.

Theorem 14. Let Ψ : A∗ → A∗. Then Ψ is a symmetry if and only if Ψ is
a morphism or an antimorphism such that Ψ is a letter permutation when restricted
to A.

The proof of Theorem 14 is obtained when putting together the following two lem-
mas.

Lemma 15. Let Ψ be a symmetry on A∗ and let w ∈ A∗. Then |Ψ(w)| = |w|.

Proof. Since #{occurrences of Ψ(w) in Ψ(ε)} = #{occurrences of w in ε} = 0 for
every w ∈ A∗, it follows that Ψ(ε) = ε.

Since Ψ is a bijection, for every letter a ∈ A, there exists a unique w ∈ A∗ such
that Ψ(w) = a, where w �= ε. Hence, for any letter b, we have #{occurrences of b in w} =
#{occurrences of Ψ(b) in a}. Consequently, since Ψ is a bijection, |w| = 1. If we
denote A = {a1, . . . , am}, then it follows that there exists a permutation π ∈ Sm

such that Ψ(ak) = aπ(k) for all k ∈ {1, . . . ,m}.
Let us now take an arbitrary w ∈ A∗, then using the fact that Ψ restricted to A

is a letter permutation and applying Property (2), we have

|w| =
�

a∈A
#{occurrences of a in w} =

�

a∈A
#{occurrences of Ψ(a) in Ψ(w)} = |Ψ(w)|.

Corollary 16. For every w1w2 . . . wn ∈ A∗, wi ∈ A, the following equation is valid

Ψ(w1w2 . . . wn) = Ψ(wσ(1))Ψ(wσ(2)) . . .Ψ(wσ(n)) (9)

for some permutation σ ∈ Sn.

The next lemma claims that the permutation σ is necessarily either the identical
permutation (1 2 . . . n) or the symmetric permutation (n . . . 2 1).

Lemma 17. Let Ψ be a symmetry on A∗. Then Ψ is either a morphism or an
antimorphism.
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Proof. We have to show that Ψ(w) = Ψ(w1)Ψ(w2) . . .Ψ(wn) for every w = w1w2 . . .
wn ∈ A∗, wi ∈ A, or Ψ(w) = Ψ(wn) . . .Ψ(w2)Ψ(w1) for every w = w1w2 . . . wn ∈
A∗, wi ∈ A.

Let us proceed by induction on the length n of w. The case n = 1 is clear.
Suppose that Ψ(w) = Ψ(w1)Ψ(w2) . . .Ψ(wn−1) for every w = w1w2 . . . wn−1 ∈ A∗
of length n − 1, n ≥ 2. Take an arbitrary word w = w1w2 . . . wn ∈ A∗. Then,
as Ψ is a symmetry, Ψ(w2 . . . wn) is a factor of Ψ(w1w2 . . . wn), in more precise
terms, Ψ(w2 . . . wn) is either a prefix or a suffix of Ψ(w1 . . . wn). Moreover, if w1

occurs in w2 . . . wn � times, w1 occurs in w1w2 . . . wn (� + 1) times. Since Ψ is
a symmetry, it follows that Ψ(w1) occurs � times in Ψ(w2 . . . wn) and (� + 1) times
in Ψ(w1w2 . . . wn). These two observations result in

Ψ(w1w2 . . . wn) = Ψ(w1)Ψ(w2 . . . wn) = Ψ(w1)Ψ(w2) . . .Ψ(wn)

or

Ψ(w1w2 . . . wn) = Ψ(w2 . . . wn)Ψ(w1) = Ψ(w2) . . .Ψ(wn)Ψ(w1).

The first case is in correspondence with the fact that Ψ is a morphism. Let us treat
the second case. Similar reasoning as before leads to

Ψ(w1w2 . . . wn) = Ψ(w1 . . . wn−1)Ψ(wn) = Ψ(w1)Ψ(w2) . . .Ψ(wn)

or

Ψ(w1w2 . . . wn) = Ψ(wn)Ψ(w1 . . . wn−1) = Ψ(wn)Ψ(w1) . . .Ψ(wn−1).

The first case is again in correspondence with the fact that Ψ is a morphism. The
only cases which remain are for n = 2

Ψ(w1)Ψ(w2) = Ψ(w2)Ψ(w1)

and for n > 2

Ψ(w) = Ψ(w2) . . .Ψ(wn)Ψ(w1) = Ψ(wn)Ψ(w1) . . .Ψ(wn−1).

In both cases, since Ψ is a bijection, we get w1 = w2 = · · · = wn. Hence, again
Ψ(w) = Ψ(w1)Ψ(w2) . . .Ψ(wn).

With the same reasoning, we deduce that if Ψ(w) = Ψ(wn−1) . . .Ψ(w2)Ψ(w1) for
every w = w1w2 . . . wn−1 ∈ A∗, n ≥ 2, then for an arbitrary w = w1w2 . . . wn ∈ A∗,
wi ∈ A, we get Ψ(w) = Ψ(wn) . . .Ψ(w2)Ψ(w1).

Observation 18. Let u be an infinite word whose language is invariant under
a symmetry Ψ. For every w in L(u) whose frequency exists, ρ(w) = ρ(Ψ(w)) holds.

Remark 19. If a finite set G is a submonoid of AM(A∗), then G is a group and
any of its members restricted to the set of words of length one is just a permutation
on the alphabet A. In other words, G is a finite group of symmetries. Words with
languages invariant under all elements of such a group G of symmetries were studied
in [13].
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4. Factor Frequencies of Languages Invariant Under More Symmetries

Assume u is an infinite word over an alphabet A with #A ≥ 2 whose language is
invariant under all elements of a finite group G ⊂ AM(A∗) of symmetries containing
an antimorphism. Let us summarize some observations concerning the group G of
symmetries and reduced Rauzy graphs of u. These observations constitute all tools
we need for the proof of the main theorem of this paper - Theorem 20.

Observations:

1. Let θ be an antimorphism in G. The mapping Ψ → θΨ is a bijection on G
satisfying

Ψ ∈ G is a morphism ⇔ θΨ ∈ G is an antimorphism.

This implies that G containing an antimorphism has an even number of ele-
ments, i.e., #G = 2k.

2. For a factor w containing all letters of A, the following properties can be easily
verified:

(a) for any distinct antimorphisms θ1, θ2 ∈ G, we have θ1(w) �= θ2(w),

(b) for any distinct morphisms ϕ1,ϕ2 ∈ G, we have ϕ1(w) �= ϕ2(w).

3. If w is a θ-palindrome containing all letters of A for an antimorphism θ ∈ G,
then θ is an involution, i.e., θ2 = Id.

4. In a reduced Rauzy graph of u, if there is an edge e between two vertices w
and v, where w and v contain all letters of A, then

(a) either e is a θ-palindrome for some antimorphism θ ∈ G, then there exist
at least #G

2 distinct edges having the same label ρ(e), namely edges ϕ(e)
for all morphisms in G;

(b) or e is not a θ-palindrome for any antimorphism θ ∈ G, then there exist
at least #G distinct edges having the same label ρ(e), namely edges ϕ(e)
for all morphisms in G and θ(e) for all antimorphisms in G.

5. On one hand, if an edge e in the reduced Rauzy graph Γ̃n is mapped by
an antimorphism θ onto itself, then the corresponding simple path has a θ-
palindromic central factor of length n or n + 1. On the other hand, every θ-
palindrome contained in Ln+1(u) is the central factor of a simple path mapped
by θ onto itself and every θ-palindrome of length n is either the central factor
of a simple path mapped by θ onto itself or is a special factor (thus, evidently,
a BS factor).
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Theorem 20. Let G ⊂ AM(A∗) be a finite group containing an antimorphism and
let u be a uniformly recurrent aperiodic infinite word whose language is invariant
under all elements of G and such that the frequency ρ(w) exists for every factor
w ∈ L(u). Then there exists N ∈ N such that

#{ρ(e) | e ∈ Ln+1(u)} ≤ 1
#G

�
4∆C(n) + #G−X − Y

�
for all n ≥ N,

where X is the number of BS factors of length n and Y is the number of BS factors
of length n that are θ-palindromes for an antimorphism θ ∈ G.

Proof. Since u is uniformly recurrent, we can find N such that any factor of length
N contains all letters of u. Let Γ̃n be the reduced Rauzy graph of u of order n ≥ N .
We know already that the set of edge labels of Γ̃n is equal to the set of edge labels
of Γn. It is easy to see that any element of G is an automorphism of Γ̃n, i.e., G
maps the graph Γ̃n onto itself.

Let A denote the number of edges e in Γ̃n such that e is mapped by a certain
antimorphism of G onto itself (such an antimorphism is involutive by Observa-
tion (3)) and by B the number of edges e in Γ̃n such that e is not mapped by any
antimorphism of G onto itself, then

#{e | e edge in Γ̃n} = A + B ≤ 3∆C(n)−X, (10)

where the upper bound is taken from (6). We get, using Observations (3) and (5),
the following formula

A =
�

θ∈G(2)

�
Pθ(n)+Pθ(n+1)

�
−

�

θ∈G(2)

#{w ∈ Ln(u) | w = θ(w) and w BS }, (11)

where we subtract the number of BS factors of Ln(u) that are θ-palindromes for
a certain antimorphism θ, in the statement denoted by Y , since they are not central
factors of any simple path. If #G = 2k, then for every edge e in Γ̃n that is mapped
by a certain antimorphism θ ∈ G onto itself, there are at least k different edges
with the same label ρ(e) by Observation (4a).

Now, let us turn our attention to those edges of Γ̃n which are not mapped by any
antimorphism of G onto themselves. For every such edge e, at least 2k edges have
the same label ρ(e) by Observation (4b). These considerations lead to the following
estimate

#{ρ(e) | e ∈ Ln+1(u)} ≤ 1
k

A + 1
2kB = 1

2kA + 1
2k (A + B). (12)

Putting together (11), (10), (12), and Theorem 2, the statement is proven.

Remark 21. If an infinite word u is closed under reversal, then G = {Id, R} and the
new upper bound from Theorem 20 coincides with the estimate from Theorem 12.
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Finally, if we want to have a simpler upper bound on factor frequencies, we can
use the following one, which is slightly rougher than the estimate from Theorem 20.

Corollary 22. Let G ⊂ AM(A∗) be a finite group containing an antimorphism
and let u be a uniformly recurrent infinite word whose language is invariant under
all elements of G and such that the frequency ρ(w) exists for every factor w ∈ L(u).
Then there exists N ∈ N such that

#{ρ(e) | e ∈ Ln+1(u)} ≤ 4
#G

∆C(n) + 1 for all n ≥ N.

The equality holds for all sufficiently large n if and only if u is purely periodic.

5. Optimality of the Upper Bound

In this section, we will illustrate on an example taken from [13] that the upper
bound from Theorem 20 is attained for every n ∈ N, n ≥ 1, thus it is an optimal
upper bound. The infinite word u in question is the fixed point starting in 0, which
is obtained when we iterate the primitive morphism ϕ given by:

ϕ(0) = 0130, ϕ(1) = 1021, ϕ(2) = 102, ϕ(3) = 013, (13)

i.e., for all n ∈ N, the word ϕn(0) is a prefix of u.
The corresponding incidence matrix is of the form

Mϕ =





2 1 1 1
1 2 1 1
0 1 1 0
1 0 0 1



 ,

its dominant eigenvalue is λ = 2+
√

3 with the corresponding normalized eigenvector

1
2





√
3− 1√
3− 1

2−
√

3
2−

√
3



 ,

hence we get the letter frequencies

ρ(0) = ρ(1) =
√

3− 1
2

, ρ(2) = ρ(3) =
2−

√
3

2
.

We also know that the frequencies of all factors exist because of the primitivity of
ϕ. In [13], the following properties of u were shown:



INTEGERS: 12 (2012) 13

1. The language L(u) is closed under the finite group of symmetries G = {Id, θ1,
θ2, θ1θ2}, where θ1, θ2 are involutive antimorphisms acting on A as follows:

θ1 : 0→ 1, 1→ 0, 2→ 2, 3→ 3 and θ2 : 0→ 0, 1→ 1, 2→ 3, 3→ 2.

2. The first increment of factor complexity satisfies ∆C(n) = 2 for all n ∈ N, n ≥
1. Moreover, every LS factor w is a prefix for some n ∈ N,

• either of ϕn(0) = 013010210130130 . . . and Lext(w) = {1, 3}
• or of ϕn(1) = 102101301021021 . . . and Lext(w) = {0, 2}.

3. A factor w of u is LS if and only if θi(w) is RS for i ∈ {1, 2}.

In order to find the set of frequencies of factors of any length, we need to describe
BS factors of u. By Property (3), we deduce the relation between BS factors and
θi-palindromes.

Corollary 23. Every nonempty BS factor is a θi-palindrome for one of the indices
i ∈ {1, 2}.

Proposition 24. If v ∈ L(u) is a BS factor of length greater than 5, then v =
ϕ(w)pwn , where wn is the last letter of w and p0 = p2 = 10210 and p1 = p3 = 01301.
Moreover,

ρ(v) =
1
λ

ρ(w).

Proof. By Property (2), every LS factor of length greater than 5 starts either in
01301 or in 10210. Similarly, by Property (3), every RS factor ends either in 01301
or in 10210. It follows from the definition of ϕ in (13) that there exists w ∈ L(u)
such that v = ϕ(w)01301 or v = ϕ(w)10210 and that w is necessarily a BS factor.
Consider v = ϕ(w)01301, the second case can be treated analogously. It is then
not difficult to see that w ends in wn = 1 or wn = 3, hence pwn = 01301. In
order to prove the relation between frequencies, we need to determine the set of
interpretations of v. It is readily seen that the set of interpretations is

• {(w01, 0, 3), (w02, 0, 2), (w30, 0, 2)} if wn = 1 or wn = 3,

• {(w10, 0, 3), (w13, 0, 2), (w21, 0, 2)} if wn = 0 or wn = 2.

Using Proposition 5, we obtain ρ(v) = ρ(w01)+ρ(w02)+ρ(w30)
λ = ρ(w)

λ if wn = 1 or
wn = 3, where the last equality follows from the fact that w is always followed
by 01, 02, or 30, and similarly, ρ(v) = ρ(w10)+ρ(w13)+ρ(w21)

λ = ρ(w)
λ if wn = 0 or

wn = 2.

Proposition 24 implies that if we want to generate all BS factors of u, then it is
enough to know non-empty BS factors of length less than or equal to 5 and to apply
the mapping w → ϕ(w)pwn on them repeatedly. Nonempty BS factors of length
less than or equal to 5 are:
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1. 0 and 1,

2. 01 and 10,

3. 01301 and 10210.

The aim of the rest of this section is to show that for any length n ∈ N, n ≥ 1, we
have

#{ρ(e) | e ∈ Ln+1(u)} =
�

2 if Ln(u) contains a BS factor,
3 otherwise.

Let us draw in Figure 1 reduced Rauzy graphs containing short BS factors. In

0

1

01 10 130021
01 10

101

010

1021001301

01301

10210

10210210

01301301

013010210102101301

Figure 1: Reduced Rauzy graphs of u of order n ∈ {1, 2, 5}.

order to describe factor frequencies, it suffices to consider reduced Rauzy graphs
containing short BS factors together with the following observations concerning
reduced Rauzy graphs of u.

Observation 25. 1. Any reduced Rauzy graph of u has either four vertices (two
LS factors and two RS factors) or two vertices (BS factors).

2. Reduced Rauzy graphs of order larger than 5 whose vertices are BS factors are
obtained from the graphs in Figure 1 by a repeated application of the mapping
w → ϕ(w)pwn simultaneously to all vertices and edges.

3. By Corollary 8, it is not difficult to see that if we find to a reduced Rauzy graph
Γ̃n whose vertices are not BS factors the reduced Rauzy graph of minimal larger
order, say Γ̃m, whose vertices are BS factors, then

{ρ(e) | e edge in Γ̃n} = {ρ(e) | e edge in Γ̃m} ∪ {ρ(v) | v vertex in Γ̃m}.
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The last step in the derivation of frequencies of factors of u is to determine the
frequencies of edges and vertices in the reduced Rauzy graphs depicted in Figure 1.
In the sequel, we make use of the Kirchhoff law for frequencies (Observation 6),
of the fact that symmetries preserve factor frequencies, and of the formula from
Proposition 5.

1. Γ̃1:
ρ(0) = ρ(1) =

√
3−1
2 =

√
3+1
2λ

ρ(130) = ρ(021) = ρ(2) = 2−
√

3
2 = 1

2λ

ρ(01) = ρ(10) = ρ(0)− ρ(130) =
√

3
2λ

In the second row, the first equality follows from the fact that symmetries
preserve frequencies and 130 = θ2(021) and the second equality by Corollary 7
from the fact that 2 is neither LS, nor RS. In the third row, the first equality is
again due to symmetries and the second uses the Kirchhoff law for frequencies
from Observation 6.

2. Γ̃2:
ρ(01) = ρ(10) =

√
3

2λ
ρ(01301) = ρ(10210) = ρ(130) = 1

2λ

ρ(010) = ρ(101) = ρ(01)− ρ(01301) =
√

3−1
2λ

3. Γ̃5:

ρ(01301) = ρ(10210) = 1
2λ

ρ(ϕ(0)10210) = ρ(ϕ(1)01301) = ρ(0)
λ =

√
3−1
2λ

ρ(01301301) = ρ(10210210) = ρ(01301)− ρ(ϕ(0)10210) = 2−
√

3
2λ = 1

2λ2

Putting together Proposition 24, properties of reduced Rauzy graphs summarized
in Observation 25, and the knowledge of frequencies of vertices and edges in Γ̃1, Γ̃2,
and Γ̃5, we obtain the following corollary.

Corollary 26. Let n ∈ N, n ≥ 1, such that

1. Ln(u) contains a BS factor: then there exists k ∈ N such that the set {ρ(e) |
e ∈ Ln+1(u)} is of one of the following forms:

(a) { 1
2λk+1 ,

√
3

2λk+1 },

(b) { 1
2λk+1 ,

√
3−1

2λk+1 },

(c) {
√

3−1
2λk+1 , 1

2λk+2 }.

2. Ln(u) does not contain a BS factor: then there exists k ∈ N such that the set
{ρ(e) | e ∈ Ln+1(u)} is of one of the following forms:
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(a) {
√

3−1
2λk , 1

2λk+1 ,
√

3
2λk+1 },

(b) {
√

3
2λk+1 , 1

2λk+1 ,
√

3−1
2λk+1 },

(c) { 1
2λk+1 ,

√
3−1

2λk+1 , 1
2λk+2 }.

A direct consequence of the previous corollary is the optimality of the upper
bound from Theorem 20.

Proposition 27. Let u be the fixed point of ϕ defined in (13). Then for every
n ∈ N, n ≥ 1, we have

#{ρ(e) | e ∈ Ln+1(u)} =
1

#G

�
4∆C(n) + #G−X − Y

�
,

where X is the number of BS factors of length n and Y is the number of BS factors
of length n that are θ1- or θ2-palindromes.

Proof. Let us consider at first n such that Ln(u) does not contain a BS factor.
Then, on one hand, Corollary 26 states that #{ρ(e) | e ∈ Ln+1(u)} = 3. On
the other hand, 1

#G

�
4∆C(n) + #G − X − Y

�
= 4·2+4−0−0

4 = 3. At second, let
Ln(u) contain a BS factor. Then, on one hand, we have by Corollary 26 that
#{ρ(e) | e ∈ Ln+1(u)} = 2. On the other hand, by (1) of Observation 25, Ln(u)
contains 2 BS factors, and by Corollary 23, one BS factor is a θ1-palindrome and one
BS factor is a θ2-palindrome, thus 1

#G

�
4∆C(n)+#G−X−Y

�
= 4·2+4−2−2

4 = 2.

Remark 28. There are also infinite words whose language is invariant under ele-
ments of a finite group of symmetries, however, the upper bound from Theorem 20
is not reached for any n ≥ N . Such an example is the famous Thue-Morse word.
Its group of symmetries G = {Id, R,Ψ,Ψ ◦ R}, where Ψ is a morphism acting on
{0, 1} as follows:

Ψ : 0→ 1, 1→ 0.

As shown by Dekking [8], the Thue-Morse word uTM satisfies for n ∈ N, n ≥ 1,

#{ρ(e) | e ∈ Ln+1(uTM )} =
�

1 or 2 if uTM contains a BS factor of length n,
2 otherwise.

But, the upper bound from Theorem 20 is of the following form for n ∈ N, n ≥ 1,

2 or 4 if uTM contains a BS factor of length n,
3 or 5 otherwise.
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