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Abstract
In a recent preprint on ArXiv, Bacher introduced a twisted version of the Stern
sequence. His paper contains in particular three conjectures relating the generating
series for the Stern sequence and for the twisted Stern sequence. Soon afterwards
Coons published two papers in Integers: first he proved these conjectures, second he
used his result to obtain a correlation-type identity for the Stern sequence. We recall
here a simple result of Reznick and we state a similar result for the twisted Stern
sequence. We deduce an easy proof of Coons’ identity, and a simple proof of Bacher’s
conjectures. Furthermore we prove identities similar to Coons’ for variations on the
Stern sequence that include Bacher’s sequence.

1. Introduction

The Stern sequence is a sequence of integers s = (s(n))n>o0 that can be defined
inductively by s(0) =0, s(1) =1, and for all n > 1, s(2n) = s(n) and s(2n+1) =
s(n) + s(n +1). (Note that these two equalities are actually true for all n > 0.)
This is sequence A002487 in [11]. Its first few terms are

0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1...

Several authors studied that sequence, see, e.g., [13, 10] and the references therein.
(Note that some authors call Stern sequence the shifted sequence (s(n + 1)),>0.)

Bacher introduced recently in [3] a twisted version of the Stern sequence t =
(tn)n>0 defined inductively by ¢(0) = 0, t(1) = 1, and for all n > 1, ¢(2n) = —t(n),
t(2n+1) = —t(n)—t(n+1). He gave several interesting properties of the sequences s
and t and formulated conjectural relations between the generating series > s(n) X",
Dt(3.2° +n)X™, > (s(24+n) —s(1+n))X™, and Y (t(2+n) +t(1 +n))X".

In the recent paper [6] Coons proved Bacher’s conjectures. He then used in [7]
his results to prove the following identity for the Stern sequence: if e and r are
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integers with e > 0, then for every integer n > 0

s(r)s(2n+5) +s(2° —r)s(2n+3) = s(2°(n+ 2) +7) + s(2°(n + 1) + 7).

We recall here (see Section 3) a result of Reznick in [12], and we deduce an
easy proof of Coons’ identity. We also prove a result similar to Reznick’s result
for the Bacher-Stern sequence which yields a short proof of Bacher’s conjectures.
Furthermore we prove identities analogous to Reznick’s and Coons’ identities for
sequences satisfying recurrence relations similar to Stern’s which include Bacher’s
sequence.

2. Three Auxiliary Results

We start with three propositions. The first one is [12, Corollary 4] for which Reznick
gives a short proof.

Proposition 1. [12] Let e and r be integers with e > 0 and 0 < r < 2¢. Then, for
every integer n > 0, we have

s(2°n+71) =s(r)s(n+ 1)+ s(2° —r)s(n).
The next Proposition is similar to Proposition 1.

Proposition 2. Let e and r be integers with e > 0 and 0 < r < 2¢. Then, for every
integer n. > 1, we have

t(2°n+ 1) = (=1)%(s(r)t(n+ 1) + s(2° — r)t(n)).

Proof. We prove by induction on e > 0 that, for every r € [0,2¢], the identity in
the proposition holds. This is immediate for e = 0 (thus r € {0,1}). If the result
is true for some e, then, using the definition of t, the induction hypothesis, and the
definition of s, we have

e if 2r € [0,2¢71], then

t(2¢tn +2r) = —t(2°n+7) = (1)L (s(r)t(n + 1) + s(2° — r)t(n))
— (S (@)t + 1) + 527 — 20)t(n);

o if 2r +1 € [0,2°"1], then

t2Mn +2r+1) =t22°n+7r)+1) = —t(2°n+71) —t(2°n+r +1)
_ § 1)et( s(r t(n+ 1)+ s(2° —r)t(n))
+(—=1)T(s(r + 1)t(n+ 1) + s(2° — r — 1)t(n))
1e (s(r)+s(r+1)t(n+1)
—1)¥H(s(2° —r) + s(2¢ —r — 1))t(n)
(-1 327"—|—1) (n+1)+s(2(2¢—r—1)+1)
= (-1 E+ (s(2r + D)t(n +1) + s(2¢F — 2r — 1)t(n).
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The last result we need is a consequence of Proposition 1.

Proposition 3. Let S(X) =}, -, s(N)X". Then

S(X) = S(Xf) Z (8(26 — r)XT + S(T)X’“*ze)'

0<r<2¢—1

Proof. This is an easy consequence of Proposition 1 (also recall that s(0) = 0): we
write

S(X)

Zs(n)X" = Z Zs(k.Qe + )Xk

n>0 0<r<2¢—-1k>0

S XTY (s(r)s(k+1) +5(2° = r)s(k)) X5
0<r<2e—1 k>0

S ()X 4520 = 1)X7) Y s(k) X
0<r<2e—1 k>0
=S(X¥) Y (s(NXTF 4527 1) X7).

0<r<2e—1

Remark 4. Note that, as indicated by the referee, Proposition 3 is essentially
Lemma 8 of [6] which states that for all k£ >0

x I (1+X2i+X2M): S osmXxT+ Y s )X

0<i<k—1 1<n<2k 1<n<2k—1

This can be deduced from the following property of the generating function for

(s(n))
S(X7) = <1+;W> S(X)

(see the paper of Carlitz [5, p. 19], where the shifted sequence (Og(n)) = (s(n+1))
is studied).

3. A Direct Proof of Coons’ Identity

Theorem 1 of [7] is a straightforward corollary of Reznick’s result (Proposition 1
above).

Corollary 5. Let e and r be integers with e > 0 and 0 < r < 2°. Then, for every
integer n > 0, we have

s(r)s(2n+5) +s(2° —r)s(2n+3) = s(2°(n+ 2) +7) + s(2°(n+ 1) + 7).
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Proof. Let S(e,r,n) =s(2°(n+2) + 1)+ s(2¢(n+ 1) + r). Applying Proposition 1
with n replaced by n + 2 and n + 1, and the definition of the sequence s yields

S(e,r,n) = s(r)s(n+3)+s(2°—r)s(n+2) + s(r)s(n+2) +s(2° —r)s(n+1)
= s(r)(s(n+3)+s(n+2))+s(2°—7)(s(n+2)+s(n+1))
= s(r)s(2n+5) + s(2¢ — r)s(2n + 3).

4. A Simple Proof of Bacher’s Conjectures

We can now prove the three conjectures that Bacher proposed in [3] (Conjectures 1.3,
3.2 (i), and 3.2 (ii)) as Theorems 6, 7, and 8 below.

Theorem 6. Let S(X) = > 5(s(n)X" and T(X) = >, 5,t(n)X" be the gen-
erating series of s and t. Then, there exists a series U(X) = 3, 5o u(n) X" with
integral coefficients, such that

foralle >0, Y #(32°+n)X" = (-1)°U(X>")S(X).
n>0
Proof. The series U(X) must satisfy in particular 3, (3 +n)X" = U(X)S(X).
This relation defines a series U(X) that clearly has integer coefficients (s(1) =

1, and s(0) = 0). Now, using Proposition 2 above, the definition of U(X), and
Proposition 3, we have

> (3.2° +n)X" > 320+ k24 ) XEHT

n>0 0<r<2¢—1k>0

X" t2°(B+ k) +r)XE

0<r<2e—1 k>0

S0 XY (1) (s(r)t(k 4 4) + 5(2° — r)t(k + 3)) X P

0<r<2e—1 k>0

= (=1 D (s(2°= )X +s()XT) Y t(3 4 k)X

0<r<2e—1 k>0
= (=1 D (s(2° =) X"+ s(n) X UX*)S(X)
0<r<2e—1

= (-1 S(X)U(X*).

1

Theorem 7. Let A(X) = m

2(5(2 +n)—s(l+n)X". Then
n>0

D (s 4 n) — 5(2° 4+ n)) X" = A(XP)S(X).
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Proof. Let A.(X) = 2(8(26+1 +n)—s(2°4+n))X". We write, using Proposition 1
n>0
and Proposition 3 (recall that s(2) — s(1) = 0),

AX) = Y D (s 4 k24 7r) — (27 + k27 4 7)) XE
0<r<2¢—1k>0

> XY (52°(k+2) 1) — s(2°(k + 1) + 1) X5

0<r<2e—1 k>0

Thus
Z X" Z((s(r)s(k +3) 4 s(2° — r)s(k + 2)) X+
A(X) ={ osrsz1 k20 .
) — Z X" (s(r)s(k +2) + s(2° — r)s(k + 1)) X "2
0<r<2¢—1
S s()XT S (sl +3) - sk +2) X5
_ ) o<r<2e—1 k>0
) Y s )XY (s(k +2) — sk + 1) X5
0<r<2e—1 k>0
= D (X 4520 =) X" (s(k+2) — s(k+ 1) X"
0<r<2e—1 k>0
) g e
= 500 kzzo( (k+2)—s(k+1))X S(X)AX?).
Theorem 8. Let B(X) = ﬁ Z(t(2 +n)+t(14+n))X"™. Then

n>0
(=D (2 +n) +£(2° + 1)) X" = B(X*)S(X).
n>0

Proof. The proof is the same as the proof of Theorem 7, except that we use Propo-
sitions 2 and 3 instead of Propositions 1 and 3.

5. Similar Sequences

Proposition 2 gives an expression of ¢(2°n + r) in terms of ¢(n) and t(n 4+ 1) with
coefficients in terms of s. One might want to find relations of the same kind but
involving t only. In this section we give such a relation. More generally we prove
such relations for sequences satisfying recurrence relations similar to the recurrences
defining the Stern sequence.

Theorem 9. Let v = (v(n))y,>0 be a sequence of real numbers satisfying

Jne >0, I(a,b,c) € R®, Vn > ng v(2n) = av(n) and v(2n+1) = bv(n) +cv(n+1).
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Then, for all integers (e,r) with e > 0 and r € [0,2¢], there exist A = A(e,r) and
B = B(e,r) such that for all n > ng

v(2°n+7r) = A(e,r)v(n) + B(e,r)v(n + 1).

Proof. We prove by induction on e that for all » € [0,2¢], there exist A(e,r) and
B(e,r) satisfying the conditions in the theorem. For e = 0 we have r € {0,1}
and one gets from the definition of v that A(0,0) = 1, B(0,0) = 0, A(0,1) = 0,
and B(0,1) = 1. Going from e to e + 1 yields A(e + 1,2r) = aA(e,r), Ble +
1,2r) = aBle,r), if 0 < 2r < 2¢71 and A(e + 1,2r + 1) = bA(e,r) + cA(e,r + 1),
B(e+1,2r +1) =bB(e,r) + cB(e,r + 1), if 0 < 2r + 1 < 2¢FL,

Corollary 10. Let v = (v(n))n>0 be a sequence of real numbers satisfying
Jng >0, I(a,b,c) € R?, ¥n > ng v(2n) = av(n) and v(2n+1) = bv(n) +cv(n+1).

Then, for all integers (e,r) with e > 0 and r € [0,2°], there exist A = A(e,r) and
B = Ble,r) such that for all n > ng

Ale,m)v(2n+3) + B(e,r)v(2n 4+ 5) = cv(2°(n +2) +r) + bu(2°(n + 1) + 7).

Proof. Apply Theorem 9 with n replaced by n + 2 and n + 1 to the left side of the
identity to be proven.

Remark 11. The quantities A(e,r) and B(e, r) can of course be computed in terms
of e, r and of certain values of v. For example if the sequence v is not trivial, there
v(xo) v(xo+1) 20
v(yo) v(yo +1) '

A(e,r)v(xo) + Ble,r)v(zg + 1)
Ale,r)u(yo) + Ble,r)v(yo + 1)

exist two integers x¢ and yo with zg,yo > ng such that

Then

v(2¢xg + 1)
v(2%yo + 1)

yields
Ale,r) = (v(yo)v(zo+1)—v(zo)v(yo+1)) " (v (zo+1)v(2%Y0+1)—v(yo+1)v(2%20+7))
and

Ble,r) = (v(wo)v(yo + 1) — v(yo)v(zo + 1))~  (v(w0)v(270 + 1) — v(yo)v(2°z0 + 7))

6. Examples

6.1. The Stern Sequence Again

One can apply Theorem 9 to the Stern sequence, for which ng =0,a =b=c=1.
The values of A and B can be obtained by taking n = 0 and n = 1 in the relation
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s(2°n+ 1) = A(e,r)s(n) + B(e,r)s(n + 1), yielding B(e,r) = s(r) and A(e,r) =
s(2°n+1) — s(r). To obtain the result of Proposition 1 and Corollary 5 this way, it
remains to prove that for all e > 0 and r € [0, 2°] one has s(2°+7r)—s(r) = s(2¢—7r).
This last equality can be proven by induction on e, but this is also Corollary 3.1 in
[8] (see also [3, Theorem 1.2] where the author adds that this identity “is probably
well-known to the experts”).

6.2. The Case of Bacher’s Twisted Stern Sequence

The definition of Bacher’s twisted Stern sequence t = (¢(n)),>o recalled in the
Introduction shows that t satisfies the hypotheses of Theorem 9 with a = b =c¢ =
—1, and ng = 1. Note that the first few terms of t are:

0,1,-1,0,1,1,0,—1,-1,—-2,—1,-1,0,1,1,2, ...

Applying Theorem 9 and Corollary 10 we get the following results.

Theorem 12. Let e and r be integers with e > 0 and 0 < r < 2°. Then, for every
integer n > 1, we have

t(2°n + 1) = —t(2°T + r)t(n) — £(3.2° — r)t(n + 1).

Proof. From Theorem 9 we have the existence of A’ and B’ such that ¢(2°n +
r) = Al'(e,r)t(n) + B'(e,r)t(n + 1) for n > 1. Taking n = 2 and using that
t(2) = —1 and t(3) = 0, we get A'(e,r) = —t(2°1 +r). Now taking n = 1
yields t(2¢ +r) = A'(e,r) — B'(e,r). Hence B'(e,r) = A'(e,r) — t(2° + 1), ie.,
B'(e,r) = —t(2°T1 + ) — #(2° + r). An immediate induction on e shows that for
r € [0,2°] one has ¢(2¢T + ) + ¢(2° + r) = ¢(3.2° — r). Hence the result.

Corollary 13. Let e and r be integers with e > 0 and 0 < r < 2°. Then, for every
integer n > 0, we have

H2¢M £ )20 + 3) + (3.2 — )t(2n +5) = t(2°(n +2) + 1) +t(2°(n + 1) + 7).

6.3. Other Variations on Stern’s Sequence

Let the three sequences (21(n))n>0, (22(n))n>0, and (z3(n))n>o defined by (using
the notation of [11]): for all n > 0, z1(n) = A005590(n), and for all n > 1,
zo(n) = A177219(n), and z3(n) = A049347(n) with 22(0) = 23(0) = 0. These
sequences satisfy respectively

(21(0),21(1)) = (0,1), and Vn > 1, 21(2n) = z1(n), z21(2n+1) = —z1(n) +2z1(n+1),

—
N
[ V)
—
=
N
e
Q
~
f
=
=
|

(0,1), and ¥n > 1, 22(2n) = —22(n), 22(2n+1) = —z3(n)+22(n+1),
(0,1), and ¥n > 1,23(2n) = —z3(n), z3(2n+1) = z3(n) +2z3(n+1).

—
N
w
—~
=}
~—
N
w
—~
—_
~—
~
I
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Note that he last sequence (z3(n))n>0 is the 3-periodic sequence with period (0,1, —1)
(hint: prove by induction on n that for all j < n one has (23(37), 23(37+ 1), 23(35 +
2)) = (0,1,-1)). Also note that all relations z;(2n) = +z;(n) and z;(2n + 1) =
+z;(n) + zi(n+1), i = 1,2,3, are actually valid for n > 0.

We know from Theorem 9 that, for all e > 0 and r € [0,2¢], there exist A;(e,r)
and B;(e,r) such that for all n > 0 we have

zi(2°n 4+ 1) = Ai(e,m)zi(n) + Bi(e,r)zi(n + 1).

Taking n = 0 yields B;(e,r) = z;(r) (for i = 1,2, 3). Taking n = 2, and using that
21(2) = 1, 23(2) = —1, and 21(3) = 23(3) = 0, we get Aj(e,r) = 21(2°T! +7) and
Asz(e,r) = —23(2°T1 +7). Now taking n = 1 yields As(e,7) = 22(2°+7) — 2o(r). An
immediate induction on e proves that, for r € [0,2°], one has z5(2° 4+ r) — z3(r) =
—29(5.2¢ + ). Hence we can state the following theorem.

Theorem 14. Let (z1(n))n>0, (22(n))n>0, (23(n))n>0 be the sequences defined
above. Let e >0 and r € [0,2°]. Then, for all n > 0 we have

21(2°n+71) = 22T+ 1r)z1(n) + 21 (r)z(n+ 1)
zo(2°n+71r) = —2z(5.2°n+1)z2(n) + 22(r)2z2(n + 1)
23(2°n+71) = —2z3(2°Tt +1r)z3(n) + 23(r)23(n + 1)

and
22T+ 1) 21 (20 4+ 5) + 21 (1) 21 (2n + 3) = —21(2°(n + 2) +7) + 21(2°(n + 1) + 1)

—29(5.2° +1)22(2n + 5) 4+ 22(r)22(2n + 3) = —22(2°(n+ 2) +7) + 22(2°(n + 1) + 1)
—23(2°M £ 1) 23(2n + 5) + 23(r)23(2n + 3) = 23(2°(n + 2) +7) + 23(2°(n + 1) + 7).

6.4. Block-Complexity of the Thue-Morse Sequence

Other sequences satisfy the hypotheses of Theorem 9, e.g., sequence A145865 in
[11]. An example that we would like to mention is the sequence (y(n))n>0 =
(A005942(n + 1)),>0 with the notation of [11]. The sequence (A005942(n))n>0
is the (block-)complexity of the Thue-Morse sequence (the Thue-Morse sequence is
the fixed point beginning with 0 of the morphism 0 — 01, 1 — 10, see, e.g., [2]; its
block-complexity is the number of distinct factors (blocks) of each length occurring
in that sequence). It satisfies A005942(2n) = A005942(n) + A005942(n + 1), and
A005942(2n + 1) = 2A005942(n + 1) if n > 2 (see [4, 9]). Hence the sequence
(y(n))n>o satisfies the hypotheses of Theorem 9 with ng =2, a =2, b =c¢ = 1.
Note that y(0) = 2 and y(1) = 4.

Remark 15. The sequence (A006165(n)),>o satisfies the same recurrence proper-
ties as the sequence (y(n)),>0 above, but is equal to 1 for n = 1 and n = 2. As
indicated in [11] this sequence is related to the Josephus problem.
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7. Final Remarks

For sequences (z(n))n>o satisfying the hypotheses of Theorem 9, any subsequence
of the form (2(2°n + 7))p>0 with e > 0 and r € [0,2¢] is a linear expression in
(2(n))n>0 and (z(n+1))p>0 for n > ny with coefficients depending on r and e only:
this proves the 2-regularity of these sequences (see [1]).

Also note that, as visible in the proof of Theorem 9 above, several other relations
can be found between the terms of sequences satisfying the hypotheses of that

theorem.

Acknowledgments We thank warmly R. Bacher for his comments on a previous
version of this paper.
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