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Abstract
In this article we show that Pisot numbers of even degree and their powers cannot
be roots of chromatic polynomials. We also consider the family of smallest Pisot
numbers of odd degree. We show that they cannot be roots of chromatic polynomials
of connected graphs with a certain maximum number of vertices.

1. Introduction

An algebraic integer is a root of a monic polynomial with integer coefficients. A
Pisot number is a real algebraic integer greater than 1 such that all its Galois
conjugates are of norm smaller than 1. The degree of the Pisot number is the
degree of its minimal polynomial. The Pisot numbers are also known as Pisot-
Vijayaraghavan numbers or PV numbers. The best well-known is the golden mean,
i.e. (

√
5 + 1)/2. The Pisot numbers form an infinite closed set ([6]). Due to their

properties, these numbers play an important role in number theory (cf. [6, 7, 18]),
harmonic analysis (cf. [6, 11, 16]), dynamical systems and ergodic theory (cf. [13,
14, 15, 17, 19]) and tilings (cf. [4, 12, 21, 22]).

One of the best known family of Pisot numbers is the so-called n-bonacci num-
bers, a generalization of the golden mean, i.e. the real root greater than 1, of the
polynomial xn − xn−1 − · · ·− x− 1 (cf. [8]).

The chromatic polynomial of a graph counts the number of its proper vertex
colorings. More precisely, let G be a graph and t a positive integer. A t-colouring
is a map from the set of vertices of G to {1, . . . , t} such that the images of adjacent
vertices are different. Let PG(t) be the number of different t-colourings of G, it turns
out that PG(t) is a polynomial in t ([5]), so we call PG(t) the chromatic polynomial
of G. A root of the chromatic polynomial of G is called chromatic zero or chromatic
root. Sokal ([20]) proved that the complex chromatic zeros are dense in the complex
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plane. An important question is what kind of algebraic integers could be chromatic
zeros, see [1] and references within, for different partial answers to this question.
In particular, studies have been done concerning which algebraic numbers are not
chromatic zeros. Alikhani and Peng ([2]) showed the golden mean is not a chromatic
zero and in [3] they showed that n-bonacci numbers are not chromatic zeros when
n is even. In the case of n odd, the authors showed that the n-bonacci number
cannot be a chromatic zero of a connected graph having at most 4n+2 vertices. In
the present article we generalized those results to Pisot numbers. In particular we
show in Theorem 1 that a Pisot number of even degree and its natural powers are
not chromatic zeros. In Theorems 3 and 4, we consider some important families of
Pisot numbers of odd degree. Using similar arguments to the proof of Theorem 5
in [3], we prove that those Pisot numbers could not be chromatic zeros of connected
graphs having certain maximum number of vertices.

It is well-known that the chromatic zeros are contained in the complement of
(−∞, 0)∪ (0, 1)∪ (1, 32/27] ([10]). Since the smallest Pisot number (also known as
the plastic number), the real root of x3 − x − 1 (cf. [18]), is approximately 1.32,
we ask when a Pisot number is a chromatic zero. In Theorems 3 and 4 we give a
negative answer of this question for the smallest isolated Pisot numbers.

We consider the following families of polynomials:

1. Ψn(x) := x2n+1 − x2n−1 − · · ·− x− 1,

2. Φn(x) := x2n+1 − x2n − x2n−2 − · · ·− x2 − 1,

3. Ξn(x) := xn(x2 − x− 1) + x2 − 1,

where n is a positive integer. These polynomials are irreducible in Z[x] and have a
real root greater than 1, which is a Pisot number (cf. [6]). Some of the Pisot numbers
associated to these polynomials are well-known: Ξ1(x) = Ψ1(x) = x3 − x− 1 is the
minimal polynomial of the smallest Pisot number, ξ1. The minimal polynomial of
the second smallest Pisot number, ξ2 ≈ 1.38, is Ξ2(x) = x4 − x3 − 1 (cf. [18]). We
denote by ψn, φn and ξn the Pisot numbers associated to the polynomial Ψn(x),
Φn(x) and Ξn(x), respectively. They were considered by C.L. Siegel in [18]. They
are the smallest Pisot numbers and they are ordered as follows (cf. [6]):

ξ1 = ψ1 < ξ2 < ξ3 < φ1 < ξ4 < ψ2 < ξ5 < φ2 < ξ6 < ψ3 < · · · <

· · · < φn < ξ2n+2 < ψn+1 < ξ2n+3 < φn+1 < · · · <
1 +

√
5

2
.

Moreover they are isolated points of the set of Pisot numbers and the golden mean
is the smallest limit point of the set of Pisot numbers (cf. [6]).

We do not know if for all positive integers n and l > 1, the numbers ψl
n, φl

n are
not chromatic zeros. And similarly for ξl

n, with n odd.
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2. Results

Theorem 1. A Pisot number of even degree is not a chromatic zero. Moreover the
natural powers of a Pisot number of even degree are not chromatic zeros.

Proof. Let θ be a Pisot number of even degree and Θ(x) its minimal polynomial.
By definition, the degree of Θ(x) is even. So it has at least two real roots: one
root is θ, and the other root θ� is inside the unit circle. So θ� is in the interval
(−1, 1). It cannot be zero due to the minimality of Θ(x). Therefore the root θ� is
in (−1, 0) ∪ (0, 1) which is not possible for a chromatic polynomial. Hence Θ(x) is
not a chromatic polynomial.

Let C(x) be a polynomial with integer coefficients having θ as a root. So Θ(x)
is a factor of C(x), and hence C(x) has a root in (−1, 0)∪ (0, 1). Therefore C(x) is
not a chromatic polynomial and θ is not a chromatic zero.

Suppose that θn is a chromatic zero, for some positive integer n. So there exists
a chromatic polynomial P (x) such that θn is one of its roots. It follows that θ is a
root of Q(x) := P (xn). Hence Θ(x) is a factor of Q(x). We have seen in the first
part of the proof that there exists θ� ∈ (−1, 0)∪ (0, 1), a root of Θ(x). Therefore θ�

is a root of Q(x), so θ�n is a root of P (x). Since θ�n ∈ (−1, 0) ∪ (0, 1), P (x) could
be a chromatic polynomial. We conclude that θn is not a chromatic zero.

Theorem 2 ([9]). Let G be a graph with n vertices and k connected components.
Then the chromatic polynomial of G is of the form

PG(t) = antn + an−1t
n−1 + · · · + aktk

where ai are integers such that an = 1 and (−1)n−iai > 0, for k ≤ i ≤ n. Moreover,
if G has at least one edge, then 1 is a root of PG(t).

We prove the following theorem using arguments based on the proof of Theorem
5 in [3].

Theorem 3. Let ψn be the Pisot number whose minimal polynomial is Ψn(x). If
n ≥ 2 then ψn is not a chromatic zero of a connected graph with at most 4n + 1
vertices.

Proof. According to Theorem 2, the polynomial Ψn(x) is not a chromatic polyno-
mial. If ψn is a root of a chromatic polynomial C(x) =

�m
i=0 aixi, we have that

Ψn(x) is a proper factor of C(x) and m > 2n + 1. So there exists a polynomial
D(x), such that C(x) = Ψn(x)D(x) and

D(x) = bm−2n−1x
m−2n−1 + · · · + b1x + b0.
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So when we develop the product Ψn(x)D(x), we get the following equations when
m− 2n− 1 ≤ 2n− 1:

−b0 = a0, · · · −bm−2n−1 − · · ·− b1 − b0 = am−2n−1,

and for m− 2n− 1 = 2n:

−b0 = a0, · · · −bm−2n−1 − · · ·− b1 = am−2n−1.

Due to Theorem 2, b0 = a0 = 0, since 0 is a root of a chromatic polynomial. And
by the same theorem, the number 1 is a root of C(x). Since Ψn(1) �= 0, we have
D(1) = 0, so bm−2n−1 + · · · + b1 + b0 = 0, i.e. am−2n−1 = 0. This fact contradicts
Theorem 2. Therefore ψn is not a chromatic zero of a connected graph with m
vertices, where m− 2n− 1 ≤ 2n, i.e. m ≤ 4n + 1.

Theorem 4. Let ξn and φn the Pisot numbers whose minimal polynomials are
Ξn(x) and Φn(x), respectively.

(a) The plastic number, i.e. ξ1, is not a chromatic zero of a connected graph with
at most 7 vertices.

(b) The Pisot number ξ3 is not a chromatic zero of a connected graph with at most
10 vertices.

(c) The Pisot number ξn, with n ≥ 5 and odd, is not a chromatic zero of a
connected graph with at most n + 5 vertices.

(d) The Pisot number φn, with n ≥ 2, is not a chromatic zero of a connected
graph with at most 2n + 4 vertices.

Proof. Due to Theorem 2, Ξ1(x) is not a chromatic polynomial. We suppose that ξ1

is a root of the chromatic polynomial C(x) =
�m

i=0 aixi, with m > 3, so Ξ1(x) is a
factor of C(x). Let D(x) be as in the proof of Theorem 3, with C(x) = D(x)Ξ1(x).
If m− 3 ≤ 4, then we have the following equations:

−b0 = a0, −b1 − b0 = a1, −b1 − b2 = a2, b0 − b2 − b3 = a3, b1 − b3 − b4 = a4.

As in the proof of Theorem 3, b0 = a0 = 0, and C(1) = D(1) = 0, so

a0 + · · · + a4 = 0,
−b0 + (−b0 − b1) + (−b1 − b2) + (b0 − b2 − b3) + (b1 − b3 − b4) = 0,

−b2 − b3 = 0,
a3 = 0.
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Hence C(x) could not be a chromatic polynomial, by Theorem 2 . Therefore ξ1 is
not a chromatic zero of a connected graph having m vertices with m ≤ 7. This
completes the proof of statement (a).

The polynomial Ξ3(x) is not a chromatic polynomial, due to Theorem 2. Let
C(x) =

�m
i=0 aixi, with m > 5, be a polynomial having ξ3 as a root. We sup-

pose that C(x) is chromatic, so there exists D(x) =
�m−5

j=0 bjxj such that C(x) =
D(x)Ξ3(x). If m ≤ 10 we have the following equations:

−b0 = a0, −b1 = a1, b0 − b2 = a2, −b0 + b1 − b3 = a3,
−b0 − b1 + b2 − b4 = a4, b0 − b1 − b2 + b3 − b5 = a5.

As in (a) b0 = a0 = 0 and C(1) = D(1) = 0, so

a0 + · · · + a5 = 0,
−b1 − b2 + (b1 − b3) + (−b1 + b2 − b4) + (−b1 − b2 + b3 − b5) = 0,

−b1 + b3 = 0,
−a3 = 0.

Hence C(x) could not be a chromatic polynomial, by Theorem 2 . Therefore ξ3 is
not a chromatic zero of a connected graph having m vertices with m ≤ 10. This
completes the proof of statement (b).

The polynomial Ξn(x) is not a chromatic polynomial, due to Theorem 2. Let
n be an odd number and n ≥ 5. Let C(x) =

�m
i=0 aixi, with m > n + 2, be a

polynomial having ξn as a root. We suppose that C(x) is chromatic, so there exists
D(x) =

�m−n−2
j=0 bjxj such that C(x) = D(x)Ξn(x). If m− n− 2 ≤ 3 we have the

following equations:

−b0 = a0, −b1 = a1, b0 − b2 = a2, b1 − b3 = a3.

As in (a), b0 = a0 = 0 and C(1) = D(1) = 0, so

a0 + a1 + a2 + a3 = 0,
−b0 − b1 + b0 − b2 + b1 − b3 = 0,

b1 = 0,
−a1 = 0.

This contradicts the assumption that C(x) is chromatic. Therefore ξn, with n ≥ 5
is not a chromatic zero of a connected graph having m vertices with m ≤ n + 5.
This completes the proof of statement (c).

Let n ≥ 2. Due to Theorem 2, Φn(x) is not a chromatic polynomial. We suppose
that φn is a root of the chromatic polynomial C(x) =

�m
i=0 aixi, with m > 2n+1, so
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There exists D(x) =
�m−2n−1

j=0 bjxj such that C(x) = D(x)Φn(x). If m−2n−1 ≤ 3
we have the following equations:

−b0 = a0, −b1 = a1, −b0 − b2 = a2, −b1 − b3 = a3.

As in the previous proofs, b0 = a0 = 0 and C(1) = D(1) = 0, so

a0 + a1 + a2 + a3 = 0,
−b0 − b1 − b0 − b2 − b1 − b3 = 0,

−b1 = 0,
a1 = 0.

Therefore φn, with n ≥ 2, is not a chromatic zero of a connected graph having m
vertices with m ≤ 2n + 4. This completes the proof of statement (d).

Open problem. We do not know if the numbers ψl
n, φl

n are chromatic zeros, for
integers n ≥ 1 and l > 1; and similarly for ξl

n, when n is odd.
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(edited by V. Berthé, S. Ferenczi, C. Mauduit, et al.), Lecture Notes in Mathematics

1794, Springer, Berlin, 2002.
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