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Abstract
Here, we find all the solutions of the title Diophantine equation in positive integer
variables (m,n, z,y), where F} is the k—th term of the Fibonacci sequence.

1. Introduction

Let (F,)n>0 be the Fibonacci sequence given by Fy =0, F1 =1, Fq0 = Fp1 +F),
for all n > 0. The Diophantine equation

Fff+ 'r:f—i-l:Fm (1)

in positive integers (m,n,z) was studied in [7]. There, it was showed that there
exists no solution other than (m,n) = (3,1) for which 1* 4+ 1* = 2 (valid for all
positive integers z), and the solutions for z = 1 and « = 2 arising via the formulas
Fo+Fyi1=Fuioand F2+ F2 | = Fs,41. Equation (1) was revisited in [6] under
the more general form

Fy+ Foa = Fy, (2)
in positive integers (m,n, x,y) and it was shown that the only solutions of equation
(2) with y > 1 are (m,n,z,y) = (3,4,1,3), (4,2,3,2). Here, we reverse the role of
two exponents in equation (2) and study the equation

Fi+F , =F, or FY+F; . =F, (3)
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and a Marcos Moshinsky Fellowship.



INTEGERS: 13 (2013) 2

in positive integers (m,n,z,y). Our result is the following.

Theorem 1. The only positive integer solution (m,n,x,y) of one of equations (3)
with n > 3 and x # y is (5,3,2,4) for which F§ + F} = F2.

We note that the solutions of equation (3) either with n € {1,2} or x = y are
contained in the solutions of equation (2) and therefore are of no interest.

Before getting to the proof, we mention that similar looking equations have
already been studied. For example, in [4], it was shown that the only solution in
positive integers (k, ¢,n,r) of the equation

F1]C+F2]€+"'+F7]f—1:F£+1+"'+F£+T

is (k,¢,n,r) = (8,2,4,3), while in [9], T. Miyazaki showed that the only positive
integer solutions (z,y, z,n) of the equation

Fy+Fl =

are for (z,y,z) = (2,2,1) (and for all positive integers n).

2. Preliminary Results

We write (a, 8) = ((1 ++/5)/2, (1 —/5)/2) and use the Binet formula

n _ AQn
F, = u valid for all n > 0. (4)
a—p
We also use the inequality
a" 2 < F, <a™ ' validforall n>1. (5)

We will need the following elementary inequality.

Lemma 1. Forn >3, we have FJ > F3_ .

Proof. The inequality is clearly true for n = 3, so we assume that n > 4. Observe
that F,y1/F, < 5/3, since the above inequality is equivalent to 3F, 1 < 5F,, or
3(Fn, 4+ Fn_1) < 5F,, or 3F,_1 < 2F,, further with 3F,_; < 2(F,_1 + F,,_2), or
Fo_1<2F, 5,0r F, o+ F, 3 <2F, o, or F,_3 < F,_o, which is clearly true for

n > 4. Thus,
Fn+l ’ b ’ 2 2
< (= 3*<F

for n > 4, which is equivalent to F>, | < F?. O
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We shall need a couple of results from the theory of lower bounds for nonzero
linear forms in complex and p-adic logarithms which we now recall.
For an algebraic number n we write h(n) for its logarithmic height whose formula

1S . J |
h(n) = - <log ap+ ) log (max{In(” I 1})> :
i=1

with d being the degree of 1 over Q and

d
FX) = ao [[(X = 1) € Z[X] (6)
i=1
being the minimal primitive polynomial over the integers having positive leading
coefficient ay and 7 as a root.
With this notation, Matveev (see [8] or Theorem 9.4 in [1]) proved the following
deep theorem:

Theorem 2. Let K be a real number field of degree D over Q, 1, ..., be nonzero
elements of K, and by, ...,b; be nonzero integers. Put

B > max{|b1],..., b},

and
A=Abroqk 1,

Let Aq,..., A be real numbers such that
A; > max{Dh(vy;),|logv|,0.16}, i=1,...,t.
Then, assuming that A # 0, we have
|A| > exp (—1.4 x 30" x t*% x D*(1 +log D)(1 +log B)A; - -+ 4;) .

We shall also need the rational case version of a linear form in p-adic logarithms
proved by Kunrui Yu [10]. For a nonzero rational number r and a prime number p
put ord,(r) for the exponent of p in the factorization of r.

Theorem 3. Let v1,...,7: be nonzero rational numbers and by, ..., b be nonzero
integers. Put
B Z max{|b1|, cey |bt|, 3},

and
Amftegd 1,

Let Aq, ..., A; be real numbers such that
A; > max{h(v;),logp}, i=1,...,t.
Then, assuming that A # 0, we have

ord,(A) < 19(20vt + 1)2”2@ log(e’t)A; - -- A;log B.
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3. The Proof of Theorem 1
3.1. Inequalities Among the Variables m,n and x,y
We start with the following lemma.

Lemma 2. In any positive integer solution (m,n,x,y) of either one of equations
(3) with n > 3 and x # y, we have:

(i) m > n;
(ii) x <y;
(iii) m > 5;
() y(n+1) > (m —2)z and (n —2)y < (m — 1)x.
Proof. (i) Either one of equations (3) implies that F~ > F*, therefore m > n.
(ii) Let us now show that < y. Assuming otherwise, we have that
Foy <Fyp+Fy ) <(Fo+ Fop)® =Fiy,

therefore m < n 4+ 2. The case m € {n,n + 1} is impossible because F,, and F,
are coprime, so we get m < n, contradicting (i). (iii) Since m > n by (i) and the
fact that Fj, is coprime to Fj, 1, we deduce in fact that m > n+1, and since n > 3,
we get that m > 5.

(iv) This follows from (ii) and inequalities (5). More precisely,

QY s BV — (F, 4 Fuyr)Y > max{FY + FY, |, FY + F7,}
> F2 > qlm=2e

implying the first inequality (iv), and
A" < FY < min{F? + FY, | FY + F?,} < F% < a(m=De,
implying the second inequality (iv). O

3.2. Bounding y in Terms of m

Lemma 3. Any positive integer solution (m,n,x,y) with n > 3 and © # y of
equation (3) satisfies one of the following inequalities

(i) y <2 x 1083m2logm if y < 2ux;

(ii) y < 10¥mlogm if y > 2x.
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Proof. We distinguish the following two cases.

Case 1. y < 2z. In this case, we apply a linear form in 2-adic logarithms upon
observing that exactly of F,,, Fj,+1, Fi, is even. The linear form is of the form

A=F'F0 1,

where a and b are distinct in {n,n + 1, m} such that F, and F}, are odd, and v and
v are in {2x,2y}. In any case, if ¢ is such that {a,b,¢} = {n,n + 1,m} then it is
always the case that F, is even and F? | F¥ — F}Y, therefore

orda(A) > orde(FY) >z > y/2. (7)

To get an upper bound on ords(A), we use Theorem 3. We take the parameters
t=2, 1 =F,, v2=1Fy, by =u, by = —v. We can take B = 2y. Since n+ 1 < m,
by inequalities (5), we can take

A1 = Ay = mlog a > max{log F,,log F},log 2}.

Theorem 3 now gives

ordy(A) < 19(20v/3)8 < ) log(2¢®)(mlog a)? log(2y), (8)

(log2)?

which compared with (7) gives

2y < 4x19x (20V3)° ( > log(2¢”)(log ) log(2y)

2
(log 2)*
< 8 x 10" m?log(2y).
Using the fact that for A > 3 the inequality
t < Alogt implies t<2Alog A
(with A = 8 x 10''m?), we have

2y < 2 x 8 x 10M'm?(log(8 x 10M) + 2logm) < 2 x 8 x 10"'m?(20logm),

therefore
y < 2 x 10"3m? logm, (9)

which takes care of (i). In the above inequalities we also used the fact that
log(8 x 10) + 2logm < 20logm,

which holds because m > 5.
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Case 2. y > 2z. In this case, we use a linear form in complex logarithms. This
linear form is one of

A=FF ! -1 or FYF7Y-—1

depending on whether we work with the left equation (3) or with the right equation
(3), respectively. Clearly, A > 0. We first find an upper bound on A which follows
from equation (3). In case of the left equation (3), we have

Fro_ Fin 1

A= B < 7, Ffjﬁ (10)
In case of the right equation (3), we have, by Lemma 1,
So, from (10) and (11), we get that the inequality
A< — (12)
Y

holds in all instances. We now find a lower bound on A by using Theorem 2. We
take t = 2, v3 = Fipy, 72 = F, with u € {n,n+ 1}, by = z, by = —y. We take
K =Q, so D =1. We take B = y. By inequality (5), we can take A; = mloga
and As = log F,,11. We then get that

A >exp(—14x 30° x 245 x (mloga) x log Fyq x (1 + logy)) .
which together with (12) gives
(y/10)log F, 41 < 1.4 x 30° x 245 x (mloga) x log F,, 41 x (1 +logy),

or
y < 14 x 30° x 245 x loga x m x (3logy) < 2 x 101 mlogy,

where we used the inequality 1 4+ logy < 3logy, which holds for all y > 2. Thus,
y < 4 x 10" m(log(2 x 10') 4+ logm) < 4 x 10*(201logm) < 10**mlogm,

where we used the fact that log(2 x 10'1) +logm < 20logm for all m > 5. This
takes care of (ii). O
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3.3. Small m

Lemma 4. If (m,n,z,y) # (5,3,2,4) is a positive integer solution of equation (3)
with n > 3 and x # vy, then m > 1000.

Proof. Assume that we work with the left equation (3). Then
FY,, = F% - FL. (13)

Assume first that y > 20. Observe that from the above equation we get that
F,, — F, is a divisor of F,,11. Let D,,,, = gcd(F,,, — F,,, F,+1). We first checked
computationally that there is no pair (m,n) with 6 < n+ 3 < m < 999, such that
p?° | F,,, — F, for some prime factor p of D,, . It follows that all prime factors of
F,, — F,, appear in its factorization at powers smaller than 20. But if that is so, it
should be the case that D2?  is divisible by F,, — F,,. We checked computationally
that this is not the case for any such pair (m,n). The conclusion of this computation
is that m € {n +2,n + 3}. Now

Fn+2_Fn:Fn+1 and Fn+3_Fn:2Fn+1-

Together with formula (8), we get that Fjt — F¥ = FY |
same primes as F,, — F},. By Carmichael’s Primitive Divisor Theorem (see [3]) for

Lucas sequences with coprime integer roots, we get that x < 6. So,

is divisible by exactly the

Fy, = Fy < Fj S Fpig < (2F042)° < (4F,10)° = 29 F0 < Y S FL,

a contradiction. This calculation shows that 1 < z < y < 19. We tested the
remaining range 1 < z < y < 19 and 3 < n < m < 999 by brute force and
no solution came up. A similar argument works for the right equation (3) with
one exception. Namely, in the case when 5 < n+ 2 < m < 999, by putting
Dy = ged(Fy, — Frya, Fr) computations revealed that, as before, p?° { F,,, — F,
for any prime p | D, and any such pair (m,n), but the pair (m,n) = (14, 8) has
the property that D29, is a multiple of F,, — F}, and is the only such pair. Namely,
in this case F,, — F}, = Fiu — Fog = 343 = 73, and Fs = 21 = 3 x 7. In this last case
however, again by Carmichael’s Primitive Divisor Theorem, F}, — Fg should have
a prime factor p = 1 (mod z) if > 6 which does not divide Fi4 — Fg, but this is
not the case if > 6 since Ffy — F§ = FY = 3Y x 7Y. Hence, again z < 6, and
we get a contradiction because y > 20. This shows that, as for the case of the left
equation (3), we must have 1 < x <y < 19. Again we tested this remaining range
by brute force and only the solution (5, 3,2, 4) of the right equation (3) showed up.
The lemma is therefore proved. O]

3.4. Approximating F;,

From now on, we assume that m > 1000.
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Lemma 5. If (m,n,x,y) is a positive integer solution of equation (3) with n > 3
and x # vy, then

. ot 2
F? = =7 (1+Gna), where |Cm,z| < -
Proof. We use the Binet formula (4) to get
. am® ﬁ my\ T am® (71)m z
Fm_m(1<a> ) _596/2(1 a2m) . (14)

Observe that, by Lemmas 2 and 3, we have

x Y 2 x 1013m?2logm 1
2m 2m < 2m < m
o} «a «Q «

where the last inequality holds for all m > 86. Thus, if m is odd, then

(—1)™\* 1\* x
]. < (1— a2m = 1+ 0(2—m <exp (az—m)

1 2
< — | <14+ — 15
€xp (am> + am’ ( )

where we also used the fact that exp(t) < 142t if t € (0,1). Similarly, when m is
even, using the fact that 1 — ¢ > exp(—2t) holds for ¢ € (0,1/2), we have

(—1)™\* 1\* 2z
1 > (1— a2m = 1_012—7” > exp —a2—m

2 2
> exp <_a_m) >1——. (16)

am

From estimates (15) and (16), we deduce that in both cases m odd and m even we
have

a?m

—_1)ym z 2
(1 + ( ) ) =1 +<m,za with |Cm,x| < Oé_m7

which together with formula (14) finishes the proof of this lemma. O

3.5. Approximating F* for a € {n,n 4+ 1}, u € {z,y} and Large n

Lemma 6. If (m,n,xz,y) is a positive integer solution of equation (3) with n > 3,
x £y and 2z >y, then the estimates
ot 2

FY = 2 (1+ Cau) s where [Caru] < o (17)

hold for a € {n,n+ 1} and u € {z,y}.
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Proof. The proof is based on inequality (iv) of Lemma 2, which in the particular
case y < 2z implies

-2

-2 -2
w, SO n>m2 —1:%

Now for a € {n,n + 1} and u € {z,y}, we have, by the Binet formula (4),

yn+1) > (m—2)x >

(67

au (_1)11 u
o —
Fa - 5u/2 <1 ala > :

Observe that, by Lemma 4,

U 2 x 103 m2logm 1
MY < &M - -
a2a — a2n — a2n - an”

where the last inequality is implied by
a > a™?72 > 2 x 10%m2log m,

which holds for all m > 182. The conclusion of the lemma follows as in the proof
of Lemma, 5. O

3.6. A Small Linear Form in « and /5

Lemma 7. If (m,n,x,y) is a positive integer solution to equation (3) with n > 3
and x # y such that inequalities (17) hold, then putting A = min{n, (m —n — 1)y},
we have

13
1- aay*mm5(:’3*y)/2’ <X for some a € {n,n+1}. (18)
Proof. By Lemma 5, we have
‘Fm - 535/2‘ < aim <5ac/2) '

Since m >n >3 and o™ > " = 2a+ 1 = 2+ /5 > 4, it follows that 2/a™ < 1/2,
therefore the above estimate implies that

1 (ame 1 fam\ 3 (ame

4
< ()7
am

Since we are assuming that estimates (17) hold, we get, by a similar argument, that

mx
:v «

m W

In particular,
. amx

m 5z/2

the estimates

au

oY 4 u .
F'— sz | < <J) E;: hold with a€{n,n+1}, ue{ry}
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Thus, in the case of the left equation (3), we get

mx nT

am® an® Oé(n+1)y

5z/2 - 5z/2 B 5v/2

oty

« xr
5y/2 - Fn+1

5z/2 T m

4 4
(a_m> Fy+ <J) (Fy +Fyiq)

8\ .. (12 [ame
() < (@) (5)

1 12 < 13

a(m—n)z a7 — qmin{n,(m-n)z}"

+|2 @
5z/2 n

_|_

IN

N

so that

‘1 _ a(n+1>yfmz5(wfy>/2’ < (20)

In the case of the right equation (3), a similar argument gives

12 a'n'b-'L'
<\ ) \z2 )

leading to the similar looking inequality as (20), namely

13
aqmin{n,(m—n-1)z}’

a™® a™ a(n-i—l)a;

5z/2 5y/2 5z /2

‘1 - a”y—m5<x—y)/2‘ < (21)

which together with (20) finishes the proof of this lemma. O

3.7. An Upper Bound for A

Lemma 8. If (m,n,x,y) is a positive integer solution of equation (3) with n > 3
and x # y such that inequality (18) holds, then

A < 5x10%1ogy. (22)
Proof. We put
A=1— W me5@E=y)/2 where a€{n,n+1}

is the expression appearing in the left hand side of the inequality (18) from Lemma
7. Since v and 5 are multiplicatively independent, and x # vy, it follows that A # 0.
Lemmas 6 and 7 show that

log |A| <log13 — Alog . (23)

We next find a lower bound on log|A|. For this, we use Theorem 2 with the choices
t=2 K=QW5), 11 =a, 2 =5, by = ay —ma and by = x —y. We have
D = 2. Since by < 0 and

13 1
lat15(=v)/2 _ 1] < —?; <B e 1,
« «



INTEGERS: 13 (2013) 11

we have

log /5

abrsE—v)/2 - a5, so b <(y—x)
log «

+5<2y—x)+5<2y+3.

Hence, we can take B = 2y + 3. We can also take A; = loga and Ay = logh.
Theorem 2 now tells us that

log |A] > —1.4 x 30° x 2%% x 22(1 4 log 2)(1 + log(2y + 3))(log ) (log 5).  (24)
Putting together inequalities (23) and (24), we get
Moga —log13 < 1.4 x 30° x 2% x 22(1 +log 2)(1 + log(2y + 3))(log ) (log 5),
or

log 13
<Og

og + 1.4 x 30° x 2% x 22(1 +log 2)(1 + log(2y + 3))(log 5).

Since 1+1log(2y +3) < 1+log(4y) < 5logy for all y > 2, the above inequality gives

log 1 - -
A< logg 3 |14 % 30° x 245 x 22(1 4 log 2)(log 5) (5log ) < 5 x 10 logy, (25)
og o
which finishes the proof of this lemma. O

3.8. The Case When z < y < 2z

Lemma 9. Equation (3) has no positive integer solution (m,n,x,y) with n > 3
and z <y < 2.

Proof. We exploit the conclusion of Lemma 8. We use the fact that
A =min{(m —n —1)z,n} > min{y/2,m/2 — 2}. (26)
If the minimum on the right above is y/2, then inequality (25) gives
y<10Mlogy  giving  y <2 x 10" x log(10") < 6 x 10'2,

SO
B < 1.5 x 10'3.

If on the other hand the minimum in (26) is m/2—2, we then get, using also Lemma
2, that

m/2—2 < 5x10"1og(2 x 10*m? logm)
< 5x10"%log(2 x 10'3) + 3logm)
< 5x10' x (23logm),
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where we used the fact that log(2 x 10'3) + 3logm < 30 + 3logm < 23logm for
m > 5 (in fact, m > 1000, so a slightly better inequality holds at this step). Hence,

m/2 —2 < 105 x 10'%logm giving m < 3 x 102 logm.
This last inequality leads to
m < 2 x 3 x 102 1log(3 x 10'%) < 2 x 10,

so that
B=2y+3<3+2x2x103m2logm < 10*.

Suppose now that A > 10. Then 13/a* < 1/2, and so inequality (18) implies by a
standard argument

26
(ay = ma)loga — (y — ) log V3| < =,
or
26 55

ay —max log v/5 <
(loga)(y —x)a? ~ (y —z)a?

Yy—x log o

(27)

Let [ag,a1,...,a9] = poo/qoo be the 99th convergent of 7 = (logv/5)/log . The
maximal a; for i = 0,...,99 is agy = 29. Furthermore, we also have ggg > 108 > B.
Hence,

1 1

(20+2)(y—=2)2  3ly—=x)2 (28)

ay —mx log /5
y—x log o

Thus, we get, from inequalities (27) and (28),

1 .
3y —2)?  (y—ax)at

giving
o <54 x 31 x (y—x) <2000 x B <2x10",

leading to
log(2 x 10%7)

log o

If A = n, we then get that m/2 — 2 < n < 227, so m < 458, contradicting the fact
that m > 1000. If A = (m —n — 1)z, then (m —n — 1)z < 227. In particular,
x < 227 and (m —n)z < 2(m —n — 1) < 454. Further, inequality (27) shows that

A<

< 227.

- 1 5 55 34
W—mr og\/_+ <24 —,
y—x log « (y —2)a y—x

S0
ay —mz < 2(y —x) + 34.
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If a = n, then
ay—mz=ny—mz=n(y—z)— (m—n)x < 2(y—z)+ 34,

S0
- 34
p< M o 3 a4 34— 400,
y—z y—x
therefore m < (m—n)+n < 4544490 = 944, contradicting the fact that m > 1000.
If a=n+1, then

ay—mr=mn+1y—-mer=mn+1)(y—xz)—(m—n—1)z <2(y—z)+ 34,

SO
(m—n-—1)z

n+1<

34
124 < 227+ 24 34 = 263,
y X

som < (m—n)+n < 454 + 262 = 716, contradicting the fact that m > 1000. O

3.9. A Small Linear Form in Three Logarithms

From now on, we assume that y > 2z.

Lemma 10. Any positive integer solution (m,n,x,y) of equation (3) with n > 3
and T # y satisfies

4
FYam25%/2 _ 1| < — for some a€ {n,n+1}, (29)
o

where = min{m, (m —n — 2)z}.

Proof. Suppose that we work with the left equation (3). Then, by Lemma 5, we
have e
xr xr «
Fn +F’VZL1+1 :Fm = 593/2 (1+§m,x)7
SO
Y —mzrx/2 F;LE
FY, a~me5/2 1‘ < Gl + s (30)

Estimate (19) gives

7 3 (Fy 2
amx/5x/2 < 5 ﬁ < alm—n-1)z’
where we used inequalities (5) to say that F,, < o”~ ! and F,, > o™ 2. Since

[Cm.z| < 2/a™ by Lemma 5, we get, from inequality (30), that
2 4

alm—n—z — amin{m,(m—n—1)z}’

2
FY, ja~mo5e/2 _ 1‘ = (31)
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A similar argument applies to the right equation (3). In that case, we get

amm

Fg+F:f+1 =I = 5z/2 (1 + Cm,a)s

therefore

F? 2 Fr
FYa™mo5%/2 1| < |Gno| + —2E - < = 43 ("—“)

ame [5r/2 " qm T2\ FE
2 2 4
< a_m + am—n—=2)z = qmin{m,(m—n—2)z}’ (32)
which together with inequality (31) completes the proof of this lemma. n

Remark. Lemma 2 (iv) shows that
(m—1x>m—-2)y>2(n—2)z, so m—1>2n—4 so m>2n—2.
In particular, m —n — 2 > (m — 6)/2. This will be useful later.

Lemma 11. Any positive solution (m,n,x,y) of equation (3) withn >3 and x # y
satisfies:

(i) n>10"m/logm;
(ii) n > 1000.

Proof. We put A = FYa~™*5%/2 —1 for the form that appears in the left hand side
of inequality (29). Since mz > 0 and no power of a of positive integer exponent
can be a rational number, it follows that A # 0. Inequality (29) shows that

log |A| < log4 — plog a. (33)

We find a lower bound on log |A|. We use Theorem 2 with the choices of parameters
t=3 7 =F, v2=a, v =+5, by =y, bp = —mx, b3 = —x. We have
K = Q(v/5) for which D = 2. We take A; = 2nloga, Ay = loga, and A3 = log5.
We take B = my. We then have

log |A| > —1.4x30% x 3% x 2% x (1+1log 2) (1+log(my))(2nlog o) (log o) (log 5). (34)

Comparing estimates (33) and (34), we get

4
< oz + 1.4 x 309 x 3% x 22 x (14 1og2) x 2 x (loga) x (log5)n(2log(my)).
a

giving
p < 4 x 10"%nlog(my).
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With Lemmas 3 and 10 and the remark following Lemma 10, we get

m—6 < 8x10"%nlog(2 x 103m?*) = 8 x 10"?n(log(2 x 10'3) + 4logm)
< 8x10"%n x (9logm),

where we used the fact that log(2 x 10'3) 4+ 4logm < 31 + 4logm < 9logm for
m > 1000. Thus, we get

m <648 x9x 102nlogm < 10*nlogm, (35)

which leads to (i). For (ii), assuming that n < 1000, we get, by inequality (35),
that
m < 10" logm therefore m < 2 x 10'7log(10'7) < 10%.

By (ii) of Lemma 3, we have
B =my < 10¥m?logm < 10°3.

Clearly, since p > m/2 — 3 > 10, it follows that 4/a* < 1/2. A standard argument
implies that inequality (29) leads to

8
lylog F, — mzlog a + x log \/5| < o (36)

where a < n+1 < 1000 and max{y, mz,x} < B < 10%3. However, the minimum of
the expression appearing in the left—hand side of inequality (36) even over all the
indices n < 3000 and coefficients at most 5 x 10° in absolute value was bounded
from below using LLL in Section 6 of [4]. The lower bound there was 100/1.57%°.
Hence, we get that

100 8

log cv

log 1. log 12.
, therefore n <750 ( o8 5) _ logl2.5
log o

Since in fact g = min{m, (m —n — 1)z} > min{m, (m — 6)x/2} and m > 1000, the
only possibility is when g = (m —n —2)z and z = 1. If y > 3, then, Lemma 2 (iv)
shows that

m—1>Mn—-2)y>3n—6 so m>3n—4 so (m—-n-—2)>2(m-—2>5)/3,

implying that 4 = (m —n —2)x > 2(m —5)/3 > 663, a contradiction with p < 630.
Hence, y = 2. Let us see that this is impossible. Suppose that we work with the
left equation (3). Then

Fin=Fo+ Fo < FI+Fly = Fopp

so Fi, < Fa,41, therefore m < 2n. The case m = 2n is not convenient because F,
and Fj, 41 are coprime, so m < 2n — 1, which is impossible because then

Fp<Fo 1 =F |+ F2<(Fo+F, 1) =F  <F +F,=F,.
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Suppose now that we work with the right equation (3). Then
Fn=F+F, W <F’+F =Fy, for n>10.

The inequality n > 10 holds because m > 1000, and the last inequality above is
implied by F,,4+1 < F,%fl, which holds because F,, ;1 < 2F,, < 4F,,_1 < F371 for
n > 10. Hence, m < 2n — 1. The case m < 2n — 3 leads to a contradiction since
then

Fn<Fop3=F |+ F < (Fy1+F, 2)?=F<F:+F,=F,
Finally, the case m = 2n — 2, gives
F2n—2:F3+Fn+1 :Fn(Fn+1)+Fn—1

Since Fy,—1 | Fon—2 and F,_; is coprime to F,, we get that F,,_; is a divisor of
F,+1=(F,—2+ 1)+ F,_1, so F,,_1 divides F,,_s + 1, which in turn implies that
F, o+1>F, 1=F, o+ F,_3,or 1> F,_3, which is false for n > 10. ]

Lemma 12. Estimates (17) hold.

Proof. As in the proofs of Lemma 5 and 6, it is enough, in light of the Binet formula
(4), to show that the inequality
y<a® (37)

holds. By Lemma 3 (ii) and Lemma 11 (i), it suffices that the inequality
log(10"3mlogm) < 10~ (log a)m/logm

holds. The above inequality holds for m > 10'®. On the other hand, if m < 108,
then again by Lemma 3 (ii) and Lemma 11 (ii), we have

y < 108mlogm < 10'3(10'®)log(10'®) < 10%3 < !0 < o,
This finishes the proof of this lemma. O

Lemma 13. Equation (3) has no positive integer solution (m,n,x,y) with n > 3
and T # .

Proof. By Lemmas 6 and 12, inequalities (18) hold. Recall A = min{n, (m—n—1)x}.
Inequality (22) is
A< 5x10%1ogy.

By the remark following Lemma 10, m —1 > 2n—4, so (m—n—1) > n—4. Hence,
for us, A > n — 4. By Lemma 11 (i) and 3 (ii), we get

107 m/logm —4 <n—4 <X <5x10%logy < 5 x 10'%1log(103mlogm),
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giving m < 10%°, so y < 1013mlogm < 10%. We thus get inequality (27), which
we recall here under the form

ay —mzx  log\/b 95
— < .
y—x log o (y — x)a996

The calculation with the 99th convergent of log v/5/ log @ from the proof of Lemma
10 shows that the left hand side of the above inequality is at least 1/(31(y — z)?).
So, we get a%%% < 55 x 31(y — x) < 55 x 31 x 10% < 10%°, which is absurd. This
finishes the proof of the lemma and of the theorem. O
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