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SQUARES AND DIFFERENCE SETS IN FINITE FIELDS
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Abstract
For infinitely many primes p = 4k + 1 we give a slightly improved upper bound
for the maximal cardinality of a set B ⇢ Zp such that the di↵erence set B � B
contains only quadratic residues. Namely, instead of the “trivial” bound |B|  pp
we prove |B|  pp� 1, under suitable conditions on p. The new bound is valid for
approximately three quarters of the primes p = 4k + 1.

1. Introduction

Let q be a prime-power, say q = pk. We will be interested in estimating the maximal
cardinality s(q) of a set B ⇢ Fq such that the di↵erence set B � B contains only
squares. While our main interest is in the case k = 1, we find it instructive to
compare the situation for di↵erent values of k.

This problem makes sense only if �1 is a square; to ensure this we assume q ⌘ 1
(mod 4). The universal upper bound s(q)  p

q can be proved by a pigeonhole
argument or by simple Fourier anlysis, and it has been re-discovered several times
(see [8, Theorem 3.9], [12, Problem 13.13], [4, Proposition 4.7], [3, Chapter XIII,
Theorem 14], [11, Theorem 31.3], [10, Proposition 4.5], [7, Section 2.8] for various
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proofs). For even k we have equality, since Fpk can be constructed as a quadratic
extension of Fpk/2 , and then every element of the embedded field Fpk/2 will be
a square. It is known that every case of equality can be obtained by a linear
transformation from this one, [2].

Such problems and results are often formulated in terms of the Paley graph Pq,
which is the graph with vertex set Fq and an edge between x and y if and only if
x� y = a2 for some non-zero a 2 Fq. Paley graphs are self-complementary, vertex
and edge transitive, and (q, (q � 1)/2, (q � 5)/4, (q � 1)/4)-strongly regular (see [3]
for these and other basic properties of Pq). Paley graphs have received considerable
attention over the past decades because they exhibit many properties of random
graphs G(q, 1/2) where each edge is present with probability 1/2. Indeed, Pq form
a family of quasi-random graphs, as shown in [5].

With this terminology s(q) is the clique number of Pq. The general lower bound
s(q) � (1

2 + o(1)) log2 q is established in [6], while it is proved in [9] that s(p) �
c log p log log log p for infinitely many primes p. The “trivial” upper bound s(p) p

p is notoriously di�cult to improve, and it is mentioned explicitly in the selected
list of problems [7]. The only improvement we are aware of concerns the special
case p = n2 + 1 for which it is proved in [13] that s(p)  n � 1 (the same result
was proved independently by T. Sanders – unpublished, personal communication).
It is more likely, heuristically, that the lower bound is closer to the truth than the
upper bound. Numerical data [16, 15] up to p < 10000 suggest (very tentatively)
that the correct order of magnitude for the clique number of Pp is c log2 p (see the
discussion and the plot of the function s(p) at [17]).

In this note we prove the slightly improved upper bound s(p)  pp � 1 for the
majority of the primes p = 4k + 1 (we will often suppress the dependence on p, and
just write s instead of s(p)).

We will denote the set of nonzero quadratic residues by Q, and that of nonzero
non-residues by NQ. Note that 0 /2 Q and 0 /2 NQ.

2. The Improved Upper Bound

Theorem 2.1. Let q be a prime-power, q = pk, and assume that k is odd and q ⌘ 1
(mod 4). Let s = s(q) be the maximal cardinality of a set B ⇢ Fq such that the
di↵erence set B �B contains only squares.
(i) If [pq] is even then s2 + s� 1  q; (ii) if [pq] is odd then s2 + 2s� 2  q.

Proof. The claims hold if s < [pq]. Hence we may assume that s � [pq].

Lemma 2.2. Let D ⇢ Fq be a set such that D ⇢ NQ, D � D ⇢ Q [ {0}. With
r = |D| we have

s(q)  1 +
q � 1
2r

. (1)
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Proof. Let B be a maximal set such that B � B ⇢ Q [ {0}, |B| = s(q) = s.
Consider the equation b1 � b2 = zd, b1, b2 2 B, d 2 D, z 2 NQ. This equation has
exactly s(s � 1)r solutions; indeed, every pair of distinct b1, b2 2 B and a d 2 D
determines z uniquely. On the other hand, given b1 and z, there can be at most one
pair b2 and d to form a solution. Indeed, if there were another pair b02, d

0, then by
substracting the equations b1� b2 = zd, b1� b02 = zd0 we get (b02� b2) = z(d�d0), a
contradiction, as the left hand side is a square and the right hand side is not. This
gives s(s� 1)r  s(q � 1)/2 as wanted.

We try to construct such a set D in the form D = (B � t) \NQ with a suitable
t. The required property then follows from D �D ⇢ B �B.

Let � denote the quadratic multiplicative character, i.e., �(t) = 1 according to
whether t 2 Q or t 2 NQ (and �(0) = 0). Let

'(t) =
X
b2B

�(b� t). (2)

Clearly '(t) = |(B � t) \Q|� |(B � t) \NQ|, and hence for t /2 B we have

|(B � t) \NQ| =
s� '(t)

2
.

To find a large set in this form we need to find a negative value of '.
We list some properties of this function. For t 2 B we have '(t) = s � 1, and

otherwise '(t)  s� 2, '(t) ⌘ s (mod 2) (the inequality expresses the maximality
of B). Furthermore,

P
t '(t) = 0, and, since translations of the quadratic character

have the quasi-orthogonality propertyX
t

�(t + a)�(t + b) = �1

for a 6= b, we conclude thatX
t

'(t)2 = s(q � 1)� s(s� 1) = s(q � s).

By subtracting the contribution of t 2 B we obtainX
t/2B

'(t) = �s(s� 1);
X
t/2B

'(t)2 = s(q � s)� s(s� 1)2 = s(q � s2 + s� 1).

These formulas assume an even nicer form by introducing the function '1(t) =
'(t) + 1: X

t/2B

'1(t) = q � s2, (3)

X
t/2B

'1(t)2 = (s + 1)(q � s2). (4)
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As a byproduct, the second equation shows the familiar estimate s  p
q, so we

have s = [pq] <
p

q (recall that we assume that s � [pq], the theorem being trivial
otherwise).

Now we consider separately the cases of odd and even s. If s is even, then, sinceP
t/2B '(t) < 0 and each summand is even, we can find a t with '(t)  �2. This

gives us an r with r � (s + 2)/2, and on substituting this into (1) we obtain the
first case of the theorem.

If s is odd, we claim that there is a t with '(t)  �3. Otherwise we have
'(t) � �1, that is, '1(t) � 0 for all t /2 B. We also know '(t)  s�2, '1(t)  s�1
for t /2 B. ConsequentlyX

t/2B

'1(t)2  (s� 1)
X
t/2B

'1(t) = (s� 1)(q � s2),

a contradiction to (4). (Observe that to reach a contradiction we need that q � s2

is strictly positive. In case of an even k it can happen that q = s2 and the function
'1 vanishes outside B.)

This t provides us with a set D with r � (s + 3)/2, and on substituting this into
(1) we obtain the second case of the theorem.

Remark 2.3. An alternative proof for the case q = p and s being odd is as follows.
Assume by contradiction that '1 is even-valued and nonnegative. Then by (3) it
must be 0 for at least

q � |B|� q � s2

2
=

q + s2 � 2s
2

values of t. Let �̃, '̃, '̃1 denote the images of �,','1 in Fq (i.e., the functions are
evaluated mod p). By the previous observation '̃1 has at least (q + s2 � 2s)/2
zeroes. On the other hand, we have �̃(x) = x

q�1
2 , and hence '̃1 is a polynomial of

degree (q � 1)/2; its leading coe�cient is s = [pq] 6= 0 mod p (This last fact may
fail if q = pk, even if k is odd. Therefore this proof is restricted in its generality.
Nevertheless we include it here, because we believe that it has the potential to lead
to stronger results if q = p.) Consequently '̃1 can have at most (q � 1)/2 zeros, a
contradiction. In the case of even k we can have s = p

q ⌘ 0 (mod p) and so the
polynomial '̃1 can vanish, as it indeed does when B is a subfield.

Remark 2.4. It is clear from (1) that any improved lower bound on r will lead to
an improved upper bound on s. If one thinks of elements of Zp as being quadratic
residues randomly with probability 1/2, then we expect that r � s

2 + c
p

s. This
would lead to an estimate s  p

p � cp1/4. This seems to be the limit of this
method. In order to get an improved lower bound on r one can try to prove non-
trivial upper bounds on the third moment

P
t2Zp

'3(t). To do this, we would need
that the distribution of numbers b1�b2

b1�b3
is approximately uniform on Q as b1, b2, b3

ranges over B. This is plausible because if s ⇡ pp then the distribution of B � B
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must be close to uniform on NQ. However, we could not prove anything rigorous
in this direction.

Remark 2.5. Theorem 2.1 gives the bound s  [pp]� 1 for about three quarters
of the primes p = 4k + 1. Indeed, part (ii) gives this bound for almost all p such
that n = [pp] is odd, with the only exception when p = (n + 1)2� 3. Part (i) gives
the improved bound s  n� 1 if n2 +n� 1 > p. This happens for about half of the
primes p = 4k + 1 for which n is even. To make these statements rigorous we note
that pp/2 is uniformly distributed modulo one, when p ranges over primes of the
form p = 4k + 1: this is a special case of a result of Balog, [1, Theorem 1].

Acknowledgment The authors are grateful to Péter Csikvári for insightful com-
ments regarding the prime-power case.

References

[1] A. Balog, On the distribution of p✓ mod 1, Acta Math. Hungar. 45 (1985), no. 1-2, 179-199.

[2] A. Blokhuis, On subsets of GF (q2) with square di↵erences, Indag. Math., vol. 87, no. 4, pp.
369-372, (1984).

[3] B. Bollobás, Random Graphs, (second ed.), Cambridge University Press, Cambridge, 2001.

[4] P. J. Cameron, Automorphism groups in graphs, in: R. J. Wilson, L. W. Beineke (Eds.),
Selected Topics in Graph Theory, vol. 2, Academic Press, NewYork, (1983), pp. 89-127.

[5] F. R. K. Chung, R. L. Graham, R. M. Wilson, Quasi-random graphs, Combinatorica,
Volume 9, Issue 4, (1989), pp 345-362.

[6] S. D. Cohen, Clique numbers of Paley graphs, Quaest. Math. 11, (2) (1988), 225-231.

[7] E. Croot, V. Lev, Open problems in additive combinatorics, Additive combinatorics CRM
Proc. Lecture Notes Amer. Math. Soc., Providence, RI, 43, (2007), 207-233.

[8] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res.
Rep. Suppl. 10 (1973).

[9] S. Graham, C. Ringrose, Lower bounds for least quadratic non-residues, Analytic Number
Theory (Allterton Park, IL, 1989), 269-309.

[10] M. Krivelevich, B. Sudakov, Pseudo-random graphs, in: More Sets, Graphs and Numbers,
Bolyai Society Mathematical Studies 15, Springer, (2006), 199-262.

[11] J. H. van Lint, R. M. Wilson, A Course in Combinatorics, Cambridge University Press,
Cambridge, 1992 (2nd edition in 2001).

[12] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979 (2nd
edition in 1993).

[13] E. Maistrelli, D. B. Penman, Some colouring problems for Paley graphs, Discrete Math.
306 (2006) 99-106.

[14] M. Matolcsi, I. Z. Ruzsa, Di↵erence sets and positive exponential sums I. General proper-
ties, J. Fourier Anal. Appl., to appear.

[15] Web-page of Geo↵rey Exoo with clique numbers of Paley graphs for 7000 < p < 10000,
http://ginger.indstate.edu/ge/PALEY/

[16] Web-page of J. B. Shearer with clique numbers of Paley graphs for p < 7000,
http://www.research.ibm.com/people/s/shearer/indpal.html

[17] Web-page discussion of clique numbers and plot of the function s(p) for p < 10000,
http://mathoverflow.net/questions/48591/cliques-paley-graphs-and-quadratic-residues


