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Abstract
The impartial combinatorial game kayles is played on a row of pins, with players
taking turns removing either a single pin or two adjacent pins. A natural partizan
variation is to allow one player to remove only a single pin and the other only a pair
of pins. This paper develops a complete solution for partizan kayles under misère
play, including the misère monoid of all possible sums of positions, and discusses its
significance in the context of misère invertibility: the universe of partizan kayles
contains a position whose additive inverse is not its negative, and moreover, this
position is an example of a right-win game whose inverse is previous-win.

1. Introduction

In the game of kayles, two players take turns throwing a bowling ball at a row
of pins. A player either hits dead-on and knocks down a single pin, or hits in-
between and knocks down a pair of adjacent pins. This game has been analyzed for
both normal play (under which the player who knocks down the last pin wins) and
misère play (the player who knocks down the last pin loses) [3, 13, 9]. Since both
players have the same legal moves, kayles is an impartial game. Although there
are several natural non-impartial or partizan variations, in this paper the rule set
of partizan kayles is as follows: the female player ‘Left’ can only knock down a
single pin and the male player ‘Right’ can only knock down a pair of adjacent pins.
This game can be seen as a one-dimensional variant of domineering, played on
strips of squares (representing the rows of pins), with Left placing the bottom half
of her vertical dominoes and Right placing his horizontal dominoes as usual. For
notational purposes, we will play ‘domineering-style’, on 1 ⇥ n strips denoted Sn,
with Left placing squares and Right placing dominoes, as illustrated in Figure 1.

This paper develops a complete solution for partizan kayles under misère play.
We will see that the set (universe) of partizan kayles positions is remarkable for
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Figure 1: A game of partizan kayles: after one Left move and one Right move,
the original position S6 becomes S1 + S3.

its unusual examples of invertibility.
It is assumed that the reader is familiar with basic normal-play combinatorial

game theory1. A brief review of the necessary misère background is given in Section
1.1; a more detailed overview can be found in [8]. Section 2 establishes domination
of options among partizan kayles positions, and Section 3 uses this to show how
every strip of length at least three reduces to a disjunctive sum of single squares and
strips of length two. Section 4 then gives the outcome and strategy for a general
sum, including the misère monoid of the universe of partizan kayles positions.
Finally, Section 5 discusses the significance of this universe in the context of misère
invertibility.

1.1. Misère Prerequisites

A game or position is defined in terms of its options: G = {GL | GR}, where GL is
the set of positions GL to which Left can move in one turn, and similarly for GR.
The simplest game is the zero game, 0 = {· | ·}, where the dot indicates an empty
set of options. The outcome function o�(G) gives the misère outcome of a game G.
If o�(G) = P we write G 2 P�, where again the superscript indicates that this is
the outcome under misère play. Thus, for example, 0 2 N�. Under either ending
condition, the outcome classes are partially ordered as shown in Figure 2.

L
� �

P N
� �

R

Figure 2: The partial order of outcome classes.

Many definitions from normal-play theory are used without modification for
misère games, including disjunctive sum, equality, and inequality, as well as domina-
tion and reversibility. However, the normal-play negative of G, �G = {�GR|�GL},
is instead called the conjugate of G, denoted G, since in general we do not have

1A complete overview of normal-play combinatorial game theory can be found in [1].
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G + G = 0 in misère play [5]. Thus

G = {GR|GL}.

In addition to the well-studied normal-play canonical form, every position has a
unique misère canonical form obtained by eliminating dominated options and by-
passing reversible ones [14]; note that the definitions of domination and reversibility
are indeed dependant on the ending condition, since the definition of inequality is
dependant on the ending condition.

Misère games are much more di�cult to analyze than normal-play games (see
[11], for example). No position besides {· | ·} is equal to 0 [5]; thus, no non-zero
position has an additive inverse, and there is no easy test for equality or inequality
of games. This in turn means that instances of domination and reversibility are
rare and hard to establish, so that we cannot take advantage of canonical forms in
misère play as we do in normal play.

Some of these problems are mitigated by considering restricted versions of equal-
ity and inequality [10, 12]. Let U be a set of games closed under disjunctive sum and
followers (but not necessarily under conjugation). Indistinguishability or equivalence
(modulo U) is defined by

G ⌘ H(mod U) if o�(G + X) = o�(H + X) for all games X 2 U ,

while inequality (modulo U) is defined by

G = H(mod U) if o�(G + X) � o�(H + X) for all games X 2 U .

The set U is called the universe. If G 6⌘ H(mod U) then G and H are said to be
distinguishable modulo U , and in this case there must be a game X 2 U such that
o�(G + X) 6= o�(H + X). If G 6= H(mod U) and G 65 H(mod U) then G and H
are incomparable in U . The symbol  is used to indicate strict modular inequality.
Thus, the symbols ⌘, =, and  ( mod U) correspond to, but are di↵erentiated from,
the symbols =, �, and >, respectively, which are used in non-restricted misere play.
In this paper it is assumed that both G and H are contained in U when we compare
them modulo U .

Note that indistinguishability is a congruence relation. Given a universe U , we
can determine the equivalence classes under indistinguishability modulo U . Since
we may still not have inverses for every element, the classes form a quotient monoid.
Together with the tetra-partition of elements into the sets P�, N�, R�, and L�,
this quotient is called the misère monoid of the set U , denoted MU [10].

Indistinguishability and misère monoids have been successfully used to analyze
various impartial [12] and partizan games [2, 7, 4]. This paper, which summarizes
a section of the author’s PhD thesis [6], develops the monoid for the universe of
partizan kayles positions, and discusses its relevance to ‘restricted’ (modulo U)
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misère invertibility. The game of partizan kayles is a placement game, in that
players move by putting pieces on a board, and is thus also dead-ending, meaning
that once a player has no current move, that player will never have another move.
The universe of dead-ending games is introduced and explored in [8], and both
this and the subuniverse of placement games are exciting areas of current misère
research.

2. Domination

The goal of this section is to establish domination of moves in partizan kayles,
with the concluding and most important result (Corollary 3) being that S2  S1+S1

modulo this universe. Recall that Sn denotes a strip of length n. The disjunctive
sum of k copies of G is denoted kG, so that, for example, S1 + S1 = 2S1. Let K
be the universe of partizan kayles positions; that is, K is the set of all possible
sums of positions of the form Sn. Note that S0 = {· | ·} = 0 and S1 = {0 | ·} = 1
(the normal-play canonical-form integers), but this is not the case for higher values
of n; for example, S2 = {1 | 0} 6= 2.

It should be immediately apparent to any player of misère games that this version
of kayles is heavily biased in favour of Right: Left can always move, if the position
is non-zero, while Right cannot move on any sum of single squares. It is therefore
not surprising that there are no left-win positions in this universe, as demonstrated
in Lemma 1. As a consequence, we have Corollary 1: if Left can win playing first in
a partizan kayles position under misère play, then the position must be in N�,
and similarly if Left can win playing second then the position is in P�.

Lemma 1. If G 2 K then G 62 L�.

Proof. If G 2 K then G is a sum of positions of the form Sn. Let m be the total
number of squares in G. Note that each of Right’s turns reduces the total number
of free squares by 2 and each of Left’s moves reduces the number by 1.

If the total number m is a multiple of 3 and Right plays first, then Left begins
each turn with 3k + 1 free squares (for some k 2 N); in particular Left never begins
a turn with zero free squares, and so can never run out of moves before Right. This
shows Right wins playing first, so G 2 R� [N�.

If m ⌘ 1(mod3) then Left playing first begins each turn with 3k +1 free squares
and Left playing second begins each turn with 3k + 2 free squares; in either case
Left cannot run out of moves before Right by the same argument as above. Here
Right wins playing first or second so G 2 R�.

Finally, if m ⌘ 2(mod3), then Left playing first necessarily moves the game to
one in which the total number of squares is congruent to 1 modulo 3, and as shown
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above this is a right-win position. Thus Left loses playing first and the game is in
R� or P�.

Corollary 1. If Left wins playing first on G 2 K, then G 2 N�, and if Left wins
playing second on G, then G 2 P�.

Since single squares are so detrimental for Left, we might naively suspect that
Left should get rid of them as quickly as she can2. That is, given a position that
contains an S1, Left should do at least as well by playing in the S1 as playing
anywhere else. This is indeed the case, as established in Corollary 2. The bulk
of the work is done in Lemma 2. Lemma 1 (that is, the non-existence of left-win
positions in K) is used repeatedly without reference in the following proof.

Lemma 2. If G 2 K and GL is any left option of G then G = GL + S1(mod K).

Proof. We must show that o�(G + X) � o�(GL + S1 + X), for any X 2 K, where
GL is any Left option of G. Since G is already an arbitrary game in K, it su�ces
to show o�(G) � o�(GL +S1). To do so we will show that when GL +S1 is in N�,
G is also in N�, and that when GL + S1 is in P�, G is also in P�. If GL + S1 is
in R�, then we trivially have o�(G) � o�(GL + S1).

Suppose GL + S1 2 N�, so that Left has a good first move in GL + S1. If the
good move is to GL + 0 = GL then Left has the same good first move in G, and
so G 2 N�. Otherwise the good move is to GLL + S1 2 P�, for some Left option
GLL of GL; but then by induction o�(GL) � o�(GLL + S1) and so GL 2 P� and
G 2 N�.

Now suppose GL + S1 2 P�. We must show that G 2 P�. Since Right has no
good first move in GL + S1, we have GLR + S1 2 N� for every right option GLR

of GL. So Left has a good first move in GLR + S1; by induction the move to GLR

is at least as good as any other, and so GLR 2 P� for every right option GLR of
GL. We will see that there exists a previous-win Left response GRL to every first
Right move GR, by finding a GRL that is equal to some GLR 2 P�. This will give
a winning strategy for Left playing second in G, proving G 2 P�.

Let GR be any right option. If the domino placed by Right to move from G to
GR would not overlap the square placed by Left to move from G to GL, then Left
can place that square now, achieving a position GRL equal to some GLR, which
we know to be in P�. This is a good second move for Left in G, so G 2 P�. If
Right’s move from G to GR does interfere with Left’s move from G to GL, then we
will see that Left can still move GR to a position equal to some GLR. If there are

2In normal play, there is a principle of number avoidance, which says that players should save
(avoid) positions in which the opponent can never move. A naive approach to misere play is to
assume that the opposite strategy should be optimal, but in fact this does not always (or even
usually) work: for example, the game S1 = {0 | ·} is incomparable with the zero game in general
misère play, and so in general it is not true that Left would rather have nothing than have a single
Left move.



INTEGERS: 15 (2015) 6

free squares adjacent to both sides of the domino Right places for GR, then Left
can respond to GR by playing in one of those squares, so that the resulting position
GRL is equal to a position GLR 2 P�. This is illustrated in Figure 3.

L

G

G

L R

LR RL

G G

G

Figure 3: Although the pieces for GL and GR overlap, Left still has an option of
GR that is equal to a right option of GL.

If Left cannot so easily obtain such a position — if there is not a free square on
both sides of Right’s domino — then we have several cases to consider.

Case 1: The domino placed by Right to move from G to GR is at the end of a
component Sn, n � 4. So G = Sn + G0, for some position G0 (perhaps equal to 0),
and GR = Sn�2 + G0. Since this domino interferes with Left’s move from G to GL,
Left’s move to GL must be to place a square at the end or one away from the end
of Sn: GL = Sn�1 + G0 or GL = S1 + Sn�2 + G0. If the former, then as above Left
responds to GR by playing adjacent to Right, obtaining GRL = Sn�3 + G0, which
is in P� because it is a Right option of GL = Sn�1 + G0. If the latter, then Left
responds to GR by playing one away from the end of Sn�2, leaving the position
S1 + Sn�4 + G0, which is a Right option of GL = S1 + Sn�2 + G0, and is therefore
in P�.

Case 2: The domino placed by Right to move from G to GR is at the end of a
component S3. So G = S3+G0 and GR = S1+G0. If Left’s move to GL is to play at
the end of this S3, then she simply plays in the S1 now to obtain GRL = G0, which
is equal to a GLR and so is in P�. If Left’s move to GL is to play in the middle
of S3, then GL = S1 + S1 + G0. It cannot be that G0 is a sum of all S1 positions,
else GL + S1 is right-win, and we are assuming it is previous-win. So there is at
least one component Sn in G0 with n � 2. Thus we can write G0 = Sn + G00. Left
should respond to GR = S1 +Sn +G00 by moving one away from the end of the Sn,
to obtain GRL = S1 + S1 + Sn�2 + G00, which is in P� because it is a right option
of GL = S1 + S1 + G0 = S1 + S1 + Sn + G00.

Case 3: The domino placed by Right to move from G to GR is in an S2. So
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G = S2 +G0 and GR = G0. Since this domino interferes with Left’s move to GL, we
must have GL = S1 + G0. Again, it cannot be that G0 is a sum of all S1 positions,
since GL + S1 2 P�. So there is at least one component Sn in G0 with n � 2.
Left should respond to GR = G0 = Sn + G00 by playing one away from the end of
Sn, so that she obtains the position S1 + Sn�2 + G00, which is a Right option from
GL = S1 + G0 = S1 + Sn + G00.

In every case Left has a good second move in G (GRL 2 P�) and so G 2 P�, as
required.

As corollaries of this lemma we obtain both a general strategy for Left in parti-
zan kayles as well as the inequality S2  2S1(mod K).

Corollary 2. For any position G 2 K, if Left can win G+S1 then Left can win by
moving to G.

Proof. Any other option of G+S1 is of the form GL +S1, and by Lemma 2, GL +S1

is dominated by G.

Corollary 3. S2  2S1(mod K).

Proof. S2 = 2S1 follows directly from Lemma 2 with G = S2, since the only left
option GL is S1. The inequality is strict because S2 2 P� while 2S1 2 R�.

3. Reduction

Corollary 3 is the key to the solution of partizan kayles: it allows us, by estab-
lishing domination of options, to show that every strip Sn ‘splits’ into a sum of S1

positions (single squares) and S2 positions (dominoes). Theorem 1 demonstrates
the reduction. Let us work through a few reductions by hand to gain some insight
into this process. These reductions are illustrated in Figure 4. All instances of
domination in this discussion are modulo K.

Trivially, S1 and S2 are already sums of single squares and dominoes. In a strip
of length 3, Left has options to S2 (playing at either end) and S1 + S1 (playing in
the middle). Right has only one option, to S1. These are precisely the options of
S1 + S2; both games are equal to {S2, 2S1 | S1} (which, in canonical form modulo
K, is the game {S2 | S1}, by Corollary 3). Thus, S3 = S1 + S2.

In a strip of length 4, Left’s options are to S3 or S1 + S2; as just established,
these are equivalent. Right’s options are to S2 or S1+S1, and the second dominates
the first by Corollary 3. So S4 ⌘ {S1 + S2 | 2S1}. Compare this to the position
2S1 + S2 = {S1 + S2, 3S1 | 2S1}; they are equivalent because the first left option
dominates the second. Thus, S4 ⌘ 2S1 + S2.
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Lastly, consider a strip of length 5. Left’s options are S4 ⌘ 2S1 + S2, S1 + S3 ⌘
2S1 + S2, and S2 + S2, which dominates the others since S2  2S1. Right’s options
are S3 and S1 + S2, which are equivalent. So S5 ⌘ {2S2 | S1 + S2}. This is the
same as the position S1 + 2S2, as Left’s move to 2S2 dominates here and Right’s
only move is to S1 + S2. That is, S5 ⌘ S1 + 2S2.

Figure 4: Reduction of Sn into a sum of S1 and S2 positions, for n = 1, . . . , 5.

If we were to continue with S6, S7, and S8, we would observe a pattern based
on the congruency of n modulo 3. The reductions for longer strips use the same
logic as the cases for n = 1, . . . , 5, and indeed the general inductive proof follows a
similar method, of considering the possible options and removing those dominated
via Corollary 3. We now begin the general argument for reducing any Sn. Lemma
3 serves to tidy up the proof of Theorem 1.

Lemma 3. If k, j 2 N then kS1+jS2 ⌘ {(k�1)S2+jS2 | kS1+(j�1)S2} ( mod K).

Proof. Left’s only moves in kS1 + jS2 are to bring an S1 to zero or an S2 to an S1.
These moves give the options (k�1)S1 +jS2 and (k+1)S1 +(j�1)S2, respectively,
and the second is dominated by the first because S2  2S1. Right has only one move
up to symmetry — play in an S2 — and so kS1 + jS2 ⌘ {(k � 1)S2 + jS2 | kS1 +
(j � 1)S2} (mod K), as claimed.

Theorem 1. If n � 3 then

Sn ⌘

8><
>:

kS1 + kS2 (mod K), if n = 3k,

(k + 1)S1 + kS2 (mod K), if n = 3k + 1,
kS1 + (k + 1)S2 (mod K), if n = 3k + 2.

Proof. By Lemma 3, it su�ces to show that Sn ⌘ {(k�1)S1+kS2 | kS1+(k�1)S2}
when n = 3k, that Sn ⌘ {kS1 +kS2 | {(k +1)S1 +(k� 1)S2} when n = 3k +1, and
that Sn ⌘ {(k�1)S1 +(k+1)S2 | kS1 +kS2} when n = 3k+2. The proof is broken
into these three cases. Note that any left option of Sn is of the form Si + Sn�1�i,
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with 0  i  n � 1. Similarly, any right option of Sn is of the form Si + Sn�2�i,
with 0  i  n� 2.

Case 1: n = 3k:
If i = 3j then n�1� i = 3k�3j�1 = 3(k�j�1)+2, and n�2� i = 3k�3j�2 =
3(k � j � 1) + 1. By induction this gives left and right options

GL1 = Si + Sn�1�i = jS1 + jS2 + (k � j � 1)S1 + (k � j)S2

= (k � 1)S1 + kS2;
GR1 = Si + Sn�2�i = jS1 + jS2 + (k � j)S1 + (k � j � 1)S2

= kS1 + (k � 1)S2.

If i = 3j + 1 then n � 1 � i = 3k � 3j � 2 = 3(k � j � 1) + 1 and n � 2 � i =
3k � 3j � 3 = 3(k � j � 1). By induction, this gives left and right options

GL2 = Si + Sn�1�i = (j + 1)S1 + jS2 + (k � j)S1 + (k � j � 1)S2

= (k + 1)S1 + (k � 1)S2;
GR2 = Si + Sn�2�i = (j + 1)S1 + jS2 + (k � j � 1)S1 + (k � j � 1)S2

= kS1 + (k � 1)S2.

If i = 3j +2 then n�1� i = 3k�3j�3 = 3(k� j�1) and n�2� i = 3k�3j�4 =
3(k � j � 2) + 2, so by induction we have left and right options

GL3 = Si + Sn�1�i = jS1 + (j + 1)S2 + (k � j � 1)S1 + (k � j � 1)S2

= (k � 1)S1 + kS2;
GR3 = Si + Sn�1�i = jS1 + (j + 1)S2 + (k � j � 2)S1 + (k � j � 1)S2

= (k � 2)S1 + kS2.

Left has only two distinct options: either GL1 = GL3 = (k�1)S1+kS2 (obtained
by moving to Si+Sn�1�i with any i ⌘ 0, 2 (mod 3)), or GL2 = (k+1)S1+(k�1)S2

(obtained by moving to Si + Sn�1�i with any i ⌘ 1 (mod 3)). We can write
GL1 = G0+S2 and GL2 = G0+2S1 (where G0 = (k�1)S1 +(k�1)S2), and then we
see that GL2 is dominated by GL1 , because 2S1 is dominated by S2 (Corollary 3).
Similarly, Right’s options are GR1 = GR2 = kS1+(k�1)S2 or GR3 = (k�2)S1+kS2,
and the latter is dominated by the former. With Lemma 3, we conclude that, when
n = 3k, we have Sn ⌘ {(k � 1)S1 + kS2 | kS1 + (k � 1)S2} ⌘ kS1 + kS2 (mod K).

Case 2: n = 3k + 1:
In this case, by similar arguments and computations, we find Left’s only move is to
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kS1 + kS2, while Right has an option to (k � 1)S1 + kS2 dominated by an option
to (k + 1)S1 + (k � 1)S2. Thus, if n = 3k + 1 then

Sn ⌘ {kS1 + kS2 | (k + 1)S1 + (k � 1)S2} ⌘ (k + 1)S1 + kS2 (mod K).

Case 3: n = 3k + 2:
In this case, Left has a move to (k + 1)S1 + kS2 that is dominated by a move to
(k � 1)S1 + (k + 1)S2, while Right’s only option is kS1 + kS2. Thus, if n = 3k + 2
then Sn ⌘ {(k � 1)S1 + (k + 1)S2 | kS1 + kS2} ⌘ kS1 + (k + 1)S2 (mod K).

4. Outcome and Strategy

We have shown that every strip Sn splits into a sum of single squares and dominoes.
This makes analysis of the partizan kayles universe much more manageable; we
need only determine the outcome of a sum of any number of single squares and
dominoes. One trivial observation is that if there are more single squares than
dominoes, then Left will not be able to win, as Right can eliminate all of ‘his’ pieces
before Left can run out of single squares. That is, if k > j then (kS1 + jS2) 2
R�. Another immediate result is the outcome when there are exactly as many
single squares as dominoes: the players are forced into a Tweedledum-Tweedledee
situation, because Left will always choose to play in an S1 over an S2, by Corollary
2, and so the the first player will run out of moves first. Thus, if k = j then
(kS1 + jS2) 2 N�. The outcome in the remaining case, when k < j, turns out
to be dependant on the congruence of the total number of (not necessarily single)
squares, modulo 3; that is, it depends on the value of k + 2j (mod 3).

Theorem 2. For positive integers k and j,

kS1 + jS2 2

8><
>:
N�, if k = j, or if k < j and k + 2j ⌘ 0 (mod 3),
R�, if k > j, or if k < j and k + 2j ⌘ 1 (mod 3),
P�, if k < j and k + 2j ⌘ 2 (mod 3).

Proof. Lemma 3 states that

kS1 + jS2 ⌘ {(k � 1)S1 + jS2 | kS1 + (j � 1)S2} (mod K).

Let G = kS1 + jS2. We can prove each case by applying induction to GL =
(k � 1)S1 + jS2 and GR = kS1 + (j � 1)S2.

If k = j then Left’s option is in P� since (k � 1) + 2k = 3k � 1, and Right’s
option is in R� since k > k � 1. So G 2 N�.

If k > j then GL 2 N� [R� and GR 2 R�, so G 2 R�.
If k < j and k + 2j ⌘ 0 (mod 3) then GL 2 P� because k� 1 + 2j ⌘ 2 (mod 3),

while GR 2 R� because k + 2j � 2 ⌘ 1 (mod 3). Thus G 2 N�.
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If k < j and k + 2j ⌘ 1 (mod 3) then GL 2 N� because k� 1 + 2j ⌘ 0 (mod 3),
and GR 2 P� because k + 2j � 2 ⌘ 2 (mod 3). This confirms G 2 R�.

Finally, if k < j and k + 2j ⌘ 2 (mod 3) then GL 2 R� because k � 1 + 2j ⌘ 1
(mod 3), and GR 2 N� because k + 2j � 2 ⌘ 0 (mod 3). Thus G 2 P�.

As an immediate corollary we can prove what might be intuitively guessed about
this universe: a single square and a single domino ‘cancel each other out’. Essen-
tially, we can think of a single square as one move for Left and a single domino as
one move for Right. Things are more complicated when only dominoes are present,
because Left must then play in a domino, but this way of thinking works when at
least one of each exists. Corollary 4 has a very nice obvious consequence, which is
given as Corollary 5: any strip of length a multiple of 3 is equivalent to zero.

Corollary 4. S1 + S2 ⌘ 0 (mod K).

Proof. Let X ⌘ kS1 + jS2 be any Kayles sum. By Theorem 2,

o�(X + S1 + S2) = o�[(k + 1)S1 + (j + 1)S2] = o�(kS1 + jS2),

since k+1 is equal to (respectively, less than, greater than) j +1 when k is equal to
(respectively, less than, greater than) j, and k+2j ⌘ (k+1)+2(j +1) (mod 3).

Corollary 5. If n ⌘ 0 (mod 3) then Sn ⌘ 0 (mod K).

Proof. This is clear from Theorem 1 and the previous corollary, since if n = 3k then
Sn reduces to kS1 + kS2 = k(S1 + S2) ⌘ 0 (mod K).

With Theorem 2 its corollaries, we can identify the misère monoid of partizan
kayles. Since S1 +S2 ⌘ 0, the monoid is a group, isomorphic to the integers under
addition. Given a general Kayles position kS1 + jS2, we can cancel the inverse
pairs S1, S2 until we are left with only S1 positions or only S2 positions. Then, by
Theorem 2, the outcome class N� is composed of positions jS2 where j ⌘ 0 (mod
3). The outcome class R� contains all positions kS1 as well as positions jS2 with
2j ⌘ 1 (mod 3) (i.e., j ⌘ 2 (mod 3)). Finally, P� contains all positions jS2 with
2j ⌘ 2 (mod 3), or in other words j ⌘ 1 (mod 3).

Thus, we have
MK = h0, S1, S2 | S1 + S2 = 0i,

with outcome partition

N� = {kS2 | k � 0, k ⌘ 0 (mod 3)}
P� = {kS2 | k > 0, k ⌘ 1 (mod 3)}
R� = {kS1, jS2 | k > 0, j > 0, j ⌘ 2 (mod 3)}
L� = ;.

It would be nice to go a few steps further and answer the following questions.
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1. Can we ‘look’ at a general sum of strips and determine the outcome, without
having to first reduce the position to single squares and dominoes?

2. Can we determine the optimal move for a player when he or she has a winning
strategy?

The next theorem precisely answers question 1, by describing the outcome of
a general Kayles position without directly computing its reduction into S1 and S2

pieces. We must simply compare the number of pieces of length congruent to 1
modulo 3 to the number of those congruent to 2 modulo 3. In fact, there is no
new argument here: this is a compression of the two steps already discussed —
the reduction into S1 and S2 pieces (Theorem 1) and the outcome of kS1 + jS2

(Theorem 2). Note that if G is a piece of length 0 modulo 3, then G is equivalent
to zero modulo K. Thus in any Kayles position, we can ignore any components of
length 0 modulo 3.

Theorem 3. If G is a partizan kayles position with x pieces of length 1 modulo
3 and y pieces of length 2 modulo 3, then

G 2

8>>>>>><
>>>>>>:

N�, if x = y,

or if x < y and x + 2y ⌘ 0 (mod 3);
R�, if x > y,

or if x < y and x + 2y ⌘ 1 (mod 3);
P�, if x < y and x + 2y ⌘ 2 (mod 3).

Finally, Theorem 4 answers our second question, of most interest to anyone ac-
tually playing partizan kayles: how do you win a general non-reduced partizan
kayles position, when you can? The winning moves described below can be con-
firmed using Theorem 3.

Theorem 4. If Left can win a partizan kayles position, then she can win playing
at the end of a strip of length 1 modulo 3, when possible, or the end of a strip of
length 2 modulo 3, otherwise. If Right can can win a partizan kayles position,
then he can win playing at the end of a strip of length 2 modulo 3, when possible,
or one away from the end of a strip of length 1 modulo 3, otherwise.

5. Discussion: Misère Invertibility

Within a universe U , a game G may satisfy G + G ⌘ 0 (mod U), and then G is
said to be invertible modulo U . For example, normal-play canonical-form numbers
are invertible modulo the universe of all such positions [8]. If G + G 6⌘ 0 (mod U),
it is tempting to say that G is not invertible modulo U — but once again misère
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games surprise us! It is possible for some other position H 6⌘ G (mod U) to satisfy
G+H ⌘ 0 (mod U); that is, G may have an additive inverse that is not its conjugate.
The universe of partizan kayles is the only known partizan example of such a
situation: here we have S1 + S2 ⌘ 0 (mod K), with S1 6⌘ S2 and S2 6⌘ S1 (mod K).

In fact, these comparisons are not even defined, as S1 and S2 do not occur in the
universe K. The position S1 would have no move for Left and one move for Right
(that is, S1 = {· | 0} = �1), and S2 would be a position in which Left can move
to 0 and Right can move to �1. Even if we generalize the definition of equivalence
to allow G and H to be compared modulo U without requiring that both are in
U , we do not obtain S1 ⌘ S2; there is actually no universe3 in which S1 and S2

are equivalent, since S1 2 R� and S2 2 P�. This brings us to another oddity of
partizan kayles: there is a position in R� whose additive inverse is in P�. There
is no other known instance of an inverse pair having ‘asymmetric’ outcomes in this
way. It is likely a symptom of the fact that K is not closed under conjugation.

In [6], it was conjectured that G + H ⌘ 0 (mod U) implies H ⌘ G (mod U)
whenever U is closed under conjugation. This, however, is false, as an impartial
counterexample appears in [12] (appendix A.6). It was already known in [6] (by the
results presented here) that the stronger statement, removing the closure condition,
is false. The question now is whether a still weaker statement can be shown true:
is there some condition on the universe U so that G being invertible implies G +
G ⌘ 0 (mod U)? Is there a condition on the specific game G that guarantees the
invertibility of G? Can we find more counterexamples (so far there is only one) to
the original conjecture of [3]?

Without Plambeck’s theory of indistinguishability (equivalence), no non-zero
game is invertible under misère play. We now have a meaningful concept of ad-
ditive inverses in restricted universes, but as partizan kayles shows, invertibility
for misère games is still strikingly di↵erent — more subtle and less intuitive — than
invertibility for normal games. A better understanding of misère invertibility is a
significant open problem in the growing theory of restricted misère play.
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