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Abstract
We show that out of the seven segment lengths (three edges, three face diagonals,
and space diagonal) of a perfect cuboid, one length must be divisible by 25, and out
of the other six lengths, one must be divisible by 25 or two must be divisible by 5.

1. The Result

A perfect cuboid is a rectangular prism whose edges, face diagonals, and space
diagonals are all of integer length. Suppose we have a prism with dimensions a⇥b⇥c.
We denote by d, e, f the lengths of the diagonals of the a ⇥ b, a ⇥ c, and b ⇥ c
faces respectively. Finally, we denote by g the length of the space diagonals of the
prism (the line segments connecting opposite corners). We call the seven quantities
a, b, c, d, e, f, g the segment lengths of the prism. We can see that any perfect cuboid
results in a solution to the system of Diophantine equations

a2 + b2 = d2

a2 + c2 = e2

b2 + c2 = f2

a2 + b2 + c2 = g2

where all the variables are positive.
No perfect cuboid is known to exist; the existence or nonexistence of a perfect

cuboid is one of the most famed outstanding problems in number theory (men-
tioned by [2] and many, many others). A closely related problem is that of finding
a rectangular prism in which all but one of the segment lengths are integers. This
problem has also received great attention; it is known that any six of the segment
lengths can be made integers, if we are willing to let the remaining length be irra-
tional (see [2]). Leech [4] finds generators of almost-perfect cuboids by relating the
Diophantine system to cubic surfaces, and Bremner [1] considers a quartic surface
defined by the equations. A thorough overview of the literature on perfect cuboids
is given by van Luijk [6].
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Any perfect cuboid must obey a long list of constraints on its seven segment
lengths:

• One of its edges must be divisible by 9, and another must be divisible by 3.

• One of its edges must be divisible by 16, and another must be divisible by 4.

• One of its diagonals must be divisible by 13.

• For each d 2 {5, 7, 11, 19}, it must have an edge divisible by d (possibly
di↵erent lengths for di↵erent divisors).

• For each d 2 {17, 29, 37}, it must have an edge, face diagonal, or space diagonal
divisible by d (possibly di↵erent lengths for di↵erent divisors).

Some of these are found in [3] and [5]. They may also be verified computationally.
Several of these conditions arise from simple considerations of modular arith-

metic, by relaxing the equalities of the systems to congruence modulo some integer.
For example, to show that one edge must be divisible by 3, consider the system
modulo 3: it su�ces to show that any triple (a, b, c) for which a2 + b2, a2 + c2,
b2 + c2, and a2 + b2 + c2 are all quadratic residues modulo 3 (that is, 0 or 1) must
have an element congruent to 0. Indeed, if no edge is divisible by 3, then we have
a2 ⌘ b2 ⌘ c2 ⌘ 1 (mod 3), but a2 + b2 ⌘ 2 (mod 3) is not a quadratic residue mod-
ulo 3. Roberts [5] demonstrates this for the moduli 7 and 19, where the arithmetic
becomes more complicated but the principle remains the same. Our argument uses
a similar construction with the modulus 125 to demonstrate divisibility by 5 and
25.

The following theorem adds a new requirement to the list.

Theorem 1. In any perfect cuboid, one of the seven segment lengths must be divis-
ible by 25. Additionally, either (a) another of its segment lengths must be divisible
by 25, or (b) two of its other segment lengths must both be divisible by 5.

As a result, we have

Corollary 1. The product of the three edges, three face diagonals, and space diag-
onal of a perfect cuboid is divisible by 54.

Combining all known conditions on the segment lengths of perfect cuboids, Guy
[2] reports that the product of the seven segment lengths must be divisible by

28 · 34 · 53 · 7 · 11 · 13 · 17 · 19 · 29 · 37.

Our result therefore improves this quantity by a factor of 5.
The rest of this paper is devoted to proving the theorem. Our argument begins

with the following lemma.
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Lemma 1. If x2 + y2 ⌘ z2 (mod 125), then x2, y2, or z2 must be congruent to 0,
25, or 100 modulo 125.

Proof. The hypothesis implies x2 + y2 ⌘ z2 (mod 5). Since 0, 1, and 4 are the only
quadratic residues mod 5, when x2 6⌘ 0 (mod 5) and y2 6⌘ 0 (mod 5) we must have
z2 ⌘ 0 (mod 5). Thus one of x2, y2, z2 is divisible by 5, and therefore also by 25.
Every multiple of 25 is congruent to one of 0, 25, 50, 75, 100 modulo 125; of these,
only 0, 25, and 100 are quadratic residues modulo 125.

We proceed to the proof of the theorem. Let us consider the Diophantine system
again. The first equation is a2 + b2 = d2; from the Lemma, we know that one of
these terms — d2 or, without loss of generality, a2 — must be congruent to 0, 25,
or 100. We therefore have six cases to consider. In each case, we show that two
lengths must be divisible by 25 or that one must be divisible by 25 and two others
must be divisible by 5.

Case 1: a2 ⌘ 0 (mod 125). In this case, we have 25 | a, and the equations simplify
to

b2 ⌘ d2 (mod 125),
c2 ⌘ e2 (mod 125),

b2 + c2 ⌘ f2 (mod 125),
b2 + c2 ⌘ g2 (mod 125).

Applying the Lemma to the third equation, we see that one of b2, c2, f2 must be
congruent to 0, 25, or 100 (mod 125). But b2 ⌘ d2 (mod 125), c2 ⌘ e2 (mod 125),
and f2 ⌘ g2 (mod 125). Therefore, two of b2, c2, d2, e2, f2, g2 are divisible by 5.

Case 2: a2 ⌘ 25 (mod 125). In this case, the Diophantine system becomes

25 + b2 ⌘ d2 (mod 125),
25 + c2 ⌘ e2 (mod 125),
b2 + c2 ⌘ f2 (mod 125),

25 + b2 + c2 ⌘ g2 (mod 125).

Applying the Lemma to the third equation, we see that one of b2, c2, f2 must be
congruent to 0, 25, or 100 (mod 125). Suppose it is b2. We cannot have b2 ⌘ 25
(mod 125), since this implies 50 ⌘ d2 (mod 125), and 50 is not a quadratic residue
modulo 125. Therefore either b2 ⌘ 0 (mod 125), in which case 25 | b and 5 | d, or
b2 ⌘ 100 (mod 125), in which case 5 | b and 25 | d.

If, instead, c2 is congruent to 0, 25, or 100, a similar argument follows. Finally, if
f2 is congruent to 0, 25, or 100, we have the same argument again when we combine
the third and fourth equations to obtain

25 + f2 ⌘ g2 (mod 125).
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Case 3: a2 ⌘ 100 (mod 125). This case is analogous to Case 2.

Case 4: d2 ⌘ 0 (mod 125). We have 25 | d, and the system becomes

a2 + b2 ⌘ 0 (mod 125),
a2 + c2 ⌘ e2 (mod 125),
b2 + c2 ⌘ f2 (mod 125),

c2 ⌘ g2 (mod 125).

If c2 is congruent to 0, 25, or 100, we have 5 | c and 5 | g. Otherwise, by the Lemma,
one of a2, e2 must be divisible by 5, and one of b2, f2 must be divisible by 5.

Case 5: d2 ⌘ 25 (mod 125). The system becomes

a2 + b2 ⌘ 25 (mod 125),
a2 + c2 ⌘ e2 (mod 125),
b2 + c2 ⌘ f2 (mod 125),
25 + c2 ⌘ g2 (mod 125).

By the Lemma, one of a2, c2, e2 must be congruent to 0, 25, or 100. Suppose it is c2.
We cannot have c2 ⌘ 25 (mod 125), since 50 is not a quadratic residue. Therefore
c2 ⌘ 0 or 100 (mod 125). If c2 ⌘ 100 (mod 125), then g2 ⌘ 0 (mod 125), and we
have 5 | c and 25 | g. Otherwise, c2 ⌘ 0 (mod 125), and we have 25 | c and 5 | g.

If c2 is not congruent to 0, 25, or 100, then we must have that one of a2, e2 is
congruent to 0, 25, or 100, and one of b2, f2 is congruent to 0, 25, or 100. If a2 ⌘ 0,
25, or 100 (mod 125), then either a2 ⌘ 0 (mod 125) (forcing b2 ⌘ 25 (mod 125))
or a2 ⌘ 25 (mod 125) (forcing b2 ⌘ 0 (mod 125)); a2 ⌘ 100 (mod 125) requires
b2 ⌘ 50 (mod 125), which is impossible. If, instead, b2 ⌘ 0, 25, or 100 (mod 125),
the same argument applies.

If neither a2 nor b2 is congruent to 0, 25, or 100, we will have e2 ⌘ 0, 25, or
100 (mod 125) and f2 ⌘ 0, 25, or 100 (mod 125). If e2 ⌘ 0 (mod 125) then 25 | e,
and if f2 ⌘ 0 then 25 | f . Otherwise, if e2 ⌘ f2 6⌘ 0 (mod 125), we have a2 ⌘ b2

(mod 125) as well; the congruence a2+b2 ⌘ 25 (mod 125) then forces a2 and b2 both
congruent to 0, a contradiction. The only remaining possibility is that e2 and f2 are
nonzero and non-congruent, say e2 ⌘ 25 (mod 125) and f2 ⌘ 100 (mod 125). But
this is actually impossible: it forces b2 ⌘ c2 (mod 125), contradicting b2 + c2 ⌘ 100
(mod 125).

Therefore, we always have one length divisible by 25 and two others each divisible
by 5.

Case 6: d2 ⌘ 100 (mod 125). This case is analogous to Case 5.
The theorem is proved.
It is tempting to conjecture that a perfect cuboid must have two lengths divisible

by 25, but our argument cannot prove this: a counterexample occurs with a2 ⌘ 25
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(mod 125), b2 ⌘ 100 (mod 125), c2 ⌘ 1 (mod 125), where d (the diagonal of the
a⇥ b face) is the only length divisible by 25.

In closing, we remark that the result of this paper may give someone who is
doubtful about the existence of perfect cuboids even more reason to doubt. We
believe that perfect cuboids likely do not exist, but we still would not be shocked if
one were discovered.
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