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Abstract. In this paper we find the Martin boundary for the Young-Fibonacci latticeYF. Along with the lattice
of Young diagrams, this is the most interesting example of a differential partially ordered set. The Martin boundary
construction provides an explicit Poisson-type integral representation of non-negative harmonic functions onYF.
The latter are in a canonical correspondence with a set of traces on the locally semisimple Okada algebra. The set
is known to contain all the indecomposable traces. Presumably, all of the traces in the set are indecomposable,
though we have no proof of this conjecture. Using an explicit product formula for Okada characters, we derive
precise regularity conditions under which a sequence of characters of finite-dimensional Okada algebras converges.
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1. Introduction

The Young-Fibonacci latticeYF is a fundamental example of adifferential partially ordered
setwhich was introduced by Stanley [11] and Fomin [3]. In many ways, it is similar to
another major example of a differential poset, the Young latticeY. Addressing a question
posed by Stanley, Okada has introduced [9] two algebras associated toYF. The first algebra
F is a locally semisimple algebra defined by generators and relations, which bears the same
relation to the latticeYF as does the group algebraCS∞ of the infinite symmetric group
to Young’s lattice. The second algebraR is an algebra of non-commutative polynomials,
which bears the same relation to the latticeYF as does the ring of symmetric functions to
Young’s lattice.

The purpose of the present paper is to study some combinatorics, both finite and asymp-
totic, of the latticeYF. Our object of study is the compact convex set ofharmonic functions
onYF (or equivalently the set of positive normalized traces onF or certain positive linear
functionals onR.) We address the study of harmonic functions by determining theMartin
boundaryof the latticeYF. The Martin boundary is the (compact) set consisting of those
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harmonic functions which can be obtained by finite rank approximation. There are two
basic facts related to the Martin boundary construction: (1) every harmonic function is
represented by the integral of a probability measure on the Martin boundary, and (2) the set
of extreme harmonic functions is a subset of the Martin boundary (see, e.g., [1]).

This paper gives a parametrization of the Martin boundary forYF and a description of
its topology.

The Young-Fibonacci lattice is described in Section 2, and preliminaries on harmonic
functions are explained in Section 3. A first rough description of our main results is given
at the end of Section 3. (A precise description of the parametrization of harmonic functions
is found in Section 7, and the proof, finally, is contained in Section 8.) Section 4 contains
some general results on harmonic functions on differential posets.

The main tool in our study is the Okada ringR and two bases of this ring, introduced
by Okada, which are in some respect analogous to the Schur function basis and the power
sum function basis in the ring of symmetric functions (Section 5). We describe the Okada
analogs of the Schur function basis by non-commutative determinants of tridiagonal ma-
trices with monomial entries. We obtain a simple and explicit formula for the transition
matrix (character matrix) connecting the s-basis and the p-basis, and also for the value
of (the linear extension of) harmonic functions evaluated on the p-basis. This is done in
Sections 6 and 7.

The explicit formula allows us to study the regularity question for the latticeYF, that
is the question of convergence of extreme traces of finite dimensional Okada algebrasFn

to traces of the inductive limit algebraF = lim−→Fn. The regularity question is studied in
Section 8.

The analogous questions for Young’s latticeY (which is also a differential poset) were
answered some time ago. The parametrization of the Martin boundary ofY has been studied
in [14], [15]. A different approach was recently given in [10].

A remaining open problem for the Young-Fibonacci lattice is to characterize the set of
extreme harmonic functions within the Martin boundary. For Young’s lattice, the set of
extreme harmonic functions coincides with the entire Martin boundary.

2. The Young-Fibonacci lattice

In this Section we recall the definition of Young-Fibonacci modular lattice (see figure 1)
and some basic facts related to its combinatorics. See Section A.1 in the Appendix for the
background definitions and notations related to graded graphs and differential posets. We
refer to [3–4], [11–13] for a more detailed exposition.

A simple recurrent construction

The simplest way to define the graded graphYF= ⋃∞n=0YFn is provided by the following
recurrent procedure.

Let the first two levelsYF0 andYF1 have just one vertex each, joined by an edge.
Assuming that the part of the graphYF, up to thenth levelYFn, is already constructed, we
define the set of vertices of the next levelYFn+1, along with the set of adjacent edges, by
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Figure 1. The Young-Fibonacci lattice.

first reflectingthe edges in between the two previous levels, and then byattachingjust one
new edge leading from each of the vertices on the levelYFn to a corresponding new vertex
at leveln+ 1.

In particular, we get two vertices in the setYF2, and two new edges: one is obtained by
reflecting the only existing edge, and the other by attaching a new one. More generally, there
is a natural notation for new vertices which helps to keep track of the inductive procedure.
Let us denote the vertices ofYF0 andYF1 by an empty word∅ and 1 correspondingly.
Then the endpoint of the reflected edge will be denoted by 2, and the end vertex of the new
edge by 11. In a similar way, all the vertices can be labeled by words in the letters 1 and 2.
If the left (closer to the root∅) end of an edge is labeled by a wordv, then the endvertex
of the reflected edge is labeled by the word 2v. Each vertexw of thenth level is joined to a
vertex 1w at the next level by a new edge (which is not a reflection of any previous edge).

Clearly, the number of vertices at thenth levelYFn is thenth Fibonacci numberfn.

Basic definitions

We now give somewhat more formal description of the Young-Fibonacci lattice and its
Hasse diagram.

Definition A finite word in the two-letter alphabet{1, 2}will be referred to as aFibonacci
word. We denote the sum of digits of a Fibonacci wordw by |w|, and we call it therankof
w. The set of words of a given rankn will be denoted byYFn, and the set of all Fibonacci
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words byYF. Theheadof a Fibonacci word is defined as the longest contiguous subword
of 2’s at its left end. Thepositionof a 2 in a Fibonacci word is one more than the rank of the
subword to the right of the 2; that is ifw = u2v, then the position of the indicated 2 is|v|+1.

Next we define a partial order on the setYFwhich is known to makeYF a modular lattice.
The order will be described by giving the covering relations onYF in two equivalent forms.

Given a Fibonacci wordv, we first define the set̄v ⊂ YF of its successors. By definition,
this is exactly the set of wordsw ∈ YFwhich can be obtained fromv by one of the following
three operations:

(i) put an extra 1 at the left end of the wordv;
(ii) replace the first 1 in the wordv (reading left to right) by 2;

(iii) insert 1 anywhere in between 2’s in the head of the wordv, or immediately after the
last 2 in the head.

Example Take 222121112 for the wordv of rank 14. Then the group of 3 leftmost 2’s
forms its head, andv has 5 successors, namely

v̄ = {1222121112, 2122121112, 2212121112, 2221121112, 222221112}.

The changing letter is shown in boldface. Note that the ranks of all successors of a Fibonacci
wordv are one bigger than that ofv.

The setv of predecessors of a non-empty Fibonacci wordv can be described in a similar
way. The operations to be applied tov in order to obtain one of its predecessors are as
follows:

(i) the leftmost letter 1 in the wordv can be removed;
(ii) any one of 2’s in the head ofv can be replaced by 1.

Example The wordv = 222121112 has 4 predecessors, namely

v = {122121112, 212121112, 221121112, 22221112}.

We writeu↗ v to show thatv is a successor ofu (andu is a predecessor ofv). This is a
covering relation which determines a partial order on the setYF of Fibonacci words. As a
matter of fact, it is a modular lattice, see [11]. The initial part of the Hasse diagram of the
posetYF is represented in figure 1.

The Young-Fibonacci lattice as a differential poset

Assuming that the head length ofv is k, the wordv hask + 2 successors andk + 1
predecessors, ifv contains at least one letter 1. Ifv = 22· · ·2 is made of 2’s only, it has
k + 1 successors andk predecessors. Note that the number of successors is always one
bigger than that of predecessors. Another important property of the latticeYF is that, for



THE MARTIN BOUNDARY OF THE YOUNG-FIBONACCI LATTICE 21

any two different Fibonacci wordsv1, v2 of the same rank, the number of their common
successors equals that of common predecessors (both numbers can only be 0 or 1). These
are exactly the two characteristic properties (D1), (D2) of differential posets, see Section
A.1. In what follows we shall frequently use the basic facts on differential posets, surveyed
for the reader’s convenience in the Appendix. Much more information on differential posets
and their generalizations can be found in [3], [11].

The Okada algebra

Okada [9] introduced a (complex locally semisimple) algebraF , defined by generators
and relations, which admits the Young-Fibonacci latticeYF as its branching diagram. The
Okada algebra has generators(ei )i≥1 satisfying the relations:

e2
i = ei for all i ≥ 1; (O1)

ei ei−1ei = 1

i
ei for all i ≥ 2; (O2)

ei ej = ej ei for |i − j | ≥ 2. (O3)

The algebraFn generated by the firstn− 1 generatorse1, . . . ,en−1 and these identities
is semisimple of dimensionn!, and has simple modulesMv labelled by elementsv ∈ YFn.
For u ∈ YFn−1 andv ∈ YFn, one hasu ↗ v if, and only if, the simpleFn-moduleMv,
restricted to the algebraFn−1 contains the simpleFn−1-moduleMu. As a matter of fact,
the restrictions of simpleFn-modules toFn−1 are multiplicity free.

3. Harmonic functions on graphs and traces ofAF-algebras

In this Section, we recall the notion of harmonic functions on agraded graphand the
classical Martin boundary construction for graded graphs andbranching diagrams. We
discuss the connection between harmonic functions on branching diagrams and traces on
the correspondingAF-algebra. Finally, we give a preliminary statement on our main results
on the Martin boundary of the Young-Fibonacci lattice.

We refer the reader to Appendix A.1 for basic definitions on graded graphs and branching
diagrams and to [2], [7] for more details on the combinatorial theory ofAF-algebras.

The Martin boundary of a graded graph

A functionϕ : 0→ R defined on the set of vertices of a graded graph0 is calledharmonic,
if the following variant of the “mean value theorem” holds for all verticesu ∈ 0:

ϕ(u) =
∑
w:u↗w

ϕ(w). (3.1)

We are interested in the problem of determining the spaceH of all non-negative harmonic
functions normalized at the vertex∅ by the conditionϕ(∅) = 1. SinceH is a compact
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convex set with the topology of pointwise convergence, it is interesting to ask about its
set of extreme points. (Recall that anextreme pointϕ in a convex setK is a point which
cannot be written as a non-trivial convex combination of points ofK ; that is, whenever
ϕ = sϕ1+ (1− s)ϕ2, with 0< s< 1 andϕ1, ϕ2 ∈ K , it follows thatϕ1 = ϕ2 = ϕ.)

A general approach to the problem of determining the set of extreme points is based on the
Martin boundary construction (see, for instance, [1]). One starts with thedimension function
d(v,w) defined as the number of all oriented paths fromv tow. We putd(w) = d(∅, w).

From the point of view of potential theory,d(v,w) is the Green function with respect to
“Laplace operator”

(1ϕ)(u) = −ϕ(u)+
∑
w:u↗w

ϕ(w). (3.2)

This means that ifψw(v) = d(v,w) for a fixed vertexw, then−(1ψw)(v) = δvw for all
v ∈ 0. The ratio

K (v,w) = d(v,w)

d(w)
(3.3)

is usually called theMartin kernel.
Consider the space Fun(0) of all functions f :0 → R with the topology of pointwise

convergence, and let̃E be the closure of the subset0̃ ⊂ Fun(0) of functionsv 7→ K (v,w),
w ∈0. Since those functions are uniformly bounded, 0≤ K (v,w) ≤ 1, the spaceẼ
(called theMartin compactification) is indeed compact. One can easily check that0̃ ⊂ Ẽ
is a dense open subset ofẼ. Its boundaryE = Ẽ \ 0̃ is called theMartin boundaryof the
graph0.

By definition, the Martin kernel (3.3) may be extended by continuity to a function
K :0 × Ẽ → R. For each boundary pointω ∈ E the functionϕω(v) = K (v, ω) is
non-negative, harmonic, and normalized. Moreover, harmonic functions have an integral
representation similar to the classical Poisson integral representation for non-negative har-
monic functions in the disk:

Theorem (cf. [1]). Every normalized non-negative harmonic functionϕ ∈ H admits an
integral representation

ϕ(u) =
∫

E
K (u, ω) M(dω), (3.4)

where M is a probability measure. Conversely, for every probability measure M on E, the
integral (3.4)provides a non-negative harmonic functionϕ ∈ H.

All indecomposable(i.e.,extreme) elements ofH can be represented in the formϕω(v) =
K (v, ω), for appropriate boundary pointω ∈ E, and we denote byEmin the set of all such
points. It is known thatEmin is a non-emptyGδ subset ofE. One can always choose
the measureM in the integral representation (3.4) to be supported byEmin. Under this
assumption, the measureM representing a functionϕ ∈ H via (3.4) is unique.
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Given a concrete example of a graded graph, one looks for an appropriate “geometric”
description of the abstract Martin boundary. The purpose of the present paper is to give an
explicit description for the Martin boundary of the Young–Fibonacci graphYF.

The traces on locally semisimple algebras

We next discuss the relation between harmonic functions on a graded graph and traces on
locally semisimple algebras. Alocally semisimple complex algebra A(or AF-algebra) is
the union of an increasing sequence of finite dimensional semisimple complex algebras,
A = lim−→An. Thebranching diagramor Bratteli diagram0(A) of a locally semisimple
algebraA (more precisely, of the approximating sequence{An}) is a graded graph whose
vertices of rankn correspond to the simpleAn-modules. LetMv denote the simpleAn-
module corresponding to a vertexv ∈ 0n. Then a vertexv of rankn and a vertexw of rank
n+1 are joined by~(v,w) edges if the simpleAn+1 moduleMw, regarded as anAn module,
containsMv with multiplicity ~(v,w). We will assume here that all multiplicities~(v,w)
are 0 or 1, as this is the case in the example of the Young-Fibonacci lattice with which we are
chiefly concerned. Conversely, given a branching diagram0—that is, a graded graph with
unique minimal vertex at rank 0 and no maximal vertices—there is a locally semisimple
algebraA such that0(A) = 0.

A traceon a locally semisimple algebraA is a complex linear functionalψ satisfying

ψ(e) ≥ 0 for all idempotentse∈ A;
ψ(1) = 1; (3.5)

ψ(ab) = ψ(ba) for all a, b ∈ A.

To each traceψ on A, there corresponds a positive normalized harmonic functionψ̃ on
0 = 0(A) given by

ψ̃(v) = ψ(e) (3.6)

wheneverv has rankn ande is a minimal idempotent inAn such thateMv 6= (0) and
eMw = 0 for allw ∈ 0n \ {v}. The trace property ofψ implies thatψ̃ is a well defined non-
negative function on0, and harmonicity ofψ̃ follows from the definition of the branching
diagram0(A). Conversely, a positive normalized harmonic functionψ̃ on 0 = 0(A)
defines a trace onA; in fact, a trace on eachAn is determined by its value on minimal
idempotents, so the assignment

ψ(n)(e) = ψ̃(v), (3.7)

whenevere is a minimal idempotent inAn such thateMv 6= (0), defines a trace onAn. The
harmonicity ofψ̃ implies that theψ(n) arecoherent, i.e., the restriction ofψ(n+1) from An+1

to the subalgebraAn coincides withψ(n). As a result, the tracesψ(n) determine a trace of
the limiting algebraA = lim−→An.
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The set of traces onA is a compact convex set, with the topology of pointwise con-
vergence; anextremeor indecomposabletrace is an extreme point in this compact convex
set.

The mapψ̃ 7→ ψ is an affine homeomorphism between the space of positive normalized
harmonic functions on0 = 0(A) and the space of traces onA. From the point of view
of traces, the Martin boundary of0 consists of tracesψ which can be obtained as limits
of a sequenceψn, whereψn is an extreme trace onAn. All extreme traces onA are in the
Martin boundary, so determination of the Martin boundary is a step towards determining
the set of extreme traces onA.

The locally semisimple algebra corresponding to the Young-Fibonacci latticeYF is the
Okada algebraF introduced in Section 2.

The main result

We can now give a description of the Martin boundary of the Young-Fibonacci lattice (and
consequently of a Poisson-type integral representation for non-negative harmonic functions
onYF).

Definition Letw be an infinite word in the alphabet{1, 2} (infinite Fibonacci word), and
let d1, d2, . . . denote the positions of 2’s inw. The wordw is said to besummableif, and
only if, the series

∑∞
j=1 1/dj converges, or, equivalently, the product

π(w) =
∏

j :dj≥2

(
1− 1

dj

)
> 0 (3.8)

converges.

As for any differential poset, the latticeYF has a distinguished harmonic functionϕP,
called thePlancherel harmonic function;ϕP is an element of the Martin boundary. The
complement of{ϕP} in the Martin boundary ofYF can be parametrized with two parameters
(β,w); hereβ is a real number, 0< β ≤ 1, andw is a summable infinite word in the alphabet
{1, 2}.

We denote byÄ the parameter space for the Martin boundary:

Definition Let the spaceÄ be the union of a pointP and the set

{(β,w) : 0< β ≤ 1, w a summable infinite word in the alphabet{1, 2}},

with the following topology: A sequence(β(n), w(n)) converges toP iff

β(n)→ 0 or π
(
w(n)

)→ 0.

A sequence(β(n), w(n)) converges to(β,w) if, and only if,

w(n)→ w (digitwise) and β(n)π
(
w(n)

)→ βπ(w).
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We will describe in Section 7 the mappingω 7→ ϕω from Ä to the set of normalized
positive harmonic functions onYF.

We are in a position now to state the main result of the paper.

Theorem 3.2 The mapω 7→ ϕω is a homeomorphism of the spaceÄ onto the Martin
boundary of the Young-Fibonacci lattice. Consequently, for each probability measure M
onÄ, the integral

ϕ(v) =
∫
Ä

ϕω(v)M(dω), v ∈ YF (3.9)

provides a normalized, non-negative harmonic function on the Young-Fibonacci latticeYF.
Conversely, every such function admits an integral representation with respect to a measure
M onÄ (which may not be unique).

In general, for all differential posets, we show that there is a flow

(t, ϕ) 7→ Ct (ϕ)

on [0, 1]×H with the properties

Ct (Cs(ϕ)) = Cts(ϕ) and C0(ϕ) = ϕP. (3.10)

For the Young-Fibonacci lattice, one hasCt (ϕβ,w) = Ctβ,w andCt (ϕP) = ϕP. In particular,
the flow onH preserves the Martin boundary.It is not clear whether this is a general
phenomenon for differential posets.

We have not yet been able to characterize the extreme points within the Martin boundary
of YF. In a number of similar examples, for instance the Young lattice, all elements of the
Martin boundary are extreme points.

4. Harmonic functions on differential posets

The Young-Fibonacci lattice is an example of a differential poset. In this section, we
introduce some general constructions for harmonic functions on a differential poset. Later
on in Section 7 we use the construction to obtain the Martin kernel of the graphYF.

Type I harmonic functions

In this subsection we don’t need any special assumptions on the branching diagram0.
Consider an infinite path

t = (v0, v1, . . . , vn, . . .)
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in 0. For each vertexu ∈ 0 the sequence{d(u, vn)}∞n=1 is weakly increasing, and we shall
use the notation

d(u, t) = lim
n→∞d(u, vn). (4.1)

Note thatd(u, t) = d(u, s) if the sequencest, s coincide eventually.

Lemma 4.1 The following conditions are equivalent for a path t in0:
(i) All but finitely many verticesvn in the path t have a single immediate predecessor

vn−1.
(ii) d(∅, t) <∞.

(iii) d(u, t) <∞ for all u ∈ 0.
(iv) There are only finitely many paths which eventually coincide with t.

Proof: It is clear thatd(∅, vn−1) = d(∅, vn) iff vn−1 is the only predecessor ofvn. Since
d(u, t) ≤ d(∅, t) for all u ∈ 0, we have(i )→ (ii)→ (iii )→ (i ). The number of paths
s ∈ T , equivalent tot is exactlyd(∅, t). 2

In case0=Y is the Young lattice, there are only two paths (i.e. Young tableaux)
satisfying these conditions:t = ((1), . . . , (n), . . .) andt = ((1), . . . , (1n), . . .). In case of
Young-Fibonacci lattice there are countably many paths satisfying the conditions of Lemma
4.1. The vertices of such a path eventually take the formvn = 1n−mv, n ≥ m, for some
Fibonacci wordv of rankm. Hence, the equivalence class of eventually coinciding paths
in YF with the properties of Lemma 4.1 can be labelled by infinite words in the alphabet
{2, 1} with only finite number of 2’s. We denote the set of such words as 1∞YF.

Proposition 4.2 Assume that a path t in0 satisfies the conditions of Lemma4.1. Then

ϕt (v) = d(v, t)

d(∅, t)
, v ∈ 0 (4.2)

is a positive normalized harmonic function on0.

Proof: Sinced(v, t) = ∑
w:v↗w d(w, t), the functionϕt is harmonic. Also,ϕt (v) ≥ 0

for all v ∈ 0, andϕt (∅) = 1. 2

We say that these harmonic functions areof typeI, since the correspondingAF-algebra
traces are traces of finite-dimensional irreducible representations (type I factor-representa-
tions). It is clear that all the harmonic functions of type I are indecomposable.

Plancherel harmonic function

Let us assume now that the poset0 is differential in the sense of [11] or, equivalently, is
a Y-graph in the terminology of [3] or aself-dual graphin that of [4]. The properties of
differential posets which we need are surveyed in the Appendix.
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Proposition 4.3 The function

ϕP(v) = d(∅, v)
n!
; v ∈ 0, n = |v| (4.3)

is a positive normalized harmonic function on the differential poset0.

Proof: This follows directly from (A.2.1) in the Appendix. 2

Note that if0 = Y is the Young lattice, the functionϕP corresponds to the Plancherel
measure of the infinite symmetric group (cf. [7]).

Contraction of harmonic functions on a differential poset

Assume that0 is a differential poset. We shall show that for any harmonic functionϕ there
is a family of affine transformations, with one real parameterτ , connecting the Plancherel
functionϕP to ϕ.

Proposition 4.4 For 0 ≤ τ ≤ 1 and a harmonic functionϕ, define a function Cτ (ϕ) on
the set of vertices of the differential poset0 by the formula

Cτ (ϕ)(v) =
n∑

k=0

τ k(1− τ)n−k

(n− k)!

∑
|u|=k

ϕ(u) d(u, v), n = |v|. (4.4)

Then Cτ (ϕ) is a positive normalized harmonic function, and the mapϕ 7→ Cτ (ϕ) is affine.

Proof: We introduce the notation

Sk(v, ϕ) =
∑
|u|=k

ϕ(u) d(u, v). (4.5)

First we observe the identity∑
w:v↗w

Sk(w, ϕ) = Sk−1(v, ϕ)+ (n− k+ 1) Sk(v, ϕ),

which is obtained from a straightforward computation using (A.2.3) from the Appendix,
and the harmonic property (3.1) of the functionϕ. From this we derive that

∑
w:v↗w

Cτ (ϕ)(w) =
∑
w:v↗w

n+1∑
k=0

τ k(1− τ)n−k+1

(n− k+ 1)!
Sk(w, ϕ)

=
n+1∑
k=1

τ k(1− τ)n−k+1

(n− k+ 1)!
Sk−1(v, ϕ)+

n∑
k=0

τ k(1− τ)n−k+1

(n− k)!
Sk(v, ϕ)

= τ Cτ (ϕ)(v)+ (1− τ) Cτ (ϕ)(v)

= Cτ (ϕ)(v). (4.6)
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This shows thatCτ (ϕ) is harmonic. It is easy to see thatCτ (ϕ) is normalized and positive,
and that the mapϕ 7→ Ct (ϕ) is affine. 2

Remarks (a) The semigroup property holds:Ct (Cs(ϕ)) = Cst(ϕ); (b) C0(ϕ) = ϕP, for
all ϕ, andCt (ϕP) = ϕP for all t , 0 ≤ t ≤ 1; (c) C1(ϕ) = ϕ. These statements can be
verified by straightforward computations.

Example Let ϕ denote the indecomposable harmonic function on the Young lattice with
the Thoma parameters(α;β; γ ), see [7] for definitions. Then the functionCτ (ϕ) is also
indecomposable, with the Thoma parameters(τα; τβ; 1− τ(1− γ )).

Central measures and contractions

Recall (see [7]) that for any harmonic functionϕ on0 there is acentral measure Mϕ on the
spaceT of paths of0, determined by its level distributions

Mϕ
n (v) = d(∅, v) ϕ(v), v ∈ 0n. (4.7)

In particular,
∑

v∈0n
Mϕ

n (v) = 1 for all n.
There is a simple probabilistic description of the central measure corresponding to a

harmonic function on a differential poset obtained by the contraction of Proposition 4.4.
Define a random vertexv ∈ 0n by the following procedure:

(a) Choose a randomk, 0≤ k ≤ n with the binomial distribution

b(k) =
(

n

k

)
τ k(1− τ)n−k (4.8)

(b) Choose a random vertexu ∈ 0k with probability

Mϕ

k (u) = d(∅, u)ϕ(u) (4.9)

(c) Start a random walk at the vertexu, with the Plancherel transition probabilities

px,y = d(∅, y)

(r + 1) d(∅, x)
; |x| = r, x ↗ y. (4.10)

Let v denote the vertex at which the random walk first hits then’th level set0n. We denote
by M (τ,ϕ)

n the distribution of the random vertexv.

Proposition 4.5 The distribution M(τ,ϕ)n is the n’th level distribution of the central measure
corresponding to the harmonic function Cτ (ϕ):

M (τ,ϕ)
n (v) = d(∅, v)Cτ (ϕ)(v). (4.11)
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Proof: It follows from (A.2.1) that (4.10) is a probability distribution. By Lemma A.3.2,
the probability to hit0n at the vertexv, starting the Plancherel walk atu ∈ 0k, is

p(u, v) = k!

n!

d(u, v)d(∅, v)
d(∅, u)

. (4.12)

The Proposition now follows from the definition of the contractionCτ (ϕ) written in the
form

Cτ (ϕ)(v) d(∅, v) =
n∑

k=0

b(k)
∑
u∈0k

Mϕ

k (u) p(u, v). (4.13)

2

Example Let 0 = Y be the Young lattice and lett = ((1), (2), . . . , (n), . . .) be the
one-row Young tableau. Then the distribution (4.9) is trivial, and the procedure reduces to
choosing a random row diagram(k) with the distribution (4.8) and applying the Plancherel
growth process until the diagram gainsn boxes.

5. Okada clone of the symmetric function ring

In this Section we introduce the Okada variant of the symmetric function algebra, and its two
bases analogous to the Schur function basis and the power sum basis. The Young-Fibonacci
lattice arises in a Pieri-type formula for the first basis.

The rings R and R∞

Let R = R < X,Y > denote the ring of all polynomials in two non-commuting variables
X,Y. We endowRwith a structure of graded ring,R=⊕∞n=0 Rn, by declaring the degrees
of variables to be degX = 1, degY = 2. For each word

v = 1kt 21kt−1 · · ·1k121k0 ∈ YFn, (5.1)

let hv denote the monomial

hv = Xk0Y Xk1 · · · Xkt−1Y Xkt (5.2)

ThenRn is aR-vector space with thefn (Fibonacci number) monomialshv as a basis.
We let R∞ = lim−→Rn denote the inductive limit of linear spacesRn, with respect to

imbeddingsQ 7→ QX. Equivalently,R∞= R/(X−1) is the quotient ofRby the principal
left ideal generated byX−1. Linear functionals onR∞ are identified with linear functionals
ϕ on R which satisfyϕ( f ) = ϕ( f X). The ring R∞ has a similar rˆole for the Young-
Fibonacci lattice and the Okada algebraF as the ring of symmetric functions has for the
Young lattice and the group algebra of the infinite symmetric groupS∞ (see [8]).
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Non-commutative Jacobi determinants

The following definition is based on a remark which appeared in the preprint version of [9].
We consider two non-commutativen-th order determinants

Pn =

∣∣∣∣∣∣∣∣∣∣∣∣

X Y 0 0 · · · 0 0

1 X Y 0 · · · 0 0

0 1 X Y · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 1 X

∣∣∣∣∣∣∣∣∣∣∣∣
(5.3)

and

Qn−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

Y Y 0 0 · · · 0 0

X X Y 0 · · · 0 0

0 1 X Y · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 1 X

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.4)

By definition, the non-commutative determinant is the expression

det(ai j ) =
∑
w∈Sn

sign(w)aw(1)1 aw(2)2 · · ·aw(n)n. (5.5)

In other words, thek-th factor of every summand is taken from thek-th column. Note that
polynomials (5.3), (5.4) are homogeneous elements ofR, degPn = n and degQn−1 = n+1.

Following Okada, we define elements ofR (which we callOkada-Schur polynomialsor
s-functions) by the products

sv = Pk0 Qk1 · · · Qkt , v = 1kt 2︸︷︷︸ · · · 1k12︸︷︷︸ 1k0 ∈ YFn (5.6)

(cf. [9], Proposition 3.5). The polynomialssv for |v| = n are homogeneous of degreen,
and form a basis of the linear spaceRn. We define a scalar product〈 . , . 〉 on the spaceR
by declaring thes-basis to be orthonormal.

The branching of Okada-Schur functions

We will use the formulae

Pn+1 = Pn X − Pn−1Y, n ≥ 1, (5.7)

Qn+1 = Qn X − Qn−1Y, n ≥ 1, (5.8)
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obtained by decomposing the determinants (5.3), (5.4) along the last column. The first
identity is also true forn = 0, assumingP−1 = 0. Then = 0 case of the second identity
(5.8) can be written in the form

Q0X = X Q0+ Q1. (5.9)

One can think of (5.9) as of a commutation rule for passingX over a factor of typeQ0. It
is clear from (5.9) that

Qm
0 X = X Qm

0 +
m∑

i=1

Qm−i
0 Q1Qi−1

0 . (5.10)

It will be convenient to rewrite (5.7), (5.8) in a form similar to (5.9):

Pn X = Pn+1+ Pn−1Q0. (5.11)

Qn X = Qn+1+ Qn−1Q0, (5.12)

The following formulae are direct consequences of (5.10)–(5.12):

PnQm
0 X =

m∑
i=0

PnQm−i
0 Q1Qi

0+ Pn+1Qm
0 + Pn−1Qm+1

0 , (5.13)

QnQm
0 X =

m∑
i=0

QnQm−i
0 Q1Qi

0+ Qn+1Qm
0 + Qn−1Qm+1

0 . (5.14)

It is understood in (5.13), (5.14) thatn ≥ 1.
The formulae (5.10), (5.13) and (5.14) imply

Theorem 5.1 (Okada) For everyw ∈ YFn the product of the Okada-Schur determinant
sw by X from the right hand side can be written as

swX =
∑
v:w↗v

sv. (5.15)

This theorem says that the branching of Okadas-functions reproduces the branching law
for the Young-Fibonacci lattice. In the following statement,U is the “creation operator”
on Fun(YF), which is defined in the Appendix, (A.1.1).

Corollary 5.2 The assignment2 : v 7→ sv extends to a linear isomorphism

2 : ⊕n Fun(YFn)→ R

takingFun(YFn) to Rn and satisfying2 ◦U ( f ) = 2( f )X.
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Because of this, we will sometimes writeU ( f ) instead off X for f ∈ R, andD( f ) for
2 ◦ D ◦2−1( f ), see (A.1.2) for the definition ofD.

Corollary 5.3 There exist one-to-one correspondences between:
(a) Non-negative, normalized harmonic functions onYF;
(b) Linear functionalsϕ onFun(YF) satisfying

ϕ ◦U = ϕ, ϕ(1) = 1, and ϕ(δv) ≥ 0 for v ∈ YF;
(c) Linear functionalsϕ on R satisfying

ϕ( f ) = ϕ( f X) for all f ∈ R, ϕ(1) = 1, and ϕ(sv) ≥ 0, for v ∈ YF;
(d) Linear functionals on R∞ = lim−→Rn satisfying

ϕ(1) = 1 and ϕ(s̄v) ≥ 0, for v ∈ YF,
wheres̄v denotes the image of sv in R∞;

(e) Traces of the Okada algebraF∞.

We refer to linear functionalsϕ on R satisfyingϕ(sv) ≥ 0 aspositivelinear functionals.

The Okada p-functions

Following Okada [9], we introduce another family of homogeneous polynomials, labelled
by Fibonacci wordsv ∈ YF,

pv =
(
Xk0+2− (k0+ 2)Xk0Y

) · · · (Xkt−1+2− (kt−1+ 2)Xkt−1Y
)
Xkt , (5.16)

where

v = 1kt 21kt−1︸ ︷︷ ︸ · · · 21k0︸︷︷︸ .
One can check that{pv}|v|=n is aQ-basis ofRn. Two important properties of thep-basis
which were found by Okada are:

U (pv) = pvX = p1v and D(p2v) = 0. (5.17)

Since the images ofpu and of p1u in R∞ are the same, we can conveniently denote the
image byp1∞u. The family of pv, wherev ranges over 1∞YF, is a basis ofR∞.

Transition matrix from s-basis to p-basis

We denote the transition matrix relating the two bases{pu} and{sv} by Xv
u; thus

pu =
∑
|v|=n

Xv
usv, u, v ∈ YFn. (5.18)
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The coefficientsXv
u are analogous to the character matrix of the symmetric groupSn. They

were described recurrently in [9], Section 5, as follows:

X1v
1u = Xv

u; X1v
2u = Xv

1u; X2v
2u = −Xv

u, (5.19)

X2v
11u = (m(u)+ 1)Xv

u; X2v
12u = 0, (5.20)

wherem(u) is defined in (6.2) below. An explicit product expression for theXv
u will be

given in the next section.

6. A product formula for Okada characters

In this Section we improve Okada’s description of the character matrixXv
u to obtain the

product formula (6.11) and its consequences.

Some notation

We recall some notation from [9] which will be used below. Letv be a Fibonacci word:

v = 1kt 21kt−1 · · ·1k121k0 ∈ YFn.

Then:

ε(v) = +1 if the rightmost digit ofv is 1, andε(v) = −1 otherwise. (6.1)

m(v) = kt is the number of 1’s at the left end ofv. (6.2)

The rank ofv, denoted|v|, is the sum of the digits ofv. (6.3)

If v = v12v2, then thepositionof the indicated 2 is|v2| + 1. (6.4)

d(v) =
t−1∏
i=0

(k0+ · · · + ki + 2i + 1). In other words,d(v) is the product

of the positions of 2’s inv. It is easy to check by induction that
d(v) = d(∅, v). (6.5)

z(v) = kt ! (kt−1+ 2)kt−1! · · · (k0+ 2)k0!. (6.6)

Theblock ranksof v are the numbersk0+ 2, k1+ 2, . . . , kt−1+ 2, kt . (6.7)

The inverse block ranksof v arekt + 2, kt−1+ 2, . . . , k1+ 2, k0. (6.8)

Consider a sequencēn = (nt , . . . ,n1, n0) of positive integers with
∑

ni = n. We call a
wordv ∈ YFn n̄-splittable, if it can be written as a concatenation

v = vt · · · v1v0, where|vi | = ni for i = 0, 1, . . . , t. (6.8)

Lemma 6.1 Let n̄ = (nt , . . . ,n1, n0) be the sequence of block ranks in a Fibonacci word
u. Then
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(i) Xv
u 6= 0 if, and only if, the wordv is n̄-splittable.

(ii) If v = vt · · · v1vt is then̄-splitting, then

Xv
u = d(vt )g(vt−1) · · · g(v0), (6.9)

where

g(w) =
{+d(w′), if w = 1w′

−d(w′), if w = 2w′. (6.10)

Proof: This is a direct consequence of Okada’s recurrence relations cited in the previous
section. 2

Proposition 6.2 Let u, v ∈ YFn. Letδ1, δ2, . . . , δm be the positions of2’s in the word u,
and putδm+1 = ∞. Let d1, d2, . . . ,dr the positions of2’s in the wordv. Then

Xv
u =

m∏
j=1

∏
δ j≤ds<δ j+1

(ds − (δ j + 1)). (6.11)

Proof: This can also be derived directly from Okada’s recurrence relations, or from the
previous lemma. Note in particular thatXv

u = 0 if, and only if,ds = δ j + 1 for somes and
j ; this is the case if, and only if,v does not split according to the block ranks ofu. 2

We defineX̃v
u = d(v)−1Xv

u; from Proposition 6.2 and the dimension formula (6.5), we
have the expression

X̃v
u =

m∏
j=1

∏
δ j≤ds<δ j+1

(
1− δ j + 1

ds

)
(6.12)

The inverse transition matrix

According to [9], Proposition 5.3, the inverse formula to Eq. (5.18) can be written in the
form

sv =
∑
|u|=n

Xv
u

pu

z(u)
, v ∈ YFn. (6.13)

We will give a description of a columnXv
u for a fixedv.

Lemma 6.3 Let n̄ = (nt , . . . ,n1, n0) be the sequence of inverse block ranks nt = kt +
2, . . . ,n1 = k1+ 2, n0 = k0 in a wordv = (1kt 2 · · ·1k121k0) ∈ YFn. Then
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(i) Xv
u 6= 0 if, and only if, the word u is̄n-splittable.

(ii) If u = ut · · ·u1u0 is then̄-splitting for u, then

Xv
u = f1 f2 · · · ft , (6.14)

where

f j =
{−1, if ε(u j ) = −1

1+m(u j−1 · · ·u1u0), if ε(u j ) = +1.
(6.15)

Here m(u) = m denotes the number of1’s at the left end of u= 1m2u′.

Proof: This is another corollary of Okada’s recurrence relations cited in Section 5.2

7. The Martin boundary of the Young-Fibonacci lattice

In this section, we examine certain elements of the Martin boundary of the Young-Fibonacci
latticeYF. Ultimately we will show that the harmonic functions listed here comprise the
entire Martin boundary.

It will be useful for us to evaluate normalized positive linear functionals on the ringR∞
(corresponding to normalized positive harmonic functions onYF) on the basis{pu}. The
first result in this direction is the evaluation of the Plancherel functional on these basis
elements.

Proposition 7.1 ϕP(pu) = 0 for all Fibonacci words u containing at least one2.

Proof: It follows from the definition of the Plancherel harmonic functionϕP that for
w ∈ YFn,∑

v:v↗w
ϕP(v) = nϕP(w).

Therefore, for allf ∈ Rn,

ϕP(D f ) = nϕP( f ).

If u = 1∞2v, and|2v| = n, then

ϕP(pu) = ϕP(p2v) = 1

n
ϕP(Dp2v) = 0,

sinceDp2v = 0, by (5.17). 2

For each wordw ∈ YFn, the path(w, 1w, 12w, . . .) clearly satisfies the conditions of
Proposition 4.1, and therefore there is a type I harmonic function onYF defined by

ψw(v) = lim
k→∞

d(v, 1kw)

d(∅, 1kw)
.
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Proposition 7.2 Letw ∈ YFn, and let d1, d2, . . . be the positions of2’s in w. Let u be a
word in1∞YF containing at least one2, and letδ1, δ2, . . . , δm be the positions of2’s in u.
Then:

ψw(pu) =
m∏

i=1

∏
δi≤dj<δi+1

(
1− δi + 1

dj

)
. (7.1)

Proof: Let u = 1∞u0, whereu0 ∈ YFm. Chooser, s ≥ 1 such that|1sw| = |1r u0|. Then

ψw(pu) = (d(1sw))−1〈p1r u0, s1sw〉
= (d(1sw))−1

〈∑
v

Xv
1r u0

sv, s1sw

〉
= (d(1sw))−1X1sw

1r u0
.

Thus the result follows from Eq. (6.12). 2

Next we describe some harmonic functions which arise from summable infinite words.
Given a summable infinite wordw, define a linear functional on the ringR∞ by the require-
mentsϕw(1) = 1 and

ϕw(pu) =
m∏

i=1

∏
δi≤dj<δi+1

(
1− δi + 1

dj

)
, (7.3)

whereu ∈ 1∞YF. As usual,δ1, . . . , δm are the positions of 2’s inu, and thedj ’s are the
positions of 2’s inw. It is evident thatϕw(pu X) = ϕw(p1u) = ϕw(pu), so thatϕw is in fact
a functional onR∞.

Proposition 7.3 If w is a summable infinite Fibonacci word, thenϕw is a normalized
positive linear functional on R∞, so corresponds to a normalized positive harmonic function
onYF.

Proof: Only the positivity needs to be verified. Letwn be the finite word consisting of the
rightmostn digits ofw. It follows from the product formula for the normalized characters
ψwn thatϕw(pu) = lim

n→∞ψwn(pu). Therefore alsoϕw(sv) = lim
n→∞ψwn(sv) ≥ 0. 2

Given a summable infinite Fibonacci wordw and 0≤ β ≤ 1, we can define the harmonic
functionϕβ,w by contraction ofϕw, namely,ϕβ,w = Cβ(ϕw).

For u ∈ 1∞YF, we let‖u‖ denote theessential rankof u, namely‖u‖= 1+ δ, whereδ
is the position of the leftmost 2 inu, and‖u‖= 0 for u = 1∞.

Proposition 7.4 Letw be a summable infinite word and0 ≤ β ≤ 1. Let u ∈ 1∞YF.
Then

ϕβ,w(pu) = β‖u‖ϕw(pu). (7.4)
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Proof: The caseu = 1∞ is trivial. Let u = 1∞u0, where‖u‖= |u0| = n > 0. Then for
any linear functionalϕ on R∞, one hasϕ(pu) = ϕ(pu0). For 0≤ k ≤ n, define

Awk,n =
∑
|v|=k

∑
|x|=n

ϕw(v) d(v, x)sx.

In particular,

Awn,n =
∑
|v|=n

ϕw(v)sv.

Note thatU Awk,n−1 = Awk,n, whenk ≤ n − 1. It follows from the definitions ofϕβ,w (cf.
(4.4)) and ofAwk,n that

ϕβ,w( f ) =
〈

n∑
k=0

βk(1− β)n−k

(n− k)!
Awk,n, f

〉
,

for f in Rn, where〈·, ·〉 denotes the inner product onR with respect to which the Okada
s-functions form an orthonormal basis. Recall that the operatorsU and D are conjugate
with respect to this inner product. Consequently,

ϕβ,w(pu0) =
〈

n∑
k=0

βk(1− β)n−k

(n− k)!
Awk,n, pu0

〉

=
〈

n−1∑
k=0

βk(1− β)n−k

(n− k)!
U Awk,n−1, pu0

〉
+ 〈βn Awn,n, pu0

〉
= 〈βn Awn,n, pu0

〉 = βnϕw(pu0),

since〈U Awk,n−1, pu0〉 = 〈Awk,n−1, Dpu0〉 = 0 and〈Awn,n, f 〉 = ϕw( f ) for f in Rn. 2

Corollary 7.5 The functionalsϕβ,w for β > 0 andw summable are pairwise distinct, and
different from the Plancherel functionalϕP.

Proof: Suppose thatw is a summable word and thatA is the set of positions of 2’s inw.
We set

πk(w) =
∏

j :dj≥k−1

(
1− k

dj

)
.

Then for eachk ≥ 2 andβ > 0,

ϕβ,w(p21k−2) = βkπk(w)

is zero if and only ifk∈ A. In particularϕβ,w 6= ϕP, by Lemma 7.1, and moreover,
A \ {1} is determined by the sequence of valuesϕβ,w(p21k−2), k ≥ 2. It is also clear



38 GOODMAN AND KEROV

thatϕβ,w(p2) = β2π2(w) is negative iff 1∈ A, hence the setA and therefore alsow are
determined by the valuesϕβ,w(p21k), k ≥ 0. Finally,β is determined by

β =
(
ϕβ,w(p21k−1)

πk(w)

)1/k

,

for anyk 6∈ A. 2

Proposition 7.6 For each summable infinite Fibonacci wordw and eachβ, 0 ≤ β ≤ 1,
there exists a sequencev(n) of finite Fibonacci words such thatϕβ,w = lim

n→∞ψv
(n) .

Proof: If β = 1, put rn = 0; if β = 0, put rn = n2; and if 0 < β < 1, choose the
sequencern so that

lim
n→∞

rn

n
= 1− β2

β2
.

Then, in every case,

lim
n→∞

n

n+ rn
= β2.

Letwn be the finite word consisting of the rightmostn digits ofw, putsn = 2n+ 1− |wn|,
and

v(n) = 2rn1snwn.

Fix u = 1∞u0 ∈ 1∞YF and letn ≥ |u0|. Suppose thatu0 has 2’s at positionsδ1, δ2, . . . , δm,
and putk =‖u‖= δm + 1. Using the product formula forψv(n) , one obtains

ψv(n) (pu) = ψwn(pu)

[(
1− k

2n+ 2

)(
1− k

2n+ 4

)
· · ·
(

1− k

2n+ 2rn

)]
.

The first factor converges toϕw(pu), so it suffices, by Proposition 7.4, to show that the
second factor converges toβk. The second factor reduces to

0(n+ rn − k/2+ 1)0(n+ 1)

0(n+ 1− k/2)0(n+ rn + 1)
.

Using the well-known fact that

lim
n→∞nb−a0(n+ a)

0(n+ b)
= 1,
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one obtains that the ratio of gamma functions is asymptotic to

(
n

n+ rn

)k/2

,

which, by our choice ofrn, converges toβk, as desired. 2

This proposition shows thatϕP as well as all of the harmonic functionsϕβ,w are contained
in the Martin boundary of the Young-Fibonacci lattice. In the following sections, we will
show that these harmonic functions make up the entire Martin boundary.

8. Regularity conditions

In this Section we obtain a simple criterion for a sequence of characters of finite dimensional
Okada algebras to converge to a character of the limiting infinite dimensional algebra
F = lim−→Fn. Using this criterion, theregularity conditions, we show that the harmonic
functions provided by the formulae (7.3) and (7.4) make up the entire Martin boundary
of the Young-Fibonacci graphYF. Technically, it is more convenient to work with linear
functionals on the spacesRn and their limits inR∞ = lim−→Rn, rather than with traces on
F . As it was already explained in Section 5, there is a natural one-to-one correspondence
between traces of Okada algebraFn, and positive linear functionals on the spaceRn.

In this Section we shall use the following elementary inequalities:

(
1− k

d

)
≤
(

1− 1

d

)k

, (8.1)

for every pair of positive integer numbersd ≥ 2 andk;

(
1− 1

d

)k2

≤
(

1− k

d

)
, (8.2)

and

1≤
(
1− 1

d

)k(
1− k

d

) ≤ 1+
(k

2

)
(d − k)2

, (8.3)

for every pair of integersd > k. We omit the straightforward proofs of these inequalities.

Convergence to the Plancherel measure

We first examine the important particular case of convergence to the Plancherel character
ϕP.
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Definition We define the functionπ of a finite or summable wordv by

π(v) =
∏

j : dj≥2

(
1− 1

dj

)
,

where thedj are the positions of the 2’s inv. We also recall that for eachk ≥ 2 the function
πk was defined as

πk(v) =
∏

j : dj≥k−1

(
1− k

dj

)
.

Note that ifu = 1∞21k−2, andv is a summable word, thenϕv(pu) = πk(v), according to
Eq. (7.3).

Proposition 8.1 The following properties of a sequencewn ∈ YF, n = 1, 2, . . . , are
equivalent:

(i) The normalized charactersψwn converge to the Plancherel character, i.e.,

lim
n→∞ψwn(pu) = ϕP(pu), for each u∈ 1∞YF;

(ii) lim
n→∞πk(wn) = 0, for every k= 2, 3, . . . ;

(iii) lim
n→∞π(wn) = 0.

The proof is based on the following lemmas.

Lemma 8.2 For every finite wordv ∈ YF, and for every u∈ 1∞YF of essential rank
k =‖u‖,

|ψv(pu)| ≤ |πk(v)|. (8.4)

Proof: Let δ1, . . . , δm indicate the positions of 2’s in the wordu, and letd1, . . . ,dn be the
positions of 2’s inv. The essential rank ofu can be written ask =‖u‖= δm + 1, so that

πk(v) =
∏

j :dj≥δm

(
1− k

dj

)
.

By the product formula,

|ψv(pu)| = |πk(v)|
m−1∏
i=1

∏
δi≤dj<δi+1

∣∣∣∣1− δi + 1

dj

∣∣∣∣ ≤ |πk(v)|,

since none of the factors in the product exceed 1. In fact,|1− (δ + 1)/d| = 1/δ ≤ 1 if
d = δ, 1− (δ + 1)/d = 0 if d = δ + 1, and 0≤ 1− (δ + 1)/d < 1 if d > δ + 1. 2
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Lemma 8.3 For each k= 2, 3, . . . , and for every wordv ∈ YF,

|πk(v)| ≤ (kπ(v))k.

Proof: It follows from (8.1) that

|πk(v)| =
∏

dj≥k−1

∣∣∣∣1− k

dj

∣∣∣∣ ≤ ∏
dj≥k+1

(
1− k

dj

)
≤

∏
dj≥k+1

(
1− 1

dj

)k

= π(v)k
∏

2≤dj≤k

(
1− 1

dj

)−k

.

Since(1− 1/d)−1 > 1 for d ≥ 2, the last product can be estimated as

∏
2≤dj≤k

(
1− 1

dj

)−k

≤
(

1

2

2

3
· · · k− 1

k

)−k

= kk,

and the lemma follows. 2

Lemma 8.4 If d1(v) 6= 2, then|π2(v)| ≥ π(v)4, and if d1(v) = 2, then|π3(v)| ≥ π(v)9.

Proof: We apply the inequality (8.2). Ifd1(v) ≥ 3, then

|π2(v)| =
∏

j :dj≥3

(
1− 2

dj

)
≥

∏
j :dj≥3

(
1− 1

dj

)4

= π(v)4

by the inequality (8.2). Ifd1(v) = 1, then(1−2/d1) = −1, and sinced2 ≥ 3, the inequality
holds in this case as well.

In case ofd1(v) = 2 we haved2(v) ≥ 4, hence

|π3(v)| = 1

2

∏
j :dj≥4

(
1− 3

dj

)
; |π(v)| = 1

2

∏
j :dj≥4

(
1− 1

dj

)
,

so that the second inequality of Lemma also follows from (8.2). 2

Proof Proposition 8.1: The implication (i)⇒ (ii) is trivial, sinceπk(v) = ψv(pu) is a
particular character value foru = 1∞21k−2. The statement (iii) follows from (ii) by Lemma
8.4. In fact, we can split the initial sequence{wn} into two subsequences,{w′n} and{w′′n},
in such a way thatd1(w

′
n) = 2 andd1(w

′′
n) 6= 2. Then we derive from Lemma 8.4 that for

both subsequencesπ(wn)→ 0, and (iii) follows.
Now, (ii) follows from (iii) by Lemma 8.3, and (ii) implies (i) by Lemma 8.2. 2

General regularity conditions

We now find the conditions for a sequence of linear functionals on the spacesRn to converge
to a functional on the limiting spaceR∞ = lim−→Rn.
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Definition (Regularity of character sequences) Letψn be a linear functional on the graded
componentRn of the ring R = Q〈X,Y〉, for eachn = 1, 2, . . . , and assume that the
sequence converges pointwise to a functionalϕ on the ringR, in the sense that

lim
n→∞ψn(P Xn−m) = ϕ(P) (8.5)

for everym ∈ N and every polynomialP ∈ Rm. We call such a sequenceregular.

Our goal in this Section is to characterize the set of regular sequences.

Definition (Convergence of words) Let{wn} be a sequence of finite Fibonacci words, and
assume that the ranks|wn| tend to infinity asn → ∞. We say that{wn} convergesto an
infinite wordw, iff the mth letterwn(m) of wn coincides with themth letterw(m) of the
limiting wordw for almost alln (i.e., for all but finitely manyn’s), and for allm.

Let us recall that an infinite wordw with 2’s at positionsd1, d2, . . . is summable, if, and
only if, the series

∑∞
j=1 1/dj converges, or, equivalently, if the product

π(w) =
∏

j :dj≥2

(
1− 1

dj

)
> 0

converges.
Consider a sequencew1, w2, . . . of Fibonacci words converging to a summable infinite

wordw. We denote byw′n the longest initial (rightmost) subword ofwn identical with the
corresponding segment ofw, and we call itstablepart ofwn. The remaining part ofwn

will be denoted byw′′n, and referred to astransientpart ofwn.

Definition (Regularity conditions) We say that a sequence of Fibonacci wordswn ∈ YFn

satisfies regularity conditions, if either one of the following two conditions holds:

(i) lim
n→∞π(wn) = 0;

or

(ii) the sequencewn converges to a summable infinite wordw, and a strictly positive limit

β = π(w)−1 lim
n→∞π(wn) > 0 (8.6)

exists.

Theorem 8.5 Assume that the regularity conditions hold for a sequencewn ∈ YFn. Then
the character sequenceψwn is regular. If the regularity condition (i) holds, then

lim
n→∞ψwn(QXn−m) = ϕP(Q),

and if regularity condition (ii) holds, then

lim
n→∞ψwn(QXn−m) = ϕβ,w(Q) (8.7)
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for every polynomial Q∈ Rm, m= 1, 2, . . . . Conversely, if the character sequenceψwn is
regular, then the regularity conditions hold for the sequencewn ∈ YFn.

This theorem will follow from Proposition 8.1 and the following proposition:

Proposition 8.6 Assume that a sequencew1, w2, . . . of Fibonacci words converges to a
summable infinite wordw, and that there exists a limit

β = π(w)−1 lim
n→∞π(wn). (8.8)

Then

πk(w)
−1 lim

n→∞πk(wn) = βk (8.9)

for every k= 2, 3, . . . . More generally,

lim
n→∞ψwn(pu) = βkϕw(pu) (8.10)

for every element u∈ 1∞YF of essential rank‖u‖= k.

Proof: Let mn be the length of the stable part of the wordwn, and note thatmn→∞. In
the following ratio, the factors corresponding to 2’s in the stable part ofwn cancel out,

π(wn)

π(w)
=

∏
j :dj (wn)>mn

(
1− 1

dj (wn)

) ∏
j :dj (w)>mn

(
1− 1

dj (w)

)−1

,

and a similar formula holds for the functionalπk, k = 2, 3, . . . :

πk(wn)

πk(w)
=

∏
j :dj (wn)>mn

(
1− k

dj (wn)

) ∏
j :dj (w)>mn

(
1− k

dj (w)

)−1

. (8.11)

Consider the ratio

(π(wn)/π(w))
k

(πk(wn)/πk(w))
=

∏
j :dj (wn)>mn

(1− 1/dj (wn))
k

(1− k/dj (wn))

∏
j :dj (w)>mn

(1− k/dj (w))

(1− 1/dj (w))k
.

The second product in the right hand side is a tail of the converging infinite product (since
the wordw is summable), hence converges to 1, asn→∞. By (8.3), the first product can
also be estimated by a tail of a converging infinite product,

1≤
∏

j :dj (wn)>mn

(1− 1/dj (wn))
k

(1− k/dj (wn))
≤

∏
j :dj>mn

(
1+

(k
2

)
(dj − k)2

)
,

hence converges to 1, as well.
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The proof of the formula (8.10) is only different in the way that the ratio in the left hand
side of (8.11) should be replaced byψwn(pu)/ϕw(pu). 2

Proof of the Theorem 8.5: It follows directly from Propositions 8.1 and 8.6 that the
regularity conditions for a sequencew1, w2, . . . imply convergence of functionalsψwn

to the Plancherel characterϕP in case (i), and to the characterϕβ,w in case (ii). By the
Corollary 7.5 we know that the functionsϕβ,w are pairwise distinct, and also different from
the Plancherel functionalϕP.

Let us now assume that the sequenceψwn converges to a limiting functionalϕ. We can
choose a subsequenceψwnm

in such a way that the corresponding sequencewnm converges
digitwise to an infinite wordw. If w is not summable, thenϕ = ϕP coincides with the
Plancherel functional, and the part (i) of the regularity conditions holds. Otherwise, we can
also assume that the limit (8.6) exists, and henceϕ = ϕβ,w by Proposition 8.6. Since the
parameterβ and the wordw can be restored, by Corollary 7.5, from the limiting functional
ϕ, the sequencewn cannot have subsequences converging to different limits, nor can the
sequenceπ(wn) have subsequences converging to different limits. It follows, that the reg-
ularity conditions are necessary. The Theorem is proved. 2

Finally, we prove Theorem 3.2, which states that the map

(β,w) 7→ ϕβ,w, P 7→ ϕP

is a homeomorphism ofÄ onto the Martin boundary ofYF, whereÄ is the space defined
near the end of Section 3.

Proof of Theorem 3.2: It follows from Corollary 7.5 that the map is an injection ofÄ
into the Martin boundary, and from Theorem 8.5 that the map is surjective. Furthermore,
the proof that the map is a homeomorphism is a straightforward variation of the proof of
the regularity statement, Theorem 8.5. 2

9. Concluding remarks

The Young-Fibonacci lattice, along with the Young lattice, are the most interesting examples
of differential posets. There is a considerable similarity between the two graphs, as well as
a few severe distinctions.

Both lattices arise as Bratteli diagrams of increasing families of finite dimensional
semisimple matrix algebras, i.e., group algebras of symmetric groups in case of Young
lattice, and Okada algebras in case of Young-Fibonacci graph. For every Bratteli diagram,
there is a problem of describing the traces of the corresponding inductive limit algebra,
which is well-known to be intimately related to the Martin boundary construction for the
graph. The relevant fact is that indecomposable positive harmonic functions, which are
in one-to-one correspondence with the indecomposable traces, form a part of the Martin
boundary.

For the Young lattice the Martin boundary has been known for several decades, and
all of the harmonic functions in the boundary are known to be indecomposable (extreme
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points). In this paper we have found the Martin boundary for the Young-Fibonacci lattice.
Unfortunately, we still do not know which harmonic functions in the boundary are decom-
posable (if any). The method employed to prove indecomposability of the elements of the
Martin boundary of the Young lattice can not be applied to Young-Fibonacci lattice, since
the K0-functor ringR of the limiting Okada algebraF is not commutative, as it is in case
of the group algebra of the infinite symmetric group (in this case it can be identified with
the symmetric function ring).

Another natural problem related to Okada algebras is to find all non-negative Markov
traces. We plan to address this problem in another paper.

Appendix

In this appendix, we survey a few properties of differential posets introduced by R. Stanley
in [11], and by S. Fomin (under another name) [3]. Further generalizations were introduced
in [12–13], and [4–5].

A.1. Definitions

A graded poset0 =⋃∞n=00n is calledbranching diagram(cf. [7]), if

(B1) The set0n of elements of rankn is finite for alln = 0, 1, . . .
(B2) There is a unique minimal element∅ ∈ 00

(B3) There are no maximal elements in0.

One can consider a branching diagram as an extended phase space of a non-stationary
Markov chain,0n being the set of admissible states at the momentn and covering relations
indicating the possible transitions.

We denote the rank of a vertexv ∈ 0n by |v| = n, and the number of saturated chains in
an interval [u, v] ⊂ 0 by d(u, v).

Following [11], we define anr -differential posetas a branching diagram0 satisfying two
conditions:

(D1) If u 6= v in 0 then the number of elements covered byu andv is the same as the
number of elements covering bothu andv.

(D2) If v ∈ 0 covers exactlyk elements, thenv is covered by exactlyk+ r elements of0.

Note that the number of elements in a differential poset covering two distinct elements
can be at most 1. In this paper we focus on 1-differential posets.

For any branching diagram0 one can define two linear operators in the vector space
Fun(0) of functions on0 with coefficients inR: thecreation operator

U ( f )(v) =
∑
w:v↗w

f (w), (A.1.1)
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and theannihilation operator

D( f )(v) =
∑

u:u↗v
f (u). (A.1.2)

Identifying finitely supported functions on0 with formal linear combinations of points of
0 and vertices of0 with the delta functions at the vertices, one can write instead:

Uv =
∑
w:v↗w

w, (A.1.1′)

Dv =
∑

u:u↗v
u. (A.1.2′)

One can characterizer -differential posets as branching diagrams for which the operators
U, D satisfy the Weyl identityDU −U D = r I .

A.2. Some properties of differential posets

We review below only a few identities we need in the main part of the paper. For a
general algebraic theory of differential posets see [11–13], [3–5]. Assume here that0 is a
1-differential poset.

The first formula is well known:∑
w:v↗w

d(∅, w) = (n+ 1) d(∅, v), v ∈ 0. (A.2.1)

Proof: Let dn =
∑
|v|=n d(∅, v) v ∈ Fun(0). ThenU dn = dn+1 and (A.2.1) can be

written asD dn+1 = (n+ 1) dn. This is trivial forn = 0, and assumingD dn = n dn−1 we
obtain

D dn+1 = DU dn = U D dn + dn = nU dn−1+ dn = (n+ 1) dn. 2

Our next result is a generalization of (A.2.1).

Lemma A.2.2 Let 0 be a1-differential poset, and let u≤ v be any vertices of ranks
|u| = k, |v| = n. Then∑

w:v↗w
d(u, w)−

∑
x:x↗u

d(x, v) = (n− k+ 1) d(u, v). (A.2.3)

Proof: Using the notationdn(u) =
∑
|v|=n d(u, v)v, one can easily see thatU dn(u) =

dn+1(u) and that (A.2.3) can be rewritten in the form

D dn+1(u) =
∑

x:x↗u

dn(x)+ (n− k+ 1) dn(u).
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For n = k− 1 the formula is true by the definition ofD. By induction,

D dn+1(u) = DU dn(u) = U D dn(u)+ dn(u)

= U

( ∑
x:x↗u

dn−1(x)+ (n− k) dn−1(u)

)
+ dn(u)

=
∑

x:x↗u

dn(x)+ (n− k+ 1) dn(u).

Note that (A.2.3) specializes to (A.2.1) in casek = 0, u = ∅. 2

A.3. Plancherel transition probabilities on a differential poset

It follows from (A.2.1) that the numbers

pv,w = d(∅, w)
(n+ 1) d(∅, v)

; v ↗ w, n = |v|, (A.3.1)

as transition probabilities of a Markov chain on0. Generalizing the terminology used
in the particular example of Young lattice (see [7]), we call (A.3.1)Plancherel transition
probabilities.

Lemma A.3.2 Let u≤ v be vertices of ranks|u| = k, |v| = n in a 1-differential poset
0. Then the Plancherel probability p(u, v) to reach (by any path) the vertexv starting with
u is

p(u, v) = k!

n!

d(u, v)d(∅, v)
d(∅, u)

. (A.3.3)

Proof: We have to check that
∑

v p(u, v) pv,w = p(u, w). Since
∑

v d(u, v)d(v,w) =
d(u, w), we obtain

k!

n!

∑
|v|=n

d(∅, v)
d(∅, u)

d(u, v)d(v,w)
d(∅, w)

(n+ 1) d(∅, v)
= k!

(n+ 1)!

d(u, w)d(∅, w)
d(∅, u)

,

and the Lemma follows. 2
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