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Abstract. In this paper we show that the existence of plane partitions, which areminimal in a sense to be
defined, yields minimal irreducible summands in the Kronecker productχλ ⊗ χµ of two irreducible characters
of the symmetric groupS(n). The minimality of the summands refers to the dominance order of partitions ofn.
The multiplicity of a minimal summandχν equals the number of pairs of Littlewood-Richardson multitableaux
of shape(λ, µ), conjugate content and typeν. We also give lower and upper bounds for these numbers.
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1. Introduction

The Kronecker productχλ⊗χµ of two irreducible characters of the symmetric groupS(n)
is in general a reducible character ofS(n). The multiplicity c(λ, µ, ν) of an irreducible
characterχν in the productχλ ⊗ χµ can be described by a simple formula which follows
from the orthogonality relations, and goes back at least to Murnaghan [16, p. 765]

c(λ, µ, ν) = 1

n!

∑
σ∈S(n)

χλ(σ )χµ(σ )χν(σ ).

This formula has the virtue of showing the symmetry ofc(λ, µ, ν) in λ, µ, ν. However,
it doesn’t help too much when one wants to computec(λ, µ, ν) explicitly, or even to decide
whetherc(λ, µ, ν) is different from zero for some particular choices ofλ, µ, ν. Methods
for computingc(λ, µ, ν) are described in [16, 13, 11, 10, 5, 6, 27]. Explicit formulas for
c(λ, µ, ν) can be obtained, basically from the Littlewood-Richardson rule, for arbitraryλ,
µ, and the simplest choices ofν, see for example [16, 13, 23, 28, 27]. Other formulas have
been found when each ofλ andµ is either a hook partition or a partition with two parts,
andν is arbitrary by Remmel and Whitehead [17–19]; and whenλ, µ, ν are rectangular
partitions by Clausen and Meier [2]. They also described an algorithm that produces the
maximal sumand ofχλ ⊗ χµ in the lexicographic order, either by rows or by columns.
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In this paper we show that the existence of plane partitions which areminimalin a certain
sense yields minimal summands ofχλ ⊗ χµ in the dominance order. The multiplicity of
the minimal summands has a combinatorial description in terms of pairs of Littlewood-
Richardson multitableaux. More precisely:

Let λ, µ be partitions ofn. We denote byM(λ, µ) the set of matricesA with non-
negative integer coefficients of size`(λ)× `(µ) such that itsi -th row sumsλi , and its j -th
column sumsµ j . Given A ∈ M(λ, µ), we denote byπ(A) the partition ofn obtained from
A by ordering its entries decreasingly. We recall that a matrix with non-negative integer
coefficients is called aplane partitionif its rows and columns are weakly decreasing. For
any partitionν of n we define

a(λ, µ; ν) := |{A ∈ M(λ, µ) | π(A) = ν}|

and

p(λ, µ; ν) := |{A ∈ M(λ, µ) | π(A) = ν andA is a plane partition}|.

We denote by� the dominance order of partitions, see [1, 11, 22]. We say that a matrixA is
minimal in M(λ, µ) if A ∈ M(λ, µ), and it does not existB ∈ M(λ, µ) with π(B)�π(A).
We also say thatν isminimalfor χλ⊗χµ if c(λ, µ, ν) 6= 0 andc(λ, µ, γ ) = 0 for allγ � ν.
Finally let lr ∗(λ, µ; ν) denote the number of pairs of Littlewood-Richardson multitableaux
of shape(λ, µ), conjugate content and typeν, see (7). Then we have

Theorem 1.1 Let M be a minimal matrix inM(λ, µ), and letν = π(M). Suppose M is
a plane partition. Then
(1) ν is minimal forχλ ⊗ χµ.
(2) c(λ, µ, ν) = lr ∗(λ, µ; ν ′).
(3) p(λ, µ; ν) ≤ c(λ, µ, ν) ≤ a(λ, µ; ν).
(4) c(α, β, γ ) = 0 for all α� λ, β �µ, andγ � ν.
(5) c(λ, µ, ν) = a(λ, µ; ν), if and only if c(α, β, ν) = 0 for all α� λ, β �µ such that

(α, β) 6= (λ, µ).

The paper is organized as follows. In Section 2 we review the definitions and results
needed to prove our theorem. Section 3 contains a sequence of results which lead to the
proof of Theorem 1.1; some of them may be of interest by themselves. In Section 4 we go
back to the origins of this work: we show how a notion comming from discrete tomography,
that of set of uniqueness, yields information about somec(λ, µ, ν)’s.

2. Definitions and known results

Let λ be a partition ofn, in symbolsλ ` n. We denote by|λ| the sum of its parts, by
`(λ) the number of its parts, and byλ′ its conjugate partition. We use the notationλ�µ
to indicate thatλ is greater or equal thanµ in the dominance order of partitions, see
[1, 11, 22]. LetH be a subgroup of a groupG. If χ is a character ofH , we denote by
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IndG
H (χ) the character induced fromχ . For any partitionλ of n, let S(λ) denote a Young

subgroup ofS(n) corresponding toλ, χλ the irreducible character ofS(n) associated toλ,
andφλ = IndS(n)

S(λ)(1λ) the permutation character associated toλ. They are related by the
Young’s rule

φλ =
∑
α�λ

Kαλ χ
α, (1)

whereKαλ is a Kostka number, that is, the number of semistandard tableaux of shapeα and
contentλ, see [11, 2.8.5], [22, Section 2.11]. Remember that ifα� λ, thenKαλ > 0 and
that Kλλ = 1. We use the symbol〈· , ·〉 for the inner product of characters.

Let λ, µ, ν be partitions ofn. We denote byM(λ, µ) the set of matrices with non-
negative integer coefficients of size`(λ)× `(µ), with row sum vectorλ, and column sum
vectorµ; by M∗(λ, µ) the subset ofM(λ, µ) formed by all matrices whose coefficients are
zeros or ones; and byM∗(λ, µ, ν) the set of all 3-dimensional matricesA = (ai jk ) of size
`(λ) × `(µ) × `(ν), whose entries are zeros or ones, and haveplane sum vectorsλ, µ, ν,
that is,∑

jk

ai jk = λi , 1≤ i ≤ `(λ),∑
ik

ai jk = µ j , 1≤ j ≤ `(µ),∑
i j

ai jk = νk, 1≤ k ≤ `(ν).

Finally letm∗(λ, µ) := |M∗(λ, µ)|, andm∗(λ, µ, ν) := |M∗(λ, µ, ν)|. These numbers can
be expressed as inner products of characters:

m∗(λ, µ) = 〈φλ ⊗ φµ, χ(1n)
〉
, (2)

m∗(λ, µ, ν) = 〈φλ ⊗ φµ ⊗ φν, χ(1n)
〉
, (3)

see [3, 4, 11, 24]. The Gale-Ryser theorem gives a characterization for the existence of
matrices inM∗(λ, µ):

m∗(λ, µ) > 0⇐⇒ λ′ �µ, (4)

see [9, 20, 21]. We also have a characterization for uniqueness:

m∗(λ, µ) = 1⇐⇒ λ′ = µ, (5)

see [21, 24, 12]. For any matrixA with non-negative integer coefficients, letπ(A) denote
the partition obtained fromA by ordering its entries decreasingly. Then

φλ ⊗ φµ =
∑

A∈M(λ,µ)

φπ(A),
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see [4, 11]. We will denotea(λ, µ; δ) := |{A ∈ M(λ, µ) | π(A) = δ}|, and so we rewrite
the preceding formula in the following way

φλ ⊗ φµ =
∑
δ`n

a(λ, µ; δ) φδ. (6)

For any tableauT (a skew diagram filled with positive integers) there is a wordw(T)
associated toT given by reading the numbers inT from right to left, in succesive rows,
starting with the top row. Letν be a partition ofn of lengthr . Let ρ(i ) ` νi , 1≤ i ≤ r . A
sequenceT = (T1, . . . , Tr ) of tableaux is called aLittlewood-Richardson multitableauof
shapeλ, content(ρ(1), . . . , ρ(r )) andtypeν if

(i) There exists a sequence of partitions

0= λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r ) = λ,

such that|λ(i )/λ(i − 1)| = νi for all 1≤ i ≤ r , and
(ii) for all 1 ≤ i ≤ r , Ti is a semistandard tableau of shapeλ(i )/λ(i − 1) and contentρ(i )

such thatw(Ti ) is a lattice permutation, see [11, 2.8.13], [14, I.9], [22, Section 4.9].

For each partitionλ of n let cλ(ρ(1),...,ρ(r )) denote the number of Littlewood-Richardson
multitableaux of shapeλ and content(ρ(1), . . . , ρ(r )). Let

lr ∗(λ, µ; ν) :=
∑

ρ(1)`ν1,...,ρ(r )`νr

cλ(ρ(1),...,ρ(r )) cµ(ρ(1)′,...,ρ(r )′) (7)

be the number of pairs(S, T) of Littlewood-Richardson multitableaux of shape(λ, µ) and
typeν, such thatSandT have conjugate content, that is, ifShas content(ρ(1), . . . , ρ(r )),
then T has content(ρ(1)′, . . . , ρ(r )′). Then by applying Frobenius reciprocity to
〈χλ ⊗ χµ, φν ⊗ χ(1n)〉 we obtain

lr ∗(λ, µ; ν) =
∑
γ�ν ′

Kγ ′ν c(λ, µ, γ ), (8)

compare with [11, 2.9.17], [27, Section 3].
Plane partitions.We conclude this section by recalling some facts about plane partitions

which will be used in the proof of Theorem 3.4. For a positive integerm, let [m] :=
{1, . . . ,m}. A subsetS of the 3-dimensional boxB(p,q, r ) := [ p] × [q] × [r ] is called
pyramid if for all (a, b, c) ∈ S and for all(x, y, z) ∈ B(p,q, r ) the conditionsx ≤ a,
y ≤ b andz ≤ c imply (x, y, z) ∈ S. Pyramids were used in [26] to give examples of sets
of uniqueness. We will say more about them in Section 4. Aplane partitionwith at most
p rows, at mostq columns, and largest part≤ r is a matrixA = (ai j ) with non-negative
integer coefficients of sizep × q, such that 0≤ ai j ≤ r , and whose rows and columns
are weakly decreasing, see [15, Section 421]. There is a simple well-known one-to-one
correspondence between pyramidsS⊆ B(p,q, r ) and plane partitionsA = (ai j ) with at
mostp rows, at mostq columns, and largest part≤ r , see [15, Section 423]. For this reason
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a pyramid is also called the graph or the diagram of its associated plane partition. The
correspondence is given byS 7−→ Z(S) = (zi j ), wherezi j := |{k ∈ [r ] | (i, j, k) ∈ S}|;
its inverse isA 7−→ S(A), whereS(A) := {(i, j, k) ∈ B(p,q, r ) | 1 ≤ k ≤ ai j }. If we
start with a pyramidS∈ B(p,q, r ) there are other two obvious ways of associating toSa
plane partition:Y(S) = (yki ), whereyki := |{ j ∈ [q] | (i, j, k) ∈ S}|, andX(S) = (xjk),
wherexjk := |{i ∈ [ p] | (i, j, k) ∈ S}|. The plane partitionsX(S), Y(S), Z(S) are related
in the following way: For all 1≤ i ≤ p, column i of Y(S) is the conjugate partition
of row i of Z(S), in symbols,ri (Z(S)) = ci (Y(S))′; and similarly for all 1≤ k ≤ r ,
rk(Y(S)) = ck(X(S))′, and for all 1≤ j ≤ q, r j (X(S)) = c j (Z(S))′. Theslice vectors
λ, µ, ν of any subsetS of the boxB(p,q, r ) are formed by the cardinalities of its slices
parallel to the coordinate planes:

λi := |{x ∈ S | x1 = i }|, 1≤ i ≤ p,

µ j := |{x ∈ S | x2 = j }|, 1≤ j ≤ q,

νk := |{x ∈ S | x3 = k}|, 1≤ k ≤ r.

(9)

If S is a pyramid, thenλ,µ, andν are partitions of|S|, and the correspondenceS 7−→ Z(S)
satisfies:Z(S) ∈ M(λ, µ), andπ(Z(S)) = ν ′. Conversely, ifλ,µ, ν are partitions ofn, and
A ∈ M(λ, µ) is a plane partition withπ(A) = ν, then its associated pyramidS(A) has slice
vectorsλ, µ, ν ′.

3. Minimal matrices and plane partitions

In this section we give a proof of Theorem 1.1. It is divided in several steps. We have tried
to show which consequences follow only from the minimality ofM , and which use the fact
that M is a plane partition. Proposition 3.1 and Theorem 3.4 may be of interest by them-
selves. We also give an example showing that the inequalities in Theorem 1.1.3 may be strict.

Proposition 3.1 Let M be a matrix inM(λ, µ), and letν = π(M). Then M is minimal if
and only if m∗(λ, µ, ν ′) = a(λ, µ; ν).

Proof: It follows from (3), (6) and (2) that for any partitionsλ, µ, ν

m∗(λ, µ, ν ′) =
∑
δ`n

a(λ, µ; δ)m∗(δ, ν ′).

If M is minimal inM(λ, µ) andν = π(M), thena(λ, µ; δ) = 0 for all δ� ν. Moreover,
it follows from (4) thatm∗(δ, ν ′) = 0 for all δ� ν. These two equalities and (5) imply
m∗(λ, µ; ν ′) = a(λ, µ; ν). The converse is similar. 2

Proposition 3.2 Let M be a minimal matrix inM(λ, µ), and letν = π(M). Then

c(α, β, γ ) = 0

for all α� λ, β �µ, andγ � ν.
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Proof: It follows from (6) and (1) that for any partitionsλ, µ, ν

〈φλ ⊗ φµ, χν〉 =
∑
δ`n

a(λ, µ; δ) Kνδ.

If M is minimal in M(λ, µ) andν = π(M), then one proves, in a similar way as in
Proposition 3.1, that〈φλ ⊗ φµ, χν〉 = a(λ, µ; ν). But, then by Proposition 3.1

〈φλ ⊗ φµ, χν〉 = 〈φλ ⊗ φµ ⊗ φν ′ , χ(1n)
〉
.

The claim now follows from (1), the fact thatχα⊗χ(1n) = χα′ for anyα, and the positivity
of the Kostka numbers. 2

Corollary 3.3 Let M be a minimal matrix inM(λ, µ), and letν = π(M). Then
(1) c(λ, µ, ν) = lr ∗(λ, µ; ν ′).
(2) a(λ, µ; ν) = c(λ, µ, ν)+ ∑ KαλKβµc(α, β, ν). Here the sum is over all pairs(α, β)

such thatα� λ, β �µ and(α, β) 6= (λ, µ).

Under the assumptions of Proposition 3.2 we know thatc(λ, µ, γ ) = 0 for all γ � ν, but
still c(λ, µ, ν) could be zero. For example ifλ = µ = (32), the minimal matrices inM(λ, µ)
are [2 1

1 2] and [1 2
2 1]. However, forν = (22, 12), we havec(λ, µ, ν) = lr ∗(λ, µ; ν ′) = 0.

Therefore, we need to impose an extra condition inM in order to assure the positivity of
c(λ, µ, ν). One such condition, as we shall see below, is thatM is a plane partition.

Theorem 3.4 Letλ, µ, ν be partitions of n. Then

p(λ, µ; ν) ≤ lr ∗(λ, µ; ν ′).

Proof: Let r = `(ν ′). We construct an injective map from the set of plane partitions
A ∈ M(λ, µ) with π(A) = ν to the set of pairs(S, T) of Littlewood-Richardson multi-
tableaux of shape(λ, µ), and typeν ′, such that ifS has content(ρ(1), . . . , ρ(r )), thenT
has content(ρ(1)′, . . . , ρ(r )′). Let S be the pyramid associated toA, so thatA = Z(S),
see Section 2. LetB = Y(S), andC = X(S). ThenB ∈ M(ν ′, λ), C ∈ M(µ, ν ′), and for
all 1≤ k ≤ r , rk(B) = ck(C)′. FromB we construct a filtration

0= λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r ) = λ

as follows. Letλ(k) := ∑
1≤α≤k rα(B), for 1 ≤ k ≤ r . Thenλ(k) is a partition and

|λ(k)/λ(k − 1)| = ν ′k. The skew diagramλ(k)/λ(k − 1) has a natural fillingSk, which is
obtained by puttingl ’s on rowl . SinceB is a plane partition,Sk is a Littlewood-Richardson
tableau of contentrk(B). In this way we have constructed a Littlewood-Richardson multi-
tableauS= (S1, . . . , Sr ) of shapeλ, typeν ′ and content(r1(B), . . . , rr (B)). Now usingCT

we construct in a similar way a Littlewood-Richardson multitableauT = (T1, . . . , Tr ) of
shapeµ, typeν ′ and content(c1(C), . . . , cr (C)). The correspondenceA 7−→ (S, T) yields
the map we are looking for. 2
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Corollary 3.5 Let M be a minimal matrix inM(λ, µ), and letν = π(M). Then
(1) p(λ, µ; ν) ≤ c(λ, µ, ν) ≤ a(λ, µ; ν).
(2) If M is a plane partition, thenν is minimal forχλ ⊗ χµ.

Proof of Theorem 1.1 Statements (1)–(4) have already been proved. And (5) follows
from Corollary 3.3.2. 2

Example 3.6 Letλ = (8, 7, 4, 2),µ = (11, 6, 4). With the aid of a computer we generated
all minimal matrices inM(λ, µ). They are

A =


3 3 2

3 2 2

3 1 0

2 0 0

 , B =


4 2 2

3 2 2

2 2 0

2 0 0

 , C =


4 2 2

4 2 1

2 1 1

1 1 0

 ,

D =


4 2 2

3 2 2

3 1 0

1 1 0

 , D1 =


3 3 2

4 2 1

2 1 1

2 0 0

 ,

D2 =


4 2 2

3 3 1

2 1 1

2 0 0

 , D3 =


4 3 1

3 2 2

2 1 1

2 0 0

 .
SinceA, B, C andD are plane partitions, then by Theorem 1.1.1 the partitionsπ(A) =

(34, 24, 1), π(B) = (4, 3, 27), π(C) = (42, 24, 15), π(D) = (4, 32, 24, 13) are minimal
for χλ ⊗ χµ. If ν is any of the first three partitions, then 1= p(λ, µ; ν) = c(λ, µ, ν) =
a(λ, µ; ν). If ν = π(D), then 1≤ c(λ, µ, ν) ≤ 4, by Theorem 1.1.3, andc(λ, µ, ν) =
lr ∗(λ, µ; ν ′), by Theorem 1.1.2. Using (7) we get easily thatc(λ, µ, ν) = 3. This shows
that the inequalities in Theorem 1.1.3 may be strict. Of course Theorem 1.1.4 applies to our
four partitions. In particular, forσ = (9, 6, 4, 2) andν = π(D) we havec(σ, µ, γ ) = 0
for all γ � ν; thereforec(σ, µ, ν) = lr ∗(σ, µ; ν ′). This last number is easily seen to be
1. Then, it follows from Corollary 3.3.2 thatc(α, β, ν) = 0 for all α� λ, β �µ such that
(α, β) 6= (λ, µ), (σ, µ).

Remark 3.7 We consider again the example after Corollary 3.3: letλ = µ = (32), then
no minimal matrix inM(λ, µ) is a plane partition, so we cannot apply Theorem 1.1 to
obtain minimal summands inχλ ⊗ χµ. The only partition associated to minimal matrices
in M(λ, µ) is ν = (22, 12) and we havec(λ, µ, ν) = 0. It turns out that the partitions
coveringν, namelyσ = (23) and τ = (3, 13) are the only partitions corresponding to
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minimal summands inχλ ⊗ χµ. This leads us to the following natural questions: When
do all minimal summands inχλ ⊗ χµ come from minimal plane partitions? How do we
determine all minimal summands not coming from a minimal plane partition? These are
questions we will address in a future paper.

4. Sets of uniqueness and minimal matrices

In this section we show that the existence of sets of uniqueness puts severe restrictions on
somec(λ, µ, ν)’s.

Let Sbe a subset ofB(p,q, r ). Its slice vectorsλ = (λ1, . . . , λp),µ = (µ1, . . . , µq), and
ν = (ν1, . . . , νr ) are compositions of|S|, that is, vectors of non-negative integers whose
coordinates sum|S|, see (9). The setS is called aset of uniquenessif it is the only set
with slice vectorsλ, µ, ν. Sets of uniqueness were introduced in [8], where a geometric
characterization of them was given by the absence of certain configurations inB(p,q, r ).
Note that, as long as we are concerned with properties ofSwhich depend on the cardinalities
of its slices, we may and will assume thatλ, µ, andν are weakly decreasing, namely, that
they are partitions of|S|. If this were not the case, we just permute some slices ofS. Thus
a setS is a set of uniqueness if and only ifm∗(λ, µ, ν) = 1.

The starting point of this work was the attempt to use identities (3) and (1), and some
knowledge on the numbersc(λ, µ, ν) in order to find conditions onλ, µ, ν which would
imply thatS is a set of uniqueness. However, these numbers are hard to compute; it proved
more fruitful to try to get information about thec(λ, µ, ν)’s from the existence of sets of
uniqueness. This is the content of Corollary 4.2 which eventually developed into Theo-
rem 1.1. In [25] an algebraic characterization of sets of uniqueness was given. Here, we
need only one implication, which can be reformulated in the following way:

Theorem 4.1 Let S be a set of uniqueness and suppose that its slice vectorsλ, µ, ν are
partitions of |S|. Then S is a pyramid, its associated plane partition Z(S) is minimal in
M(λ, µ), and a(λ, µ; ν ′) = 1.

From this and from Theorem 1.1 we obtain

Corollary 4.2 Let S be a set of uniqueness and suppose its slice vectorsλ, µ, ν are
partitions of|S|. Then

(1) ν ′ is minimal forχλ ⊗ χµ.
(2) c(λ, µ, ν ′) = 1.
(3) For all α� λ, β �µ, γ � ν ′ such that(α, β, γ ) 6= (λ, µ, ν ′), we have c(α, β, γ ) = 0.

Examples 4.3 The simplest example of set of uniqueness is the box B(a, b, c). It has slice
vectorsλ = ((bc)a), µ = ((ac)b), and ν = ((ab)c). Then from the previous corollary
we recover Satz 2.3 in [2]: c(λ, µ, ν ′) = 1 and obtain new identitites c(α, β, γ ) = 0 for
all α� λ, β �µ, γ � ν ′ such that(α, β, γ ) 6= (λ, µ, ν ′). Another simple example of set
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of uniqueness is thehook setH = H(a, b, c) associated to the plane partition of size
(a+ 1)× (b+ 1)

Z(H) =


c+ 1 1 . . . 1

1 0 . . . 0
...

...
. . .

...

1 0 . . . 0

 ,

see Section 1 in [25]. It has slice vectorsλ = (b+ c+ 1, 1a), µ = (a+ c+ 1, 1b
)
, and

ν = (a+b+1, 1c). Then the previous corollary yields c(λ, µ, ν ′) = 1, and c(λ, µ, γ ) = 0
for all γ � ν ′, which are contained in [17], as well as some new identities.

Remark 4.4 The notion of minimal matrix seems to be important. It was used in [25]
to caracterize sets of uniqueness, and in this paper to obtain information about some
c(λ, µ, ν)’s. Proposition 3.1 provides a characterization for minimal matrices. It would be
desirable, however, to have more practical ways for deciding whether a given matrix M is
minimal inM(λ, µ). This is a problem we propose for further study.

Note added in proof: After submitting this manuscript I learned from M. Kapranov that
the inequality p(λ, µ; ν) ≤ c(λ, µ, ν) in our Theorem 3.1.3 was proved for allλ,µ, ν by L.
Manivel (see Proposition 3.1 in Ann. Inst. Fourier (Grenoble)47 (1997), no. 3, 715–773).
Note, however, that p(λ, µ; ν) is not in general a good lower bound for c(λ, µ, ν); for
example ifλ = µ = ν = (4, 2, 12), then it follows from the tables in [11, p. 458] that
c(λ, µ, ν) = 17, but one easily finds that p(λ, µ; ν) = 0 and a(λ, µ; ν) = 2. This and
Example 3.6 seems to indicate that p(λ, µ; ν) and c(λ, µ, ν) are muchcloser, whenν
corresponds to a minimal plane partition. We also note that Manivel’s proof is very different
from ours. It uses representations of general linear groups and algebraic geometry.
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