
Journal of Algebraic Combinatorics11 (2000), 69–78
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Lagrange Inversion and Schur Functions
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Abstract. Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of
the generating function of the complete homogeneous symmetric functions. The main result we prove in this
note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative
symmetric functions. The proof relies on the combinatorics of Lagrange inversion. We also present aq-analogue
of this result, which is related to theq-Lagrange inversion formula of Andrews, Garsia, and Gessel, as well as the
operator∇ of Bergeron and Garsia.
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1. Introduction

In this note, we use the terminology and notation in [18]. In particular,hλ denotes the com-
plete homogeneous symmetric function indexed by the partitionλ, andH(t) :=∑∞n= 0 hntn.

Let us consider the following involution on the ringΛ of symmetric functions:

hλ 7→ ψ(hλ) = h∗λ := h∗λ1
h∗λ2
· · · ,

whereh∗n are defined by the condition thatt H∗(t) = t + h∗1t2+ h∗2t3+ · · · is the compo-
sitional inverse oft H(−t). This is essentially the involution considered by Lascoux ([16]
(6.3)) and Macdonald ([18] page 35); in fact, Macdonald’sh∗n differs from the one defined
above by a factor of(−1)n. Note that the involutionψ is related to composition of power
series in the same way as the standard involution is related to multiplication of power series.
On the other hand, the involutionψ is closely related to the operator∇ onΛ[q, t ] defined
in [2], which is discussed in Section 4. Let us also note thath∗λ form a basis ofΛ. The
importance of this basis was highlighted by its relation to the top connection coefficients in
the center of the group algebra of the symmetric group (see [7, 18] p. 132, and [13]).

Let E(t) := ∑∞
n= 0 entn. It is well-known thatE(t)H(−t)= 1. Recall the Lagrange

inversion formula (see e.g. [12] or [22]), which asserts (in one of its equivalent forms) that
the compositional inversetG(t) of a formal power seriest F(t) with F(0) 6= 0 satisfies

[tn] G(t)k = k

n+ k
[tn] F(t)−n−k. (1.1)
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SettingF(t)= H(−t)= E(t)−1, G(t)= H∗(t), andk= 1, we obtain

h∗n =
∑
λ`n

(−1)n−l (λ) 1

n+ 1

(
n+ l (λ)

n, m1(λ), m2(λ), . . .

)
hλ

=
∑
λ`n

1

n+ 1

(
n+ 1

m0(λ)+ 1, m1(λ), m2(λ), . . .

)
eλ; (1.2)

heremk(λ) denotes the multiplicity of partk in λ, andm0(λ)= n−∑k≥1 mk(λ). Setting
F(t)= E(t)−1, G(t)= H∗(t), and k=−1, we obtain the following formula fore∗n :=
ψ(en), which is also derived in [18]:

e∗n= (−1)n−1
∑
λ`n

1

n− 1

(
n− 1

m0(λ)− 1, m1(λ), m2(λ), . . .

)
eλ. (1.3)

Note that Macdonald also obtains a formula forp∗n := ψ(pn). On the other hand, we can
expressh∗n in the basis of Schur functions by using the Cauchy formula (cf. [14] and [21]),
and obtain a similar formula fore∗n. Indeed, one form of the Cauchy formula may be written

1

H(−y1t) . . . H(−ymt)
=
∑
λ

sλ′(y1, . . . , ym)sλt
|λ| ,

whereλ′ is the conjugate partition toλ. So takingy1= · · · = ym= 1, m= n+ k, and then
applying (1.1) withk= 1 andk=−1, yields

h∗n =
∑
λ`n

sλ′(1n+1)

n+ 1
sλ, e∗n = (−1)n−1

∑
λ`n

sλ′(1n−1)

n− 1
sλ; (1.4)

heresλ(1k) denotes the number obtained by specializing the firstk variables insλ to 1, and
the rest of the variables to 0.

The symmetric functionsh∗n are related to various combinatorial objects. For instance,
formula (1.2) can be expressed combinatorially in terms of trees andparking functions(see
below, and also [15, 22, 21]); the latter are sequences(α1, . . . , αn) containing at leastk
entries less than or equal tok, for all 1≤ k≤ n. The expansion ofh∗n in terms of monomial
symmetric functions also has several combinatorial interpretations (see [21] and [19]). As
shown by Stanley in [21],h∗n is the so-calledflag symmetric functionof the noncrossing
partition lattice. On the other hand, Haiman showed in [14] thath∗n is the Frobenius
chracteristic of the representation of the symmetric group on the set of parking functions
tensored with the sign representation. Stanley realized the same representation in [21] as
a so-calledlocal actionof the symmetric group on the maximal chains of the noncrossing
partition lattice.

In this note, we present combinatorial proofs of (1.3) and (1.4), some related facts (in-
cluding a reference to certain analogs of parking functions which we define), and prove
that the involutionψ mapsanyskew Schur function to a Schur positive or a Schur negative
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symmetric function. Finally, we generalize the latter result by proving a special case of
the main conjecture in [3] concerning the operator∇. The author is grateful to A. Garsia
for introducing him to the operator∇, and to one of the referees for suggesting many
improvements in Sections 1 and 2.

2. The Combinatorics of the Formulas forh∗n and e∗n

We will consider sequences(a1, . . . ,an+1) of nonnegative integers satisfying the property

k∑
i=1

ai ≥ k, k = 1, . . . ,n and
n+1∑
i=1

ai = n, (2.1)

as well as sequences(a1, . . . ,an−1) of nonnegative integers satisfying the property

k∑
i=1

ai > k, k = 1, . . . ,n− 1 and
n−1∑
i=1

ai = n. (2.2)

Note that in the first case we necessarily havean+1= 0. It is easy to see that the number
of sequences of the first type is the Catalan numberCn= 1

n+1(
2n
n ), and that the number of

sequences of the second type isCn−1. Indeed, one can easily construct a bijection from
sequences of the first type to Dyck paths from(0, 0) to (2n, 0) (every entryai , 1≤ i ≤ n,
corresponds toai steps(1, 1) followed by one step(1,−1)), as well as a bijection from
sequences of the first type withn replaced byn− 1 to sequences of the second type (just
add 1 to the first entry and remove the last 0).

The following Lemma, often called the “cycle lemma”, is due to Dvoretzky and Motzkin
([6], see also [5]), and was rediscovered many times. It can be used to prove various results,
such as Lagrange inversion (cf. [20]), the formula forCn, the fact that the number of parking
functions of lengthn is (n+ 1)n−1 etc.; we will use it in the combinatorial proofs of (1.3)
and (1.4).

Lemma 2.3
1. Among all n+1 distinct sequences obtained by cyclically permuting a sequence of n+1

nonnegative integers summing up to n, there is a unique one of the form(2.1).
2. Among all n−1 distinct sequences obtained by cyclically permuting a sequence of n−1

nonnegative integers summing up to n, there is a unique one of the form(2.2).

It is useful to expressh∗n combinatorially as follows:

h∗n =
∑

a

eλ(a), (2.4)

where the summation ranges over all sequencesa= (a1, . . . ,an+1) of the form (2.1), and
λ(a) is the partition whose parts are the nonzero entries ofa. This formula follows directly
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from (1.2) and Lemma 2.3 (1). Alternatively, we can find it in Raney’s combinatorial proof
of Lagrange inversion [20].

Before proceeding with the combinatorial proof of (1.3), which we have already derived
from (1.1) by settingk=−1, let us note that Raney’s combinatorial proof of (1.1) only
works fork > 0.

Combinatorial proof of (1.3): Applyingψ to the identityH(t)= E(−t)−1, we obtain

∞∑
n=0

h∗ntn =
( ∞∑

n=0

(−1)ne∗ntn

)−1

. (2.5)

Now definee#
n by

e#
n =

∑
a

eλ(a), (2.6)

where the summation ranges over all sequencesa= (a1, . . . ,an−1) of the form (2.2). We
claim that

∞∑
n=0

h∗ntn =
(

1−
∞∑

n=1

e#
ntn

)−1

. (2.7)

Comparing (2.7) with (2.5) shows thate∗n= (−1)n−1e#
n for n ≥ 1, whence we have (1.3) by

Lemma 2.3 (1). Formula (2.7) is equivalent to

h∗n =
∑
γ

e#
λ(γ ),

where the summation is over all compositionsγ of n. This formula has a simple com-
binatorial proof based on (2.4) and (2.6). Indeed, the right-hand side can be written as
a summation over concatenations of sequences of the form (2.2), where the order of the
concatenation is specified byγ . Now observe that every sequence of the form (2.1) with
the final zero dropped can be decomposed uniquely as a concatenation of sequences of the
form (2.2) with a final zero added. This gives the right bijection between the sequences
indexing the two summations whose equality we want to prove. 2

Combinatorial proof of (1.4): We can also derive (1.4) from (2.4) in a combinatorial
way. Expressing the right-hand side of (2.4) in the basis of Schur functions, we have that
the coefficient ofsλ is the number of semistandard Young tableaux of shapeλ′ for which the
type is a sequence of the form (2.1). Formula (1.4) now follows from Lemma 2.3 (1) and
the combinatorial definition of Schur functions. The analogous formula for the expansion
of e∗n follows in a similar way using Lemma 2.3 (2). 2

We conclude this section with some remarks concerning the representations of the sym-
metric group with Frobenius characteristich∗n and (−1)n−1 e∗n. Note that the parking
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functions of lengthn are precisely the sequences of lengthn containinga1 1’s, . . . , an n’s,
where(a1, . . . ,an+1) satisfies property (2.1). We can define analogs of parking functions
as sequences of lengthn containinga1 1’s, . . . , an−1 n−1’s, where(a1, . . . ,an−1) satisfies
property (2.2). By Lemma 2.3 (2), there are(n − 1)n−1 such sequences. The symmetric
group acts on them, and the Frobenius characteristic of the corresponding representation
tensored with the sign representation is(−1)n−1 e∗n (the proof is similar to the one in [14]
for h∗n).

Finally, we note that the Robinson-Schensted correspondence establishes a bijection
between parking functions of lengthn and pairs(S, R) of tableaux of the same shape
λ ` n, with R standard andS semistandard, such that the type ofS is a sequence of the
form (2.1). The same result is true for analogs of parking functions and sequences of the
form (2.2). The above remarks justify combinatorially the identities

∑
λ`n

sλ(1n+1)

n+ 1
f λ = (n+ 1)n−1,

∑
λ`n

sλ(1n−1)

n− 1
f λ = (n− 1)n−1 (2.8)

involving the dimensions of the representations corresponding to the symmetric functions
in (1.4).

3. The Images of Skew Schur Functions under the Involutionψ

We prove the following result concerning the images of skew Schur functions under the
involutionψ . Recall that the Jacobi-Trudi formula expresses the skew Schur functionsλ/µ
as the determinant of thel (λ) × l (λ) matrix whose(i, j )-th entry ishλi−i−µ j+ j ; here we
adopt the convention thathm= 0 if m< 0.

Theorem 3.1 Given partitionsµ ⊆ λ, the symmetric function(−1)i (λ/µ) ψ(sλ/µ) is a
nonnegative integer combination of Schur functions, where i(λ/µ) is the number of nonzero
entries below the main diagonal in the Jacobi-Trudi matrix forλ/µ. In particular, i(λ) is
the number of boxes below the diagonal in the Young diagram ofλ.

Proof: Let n be the weight ofλ/µ. For the purposes of this proof, we use the French
notation for partitions, that isλ= (λ1, . . . , λk)with λ1≤ λ2≤ · · · ≤ λk. With this notation,
we have that the skew Schur functionsλ/µ is the determinant of thek × k matrix whose
(i, j )-th entry ishλi+i−µ j− j (by the Jacobi-Trudi formula). The permutations with a nonzero
contribution to this determinant are precisely those satisfying

λπ(i ) + π(i ) ≥ µi + i, 1≤ i ≤ k. (3.2)

Consider 2k points on thex-axis in the plane, namelyAi (2(µi+i ), 0)andBi (2(λi+i ), 0),
for 1 ≤ i ≤ k. For a given permutationπ satisfying (3.2), we will considerk-tuples of
Dyck pathsPπ = (Pπ

1 , . . . , Pπ
k ), wherePπ

i is a Dyck path fromAi to Bπ(i ) (in particular,
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a path reduces to a single point ifAi = Bπ(i )). Combining the Jacobi-Trudi formula with
(2.4) and the bijection from sequences satisfying (2.1) to Dyck paths, we obtain

ω(ψ(sλ/µ)) =
∑
π

ε(π)
∑
Pπ

hλ(Pπ ); (3.3)

hereω is the standard involution on symmetric functions, the first summation ranges over
permutations satisfying (3.2),ε(π) is the sign ofπ , andλ(Pπ ) is the partition ofn whose
parts are the lengths of the northeast steps in the pathsPπ

1 , . . . , Pπ
k .

We now define the numberi (Pπ ) of crossings between pairs of paths inPπ . The easiest
way to do this is to introduce auxilliary pointsA′i (2(µi + i )− 1,−1) andB′i (2(λi + i )+ 1,
−1). We add to every pathPπ

i the edgesA′i Ai and Bπ(i )B′π(i ); then, for every pair of
(augmented) paths we contract all the edges they have in common, and count all points of
intersection which are not endpoints and in which neither path changes direction. By switch-
ing the paths at each crossing, we obtain a new configuration of pathsPπ0, corresponding
to a permutationπ0. Clearly,ε(π0)= ε(π)(−1)i (P

π ). On the other hand, since there are no
crossings of paths inPπ0, we have thatπ0(i ) < π0( j ) if and only ifλi + i < µ j + j , for ev-
ery i < j . This condition characterizesπ0 and shows that it hasi (λ/µ) inversions, whence
ε(π0)= (−1)i (λ/µ) (since we use the French notation for partitions, we need to consider the
number of nonzero entriesabovethe main diagonal in the Jacobi-Trudi matrix forλ/µ). As
an aside, we note that the path switching argument above also shows thatπ ≤ π0 in Bruhat
order. In fact, more is true, namely that the permutations satisfying (3.2) are precisely those
in the interval [̂0, π0], where0̂ is the identity permutation (see for instance [23]).

We now change the order of summation in (3.3). Let us consider the setG of all plane
directed graphsG for which there is a permutationπ and ak-tuple of pathsPπ as above
whose union isG (the edges of the paths are now assumed to be directed, and they correspond
to steps(1, 1) or (1,−1)); in fact, it is enough to consider onlyπ =π0 in this definition.
According to the remarks above, we have

(−1)i (λ/µ) ω(ψ(sλ/µ)) =
∑
G∈G

∑
π,Pπ :⋃
i Pπi =G

(−1)i (P
π ) hλ(Pπ ). (3.4)

Now let G be a fixed graph inG, and letḠ be the graph obtained from it by adding
the auxilliary directed edgesA′i Ai and Bi B′i . Let us weight the edges of̄G by a weight
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functionw such that all auxilliary edges have weight 1 and the weight satisfies the property
of flow conservation at every vertex with nonnegativey-coordinate. Consider an arbitrary
maximal pathP in G consisting only of edges oriented northeast. LetE(P) := (e1, . . . ,em)

be thesequenceof edges inḠ with heads belonging toP; these edges are ordered by the
y-coordinate of their tails, and every edge is repeatedw(e) times. Similarly, we consider
themultiset F(P) := { f1, . . . , fm} of edges inḠ with tails belonging toP (see the figure
above). Letx(ei ) (respectivelyx( fi )) denote thex-coordinate of the head ofei (respectively
tail of fi ). In order to find all possiblePπ with

⋃
i Pπ

i =G for which every edgeeappears in
exactlyw(e)paths, it is enough to consider for every pathP specified above all permutations
( f ′1, . . . , f ′m) of the multisetF(P) such thatx(ei ) ≤ x( f ′i ) for 1≤ i ≤ m; indeed, we form
paths starting withei followed by a certain subpath ofP and f ′i , then we join these paths
in the obvious way. We note the following facts.

1. The above procedure is carried out independently for everyP, so we need to take the
product of the contributions of allP to the second sum in the right-hand side of (3.4).

2. Assuming thatF(P) is a set rather than a multiset, the contribution of a givenP is
0 unless all integersx(ei ) are different; in the latter case, the contribution is the skew
Schur functionsν/ρ , whereρi = x(ei ) − i andνi = x( fi ) − i for 1 ≤ i ≤ m (by the
Jacobi-Trudi formula).

3. If at least one edge ofG oriented southeast has weight greater than 1 (if this happens
for somew, it happens for allw), then we can find a pathP with no repeated edges in
F(P) and repeated edges inE(P); hence the contribution of suchG to the right-hand
side of (3.4) is 0.

Hence, we can restrict the summation in the right-hand side of (3.4) to the set of graphs
G0 for which a vertex of indegree 2 and outdegree 1 necessarily has the edge starting at
it oriented northeast, and is not among theAi ’s. Clearly, there is a unique way to weight
these graphs, and the weight of every edge oriented southeast is 1. By the above remarks,
(−1)i (λ/µ) ω(ψ(sλ/µ)) can be written as a sum overG0 of products of skew Schur functions,
which is obviously a nonnegative integer combination of Schur functions. 2

We conclude this section by pointing out the interesting open problem of finding nice
combinatorial interpretations for the coefficients of the expansion ofψ(sλ) in the basis of
Schur functions. In other words, we are asking for generalizations of the formulas (1.4).

4. The Operator∇ of Bergeron and Garsia

In this section we present a generalization of Theorem 3.1 in terms of the operator∇
defined by F. Bergeron and A. Garsia (see [3, 2]). This operator acts onΛ[q, t ], and has
a modified version of the Macdonald polynomials as eigenfunctions. More precisely, for
every partitionµ of n, we define

H̃µ :=
∑
λ`n

sλ K̃λµ(q, t),
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where

K̃λµ(q, t) := tn(µ) Kλµ(q, 1/t),

Kλµ(q, t) are the Macdonaldq, t-Kostka coefficients defined in [17], andn(µ) :=∑i (i −
1)µi . Macdonald conjectured in [17] thatKλµ(q, t) are polynomials inq, t with positive
integer coefficients. Recently it was shown that they are polynomials with integer coeffi-
cients, but the positivity still remains to be proved. With this notation, the operator∇ is
defined by

∇ H̃µ := Tµ H̃µ,

where

Tµ := tn(µ)qn(µ′).

The following is one of the main conjectures [9, 3] concerning the operator∇; it is based
on thorough computer experiments.

Conjecture 4.1 For every partitionµ of n, we have the expansion

∇ sλ = ελ
∑
µ`n

sµ Cλµ(q, t),

whereελ is a sign, and Cλµ(q, t) are polynomials in q, t with nonnegative integer coeffi-
cients.

The fact thatCλµ(q, t) are polynomials inq, t with integer coefficients has been proved
recently by A. Garsia by extending the machinery in [10], and will appear in [3]. Some
of the coefficientsCλµ(q, t) were identified. For instance, one obtains theq, t-Catalan
sequence studied in [10] by settingλ=µ= (1n). Other identities concerning the images of
various symmetric functions under∇ are known. For example, according to Theorem 3.4
in [10], we have that

∇ en = DHn(x;q, t); (4.2)

here DHn(x;q, t) is the conjectured bigraded Frobenius characteristic of diagonal har-
monics, which is given by formula (15) in [10], and is related to a bivariate version of
Lagrange inversion. Since DHn(x; 1, 1)= h∗n (see [14] or the discussion below), we have
that∇q= t = 1=ψ ◦ω. This means that if Conjecture 4.1 is true, thenελ= (−1)i (λ

′), by The-
orem 3.1. The next step towards Conjecture 4.1 is to set onlyt = 1. This is an interesting
special case, because the operator∇t = 1 is known to be multiplicative by formula (92) in
[10], and hence one can combine the Jacobi-Trudi formula with (4.2) to compute∇t = 1 sλ.
We also need to recall from [10] (cf. (41), (43), (55), and (90)) the fact that DHn(x;q, 1),
which will be denoted byh∗n(q), is given by theq-Lagrange inversion formula due to
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Andrews, Garsia, and Gessel [1, 8, 11]. More precisely, we have the followingq-analogue
of formula (2.4):

h∗n(q) =
∑

a

q
∑

i (n−i )ai−(n
2) eλ(a), (4.3)

where the summation again ranges over all sequencesa= (a1, . . . ,an+1) of the form (2.1);
the exponent ofq in the right-hand side of (4.3) is precisely half the area between the
Dyck path with alternating steps and the Dyck path corresponding to the sequencea under
the bijection discussed at the beginning of Section 2. This given, M. Bousquet-M´elou,
F. Bergeron, and D. Gouyou-Beauchamps [4] determined the coefficientCλ,(1n)(q, 1), and
thus found the signελ too. On the other hand, it turns out that our proof of Theorem 3.1
translates easily into a proof of the special case of Conjecture 4.1 corresponding tot = 1.

Theorem 4.4 Given partitions µ⊆ λ, the expansion of the symmetric function
(−1)i (λ/µ) ∇t = 1 sλ/µ in the basis of Schur functions involves only polynomials in q with
nonnegative integer coefficients.

Proof: Define the multiplicative operator̃∇ onΛ[q] by ∇̃ hn := h∗n(q). By (4.2) and the
multiplicativity of ∇t = 1, we have∇t = 1=∇̃ ◦ ω. Hence it suffices to prove the Theorem
for ∇̃ instead of∇t = 1.

The proof now proceeds in the same way as the proof of Theorem 3.1 until formula
(3.4). We now make the crucial observation that the sum of areas between the Dyck paths
in Pπ and the corresponding Dyck paths with alternating steps is invariant under switching
paths at crossings. Hence the power ofq attached to the terms in the right-hand side of the
q-analogue of (3.4) can be factored out of the second summation. The remaining part of
the proof is identical. 2

Theorem 4.4 suggests that Conjecture 4.1 might actually hold for∇ applied to skew
Schur functions.
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