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Abstract. We generalize work of Lascoux and J´ozefiak-Pragacz-Weyman on Betti numbers for minimal free
resolutions of ideals generated by 2× 2 minors of generic matrices and generic symmetric matrices, respectively.
Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and
we compute the analogous Betti numbers for some natural modules over these Segre and quadratic Veronese
subalgebras. Our motivation is two-fold:r We immediately deduce from these results the irreducible decomposition for the symmetric group action on

the rational homology of allchessboard complexesand complete graphmatching complexesas studied by
Björner, Lovasz, Vre´cica andŽivaljević. This follows from an old observation on Betti numbers of semigroup
modules over semigroup rings described in terms of simplicial complexes.r The class of modules over the Segre rings and quadratic Veronese rings which we consider is closed under
the operation of takingcanonical modules, and hence exposes a pleasant symmetry inherent in these Betti
numbers.
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1. Introduction and main results

Hilbert’s Syzygy theorem says that every finitely generated moduleM over a polynomial
ring A = k[x1, . . . , xn] has a finite resolution by freeA-modules, i.e. an exact sequence

0→ Aβh → · · · → Aβ1 → Aβ0 → M → 0. (1.1)

In the case where eachβi is as small as possible, this is called aminimal free resolution,
and the numbersβi are called theBetti numbersof M over A. If M is a graded module
over A it is known thatβi = dimk TorA

i (M, k), wherek is regarded as the trivialA-module
k = A/(x1, . . . , xn).

In a seminal work, Lascoux [19] computed TorA

˙
(M, k) in the case whereA = k[zi j ] is

the polynomial ring in the entries of a genericm×n matrix(zi j ), k is a field of characteristic
zero, andM is the quotient ringA/I whereI is the ideal generated by allt × t minors of
the matrix(zi j ). In this situation, there is an action ofGLm(k) × GLn(k) on TorA

˙
(M, k)

which is crucial for Lascoux’s analysis, and his result actually describes the decomposition
of TorA

˙
(M, k) into GLm(k) × GLn(k)-irreducibles. J´ozefiak, Pragacz, and Weyman [17]
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used similar methods to compute TorA

˙
(M, k) whereA is the polynomial ringk[zi j ] in the

entries of a genericn× n symmetricmatrix (zi j = zji ), I is the ideal generated by allt × t
minors, andM is the quotientA/I (againk has characteristic zero). Their results also rely
heavily on the inherentGLn(k)-action, and describe the irreducibleGLn(k)-decomposition
of TorA

˙
(M, k).

The main results of this paper will generalize the results for 2× 2 minors from [17, 19],
as we now explain. Letk[x, y] := k[x1, . . . , xm, y1, . . . , yn] be a polynomial ring in two
sets of variables of sizesm, n respectively. TheSegre subalgebraSegre(m, n, 0) is the
subalgebra generated by all monomialsxi yj with 1≤ i ≤ m and 1≤ j ≤ n. Letting Am,n

be the polynomial ringk[zi j ] in the entries of a genericm× n matrix (zi j ) as above, there
is a surjection

φ : Am,n → Segre(m, n, 0)

zi j 7→ xi yj

The kernel of this surjection is well-known to be the idealIm,n generated by the 2× 2
minors of the matrix(zi j ), and hence Segre(m, n, 0) ∼= Am,n/Im,n. Identifying x1, . . . , xm

and y1, . . . , yn with the bases of twok-vector spacesV ∼= km andW ∼= kn, thenk[x, y]
may be viewed as the symmetric algebra

Sym(V ⊕W) =
⊕
a,b≥0

SymaV ⊗ SymbW.

If we define

Segre(m, n, r ) =
⊕

a,b≥0,a=b+r

SymaV ⊗ SymbW

for any integerr, then it is easy to check that Segre(m, n, 0) agrees with our earlier def-
inition, and in general Segre(m, n, r ) is a finitely-generated module over Segre(m, n, 0).
Therefore the surjectionφ endows Segre(m, n, r ) with the structure of a finitely-generated
Am,n-module. Furthermore, if we identifyzi j with xi ⊗ yj , thenAm,n

∼= Sym(V ⊗W). As
a consequence, the product of general linear groupsGL(V)×GL(W) ∼= GLm(k)×GLn(k)
acts compatibly onAm,n and Segre(m, n, r ) and hence also acts on TorAm,n

˙
(Segre(m, n,

r ), k). The results of [19] for 2× 2 minors therefore describe the irreducible decomposi-
tion of TorAm,n

˙
(Segre(m, n, 0), k) whenk has characteristic zero, and our first main result

generalizes this to Segre(m, n, r ). Recall that the irreducible polynomial representations
Vλ of GLn(k) = GL(V) are indexed by partitionsλ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0),
and |λ| := ∑i λi . Similarly, we denote byWµ the irreducible representation ofGLm(k)∼= GL(W) indexed by the partitionµ. The representationVλ corresponds to a Ferrers shape
in whichλ1, . . . , λn are the row lengths.

Theorem 1.1 For fields k of characteristic zero and all r∈ Z, as a GLm(k) × GLn(k)-
representation, TorAm,n

˙
(Segre(m, n, r ), k) is the direct sum of irreducible representations

Vλ ⊗Wµ where(λ, µ) runs through all pairs of partitions pictured in figure1, with
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Figure 1. The pairs of partitions(λ, µ) indexingVλ ⊗Wµ which occur in Tor
Am,n

˙
(Segre(m, n, r ), k).r s arbitrary,r λ,µ having at most m, n parts respectively,

and with the pair(λ, µ) occurring in homological degree s(s − r ) + |α| + |β|, i.e.
in TorAm,n

s(s−r )+|α|+|β|(Segre(m, n, 0), k). Hereα, β are as shown in the figure, and αT , βT

represent their conjugate partitions.

Similarly, if we let k[x] := k[x1, . . . , xn] then the dth Veronese subalgebra
Veronese(n, d, 0) is the subalgebra ofk[x] generated by all monomials of degreed. Letting
An be the polynomial ringk[zi j ] in the entries of a generic symmetricn × n matrix (zi j )

(sozi j = zji ) as above, there is a surjection

φ : An → Veronese(n, 2, 0)

zi j 7→ xi x j

The kernel of this surjection is well-known to be the idealIn generated by the 2×2 minors of
the symmetric matrix(zi j ), and hence Veronese(n, 2, 0) ∼= An/In. If we identifyx1, . . . , xn

with the basis of thek-vector spaceV ∼= kn, thenk[x] may be viewed as the symmetric
algebra

SymV =
⊕
a≥0

SymaV.

Defining

Veronese(n, d, r ) :=
⊕

a≡r mod d

SymaV

for anyr ∈ Z/dZ, it is easy to check that Veronese(n, d, 0) agrees with our earlier defini-
tion, and in general Veronese(n, d, r ) is a finitely-generated module over Veronese(n, d, 0).
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Therefore the surjectionφ endows Veronese(n, 2, r ) for r ≡ 0, 1 mod 2 with the structure
of a finitely-generatedAn-module. Furthermore,An

∼= Sym(Sym2V) so thatGL(V) ∼=
GLn(k) acts compatibly on An and Veronese(n, 2, r ), and hence also acts on
TorAn

˙
(Veronese(n, 2, r ), k). The results of [17] for 2×2 minors describe the irreducible de-

composition of TorAn

˙
(Veronese(n, 2, 0), k) whenk has characteristic zero, and our second

main result generalizes this to Veronese(n, 2, r ).

Theorem 1.2 For fields k of characteristic zero, and for r ≡ 0, 1 mod 2,as a GL(V)-
representation, TorAn

˙
(Veronese(n, 2, r ), k) is the direct sum of irreducible GL(V)-represen-

tationsVλ whereλ runs through all self-conjugate partitionsλ, as shown in figure2, withr r ≡ |λ| mod 2,r λ having at most n parts,
and with Vλ occurring in homological degree ( s

2) + |α| (i .e. in
TorAn

(
s
2 )+|α|(Veronese(n, 2, r ), k)). Here s is the size of the Durfee square ofλ, and α is

as shown in figure2.

Our original motivation for performing these computations comes from an old observation
(Proposition 3.1) that has been re-discovered many times (see e.g. [24, Theorem 7.9], [7,
Proposition 1.1], [8]). The observation says that in the case whereM is a finitely generated
semigroup module over an affine semigroup ringS, andA is the polynomial ring in the
generators ofS, the groups TorA

˙
(M, k) are isomorphic to direct sums of homology groups

with coefficients ink for certain simplicial complexes derived fromS,M . As will be shown
in Section 3 (and was alluded to briefly in [7]), this result applies to both Segre(m, n, r ) and
Veronese(n, 2, r ). Furthermore, the relevant simplicial complexes include as special cases
them×n chessboard complexes1m,n and thematching complex1n for the complete graph

Figure 2. The self-conjugate partitionsλ indexingVλ which occur in Tor
Am,n

˙
(Veronese(n, 2, r ), k) for r = 0, 1.
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on n-vertices, as defined and studied in [5]. Our computations of Tor allow us to compute
the rational homology (Theorem 3.3) for allchessboard complexes with multiplicities,
as defined in [7, Remark 3.5], and for the class of complexes generalizing the matching
complexes1n which we callbounded-degree graph complexes. As special cases, we deduce
the following result about the complexes1m,n and1n. For its statement, recall that the
irreducible representationsSλ of the symmetric group6n are indexed by partitionsλ with
|λ| = n.

Theorem 1.3 For fields k of characteristic zero, as a6m×6n-representation, the reduced
homologyH̃

˙
(1m,n; k) is the direct sum of irreducible representationsSλ⊗Sµ where

(λ, µ) runs through all pairs of partitions pictured in figure1 withr s arbitrary,r |λ| = m, |µ| = n (so that r= m− n),
and with the pair(λ, µ) occurring in H̃s(s−r )+|α|+|β|(1m,n; k). Hereα, β are as shown in
figure1.

Also for fields k of characteristic zero, as a6n-representation, the reduced homology
H̃
˙
(1n; k) for r = 0, 1 is the direct sum of irreducible representationsSλ whereλ runs

through all self-conjugate partitionsλ, as shown in figure1, withr |λ| = n,r |λ| ≡ r mod 2,
and withSλ occurring in H̃(

s
2 )+|α|−1(1n; k). Here s is the size of the Durfee square ofλ,

andα as shown in the figure.

We should point out that although we were not originally aware of it, the results in The-
orem 1.3 are not new. In a recent preprint [11], Friedman and Hanlon obtain exactly the
same description as in Theorem 1.3 for the rational homology of the chessboard complex
1m,n, using a beautiful, but entirely different method involving the spectral decomposition
of discrete Laplacianson1m,n. Their method uncovers further information about the ir-
reducible decompositions of eigenspaces for these Laplacians. Also, the same description
as in Theorem 1.3 for the rational homology of the matching complex1n was obtained
independently by Bouc [6], and also independently by Karagueusian [18].

There is another recent motivation for the computation of the rational homology of the
complete graph matching complex1n, ensuing from work of Vassiliev, which is discussed
in [4]. In particular, Table 3 of that reference lists homology calculations ofH̃i (1m,n; k)
for small values ofi, char(k) and Theorem 1.3 (or the results of [6, 18]) accurately predict
all of the non-torsion data which occurs in this table.

The paper is structured as follows. Section 2 discusses the canonical modules of
Segre(m, n, r ) and Veronese(n, 2, r ), and explains how Theorems 1.1 and 1.2 respect
canonical module duality. It then uses this duality to prove Theorems 1.1 and 1.2. Section 3
sketches the proof of the old observation on Betti numbers of semigroup modules over semi-
group rings needed to deduce Theorem 1.3. This section also gives the result (Theorem 3.3)
generalizing Theorem 1.3, about rational homology of chessboard complexes with multi-
plicities and bounded-degree graph complexes. Section 4 is devoted to remarks and open
problems.
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2. Canonical modules and the proof of Theorems 1.1, 1.2

The goal of this section is two-fold. First we review the definition of Cohen-Macaulayness
and canonical modules. A general reference for some of this material is [24]. Then we
determine when Segre(m, n, r ) and Veronese(n, d, r ) are Cohen-Macaulay and identify
their canonical modules. We then explain how Theorems 1.1 and 1.2 respect canonical
module duality and show how this implies the theorems.

Recall that for a finitely generated graded moduleM over the polynomial ring
A= k[x1, . . . , xn], the homological dimension h= hdA(M) is the length of a minimal
free resolution forM, i.e. it is the largest indexh such that TorAh (M, k) 6= 0. If we denote
by d theKrull dimensionof the quotientA/AnnAM , thenA is said to beCohen-Macaulay
if hdA(M) = n− d. If M is a module over a finitely generated gradedk-algebraR which
is not a polynomial ring, then one usually takesA to be a polynomial ring in indeterminates
which map to a minimal set of algebra generators forR, and say thatM is a Cohen-Macaulay
R-module if it is Cohen-Macaulay as anA-module.

When M is Cohen-Macaulay, the groups Exti
A(M, A) are known to vanish fori < h,

and thecanonical moduleÄ(M) is defined to be theA-module ExthA(M, A). Because of
the vanishing of the lower Ext groups, applying the functor HomA(·, A) to the minimal free
resolution (1.1) gives an exact sequence (and hence a minimal free resolution)

0← Ä(M)← (A∗)βh ← · · · ← (A∗)β1 ← (A∗)β0 ← 0

ofÄ(M). We conclude from this resolution that TorA
i (M, k) and TorAh−i (Ä(M), k) are dual

ask-vector spaces for alli .

Proposition 2.1 For an arbitrary field k, Segre(m, n, r ) is a Cohen-Macaulay
Am,n-module if and only if eitherr 0≤ r ≤ n− 1, orr 0≤ −r ≤ m− 1, orr m= n = 1 and r is arbitrary.

Proof: We observe that Segre(m, n, r ) is thek-linear span of monomialsxβ
′
yβ
′′

such that∑m
i=1 β

′
i −
∑n

j=1 β
′′
j = r. The depth and Cohen-Macaulayness of such modules constructed

from solutions of linear Diophantine equations were studied by Stanley [23]. In particular,
his Corollary 3.4 (withs= m, t = n, α = r andai = bj = 1 for all i, j ) exactly gives the
proposition. 2

We must also address the Cohen-Macaulayness of the modules Veronese(n, d, r ), and
furthermore identify the canonical modules of Segre(n, d, r ) and Veronese(n, d, r ). A
convenient approach is to use some facts from the invariant theory of finite (or compact)
groups which we now review (see [22] for a nice survey).

Recall that ifG is any subgroup ofGL(V) ∼= GLn(k), then identifyingR= k[x1, . . . , xn]
with Sym(V) defines aG-action onR. For the remainder of this section, assume that
k = C, and we will assume thatG is a compact subgroup ofGLn(C). WhenG is com-
pact, the subringRG of G-invariant polynomials is finitely generated and Cohen-Macaulay
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by the methods of Hochster and Eagon [16]. More generally, for any irreducible char-
acterχ of G, one can define the module ofχ -relative invariants RG,χ to be theχ -
isotypic component ofR. It is shown in [22, Theorem 3.10] that forG finite, RG,χ is
a finitely generated Cohen-Macaulay module overRG, (although Proposition 2.1 shows
that Cohen-Macaulayness can fail for compact groupsG and non-trivial charactersχ ).
One can furthermore identify the canonical moduleÄ(RG,χ ) in the cases whereRG,χ is
Cohen-Macaulay.

Lemma 2.2 [22, Remark on p.502] Let G ⊂ GLn(C) be compact, χ an irreducible
character of G, det the determinant character of G, and χ̄ the conjugate character toχ,
i.e. χ̄(g) = χ(g). Assume RG,χ is a Cohen-Macaulay RG-module. Then we have the
following isomorphism of graded RG-modules

Ä(RG,χ ) ∼= RG,χ ·det

up to an overall shift in grading.

We now apply these facts to Segre(m, n, r ),Veronese(n, d, r ). LetS1 be thecircle group

S1 = {ei θ }θ∈R/2πZ
embedded as a subgroupG ↪→ GL(V ⊕W) ∼= GLn+m(C) as follows:

ei θ 7→
(

ei θ · IV 0

0 e−i θ · IW

)
.

Here IV , IW denote the identity matrices acting onV,W respectively. If we letR =
Sym.(V ⊕ W) and letχr denote the characterχ(ei θ ) = eri θ of G, then it is clear that
Segre(m, n, 0) is the invariant subringRG, and Segre(m, n, r ) is the module of relative
invariantsRG,χr .

Similarly, embed the cyclic groupZ/dZ as a subgroupG ⊆ GL(V) ∼= GLn(C) as
follows:

ζ 7→ e
2π i
d · IV

whereζ is a generator ofZ/dZ. If we let R = Sym(V) and letχr be the character
χ(ζ ) = e

2π ir
d of G, then it is clear that Veronese(n, d, 0) is the invariant subringRG, and

Veronese(n, d, r ) is the module of relative invariantsRG,χr .

Corollary 2.3 When k= C, theVeronese(n, d, 0)-modulesVeronese(n, d, r ) are always
Cohen-Macaulay. Furthermore, when k= C and whenever the modulesSegre(m, n, r ),
Veronese(n, d, r ) are Cohen-Macaulay, their canonical modules are described, up to a
shift in grading, as follows:

Ä(Segre(m, n, r )) ∼= Segre(m, n, n−m− r )

Ä(Veronese(n, d, r )) ∼= Veronese(n, d,−n− r )
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Proof: As noted above, Veronese(n, d, r ) is a module of relative invariants for a finite
group, and hence is Cohen-Macaulay by [22, Theorem 3.10]. Then Lemma 2.2 and our
previous discussion identifies the canonical modules. 2

As a consequence, the duality between the opposite Tor groups forÄ(M)andM manifests
itself in a combinatorial/representation theoretic duality inherent in Theorems 1.1 and 1.2.
The next result is the combinatorial manifestation of that duality.

Proposition 2.4 For 0 ≤ r ≤ n − 1 or 0 ≤ −r ≤ m− 1, consider the operation of
complementing the shapes(λ, µ) within the rectangular shapes((n− 1)m, (m− 1)n) and
then rotating both shapes180degrees. This operation gives an involution which pairs the
shapes predicted by Theorem1.1 to occur in

TorAm,n

i (Segre(m, n, r ),C)

with those predicted to occur in

TorAm,n

j (Segre(m, n, n−m− r ),C)

where i+ j = (m− 1)(n− 1).
For r ≡ 0, 1 mod 2, consider the operation of complementing the self-conjugate shape

λ within the square shape nn, and then rotating180 degrees. This operation gives an
involution which pairs the shapes predicted by Theorem1.2 to occur in

TorAn
i (Veronese(n, 2, r ),C)

with those predicted to occur in

TorAn
j (Veronese(n, 2,−n− r ),C)

where i+ j = ( n
2).

Remark We note that sinceM = Segre(m, n, r ),Veronese(n, d, r ) are torsion free mod-
ules over the subalgebras Segre(m, n, 0),Veronese(n, d, 0) respectively, in both cases the
quotientA/AnnA(M) is isomorphic to the corresponding subalgebra. Since we can com-
pute the Krull dimensions of these subalgebras from the known dimensions of the Segre
and Veronese varieties, we conclude from Cohen-Macaulayness that

hdAm,n(Segre(m, n, r )) = mn− (m+ n− 1) = (m− 1)(n− 1)

hdAn(Veronese(n, 2, r )) =
(

n+ 1
2

)
− n =

(
n
2

)
.

Therefore in the dual pairing we should expect Tori ,Tor j to pair wheni + j = h, with
exactly the values ofh as stated in the Proposition.
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Proof of Proposition 2.4: Figure 3(a) and (c) depict the relevant shapes(λ, µ) andλ
along with their complementary partners within the appropriately sized boxes. As shown,
the complementary shapes also fit the format of figures 1 and 2, with their parameters related
to the original parameters as follows. For(λ, µ) with parametersr, s the complements
(λ′, µ′) have parametersr ′ = n − m− r, s′ = n − 1− s, as shown in figure 3(a). For
self-conjugateλ with Durfee square of sizes, the complementλ′ has Durfee square of size
n−s, as shown in figure 3(c). To see that the homological degreesi, j of the original shapes
and their complements, respectively, add up to the appropriate homological dimensionh,
one has two alternatives. One can either do a direct calculation in the two cases, or one can
note that in both cases,i + j is the same as the total number of shaded squares depicted
in figure 3(b) or (d), and count that the number of shaded squares is the appropriate value
(m− 1)(n− 1) or ( n

2). 2

The pairing of shapes inside rectangular boxes as in the previous proposition reallyis a
pairing of dual vector spaces, and in fact a pairing ofcontragredientrepresentations, due
to the following well-known result.

Proposition 2.5 [21, §0.2(c)] Let λ be a partition with at most n parts and all parts
of size at most m. Let B be a rectangular box with n rows and m columns, and letλ′

be the complement ofλ within the box B, after rotating 180 degrees. Then as GLn(C)
representations we have

Vλ′ ∼= (Vλ)∗ ⊗ (det)⊗m

where(Vλ)∗ denotes the contragredient representation to Vλ, and det ∼= ∧m(V) is the
one-dimensional determinant representation of GL(V).

As a consequence of this proposition and from the dimensions of the rectangular boxes
which occur in Proposition 2.4, we can see what shift in grading is necessary to turn some
of the isomorphisms in Corollary 2.3 into graded isomorphisms:

Ä(Segre(m, n, r )) ∼= Segre(m, n, n−m− r )[(x1 · · · xm)
n−1(y1 · · · yn)

m−1]

Ä(Veronese(n, 2, r )) ∼= Veronese(n, 2,−n− r )[(x1 . . . xn)
n]

whereM [xα] indicates the moduleM with multidegrees shifted up byα. If r = 0, we can
verify that these conjectural shifts in grading are actually correct: First assume without loss
of generality thatm≤ n, and compute the representations

TorAm,n

(m−1)(n−1)(Segre(m, n, 0), k) = V ((n−1)m−1,m−1) ⊗W((m−1)n)

TorAn

( n
2)
(Veronese(n, 2, 0), k) =

{
V (nn) if n is even

V (nn−1,n−1) if n is odd
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Figure 3. The pairing of partitions which are complementary within rectangular boxes: (a) The pairing for
Segre(m, n, r ). (b) Illustration for Segre(m, n, r ) of why i + j = (shaded area)= (m−1)(n−1). (c) The pairing
for Veronese(n, 2, r ). (d) Illustration for Veronese(n, 2, r ) of why i + j = (shaded area)= ( n

2 ).
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known from the results of [17, 19]. Then compare these with the easily computable repre-
sentations (recallingm≤ n)

TorAm,n

0 (Segre(m, n, n−m), k) = V (n−m) ⊗W∅

TorAn
0 (Veronese(n, 2,−n), k) =

{
V∅ if n is even

V (1) if n is odd

with which they are supposed to be paired. As a consequence, we immediately deduce
from Proposition 2.1, Proposition 2.3, and Proposition 2.4 the following:

Corollary 2.6 Theorem1.1 is correct when r= 0 and when n−m− r = 0. Theorem
1.2 is correct when r≡ 0 mod 2and when−n− r ≡ 0 mod 2.

Finally, from this we can deduce Theorems 1.1, 1.2:

Proof of Theorems 1.1 and 1.2: Since Theorems 1.1 and 1.2 both assert that groups
TorA

˙
(M,C) have certain decompositions asGL(V)- or GL(V)×GL(W)-representations,

we first claim they arepolynomialrepresentations, and hence it suffices to check that they
have the correctcharacters, i.e. that the dimensions of weight-spaces TorA

i (M,C)γ are
correct for each weightγ . To see this claim, we use the fact that

TorA

˙
(M,C) ∼= TorA

˙
(C,M),

and we can compute the latter by tensoring the Koszul resolution ofC as anA-module
with M and taking homology of the resulting complex. The terms in the Koszul resolution
are exterior powers ofC-vector spaces tensored withA, and hence are polynomial rep-
resentations. SinceM is always a polynomial representation, tensoring with it preserves
polynomiality. Then the homology groups of the resulting tensored complex are quotients
of submodules of these polynomial representations, and hence also polynomial.

It remains to show that the weight spaces TorA
i (M,C)γ always have the correct dimension

asserted in Theorems 1.1 and 1.2. We start with Theorem 1.2, so that

A = An

M = Veronese(n, 2, r )

and the group acting isGL(V). If n, r are not already in the cases covered by Corollary 2.6,
thenn is even andr is odd. But thenn+ 1 is odd, so we know that Theorem 1.2 is correct
for Veronese(n+ 1, 2, r ). Therefore each weight space TorAn

i (Veronese(n+ 1, 2, r ),C)γ̃
for γ̃ ∈ Nn+1 has the correct dimension predicted by Theorem 1.2. Given a weightγ ∈ Nn,
we can append an extra coordinate at the end equal to zero to obtain a weightγ̃ ∈ Nn+1.
Proposition 3.2 shows that

TorAn
i (Veronese(n, 2, r ),C)γ ∼= H̃i−1(1γ ;C)

∼= H̃i−1(1γ̃ ;C)
∼= TorAn+1

i (Veronese(n+ 1, 2, r ),C)γ̃ .
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Here1γ and1γ̃ are as defined in Section 3, and the second isomorphism comes from the
crucial (but trivial) fact that1γ and1γ̃ are isomorphic simplicial complexes. Theorem
1.2 for Veronese(n, 2, r ) then follows from the well-known fact that the dimension of the
weight-spaceVλ

γ in the irreducibleGLn(C)-representationVλ is the same as for the weight
spaceVλ

γ̃
in the irreducibleGLn+1(C)-representationVλ.

A similar argument works for Segre(m, n, r ). If m, n, r are not already in the cases
covered by Corollary 2.6, then we can always choosem′ ≥ m and n′ ≥ n such that
n′ −m′ −r = 0 and either 0≤ r ≤ n′ −1 or 0≤ −r ≤ m′ −1. Then Theorem 1.1 is correct
for Segre(m′, n′, r ), so the dimensions of each weight space TorAm,n

i (Segre(m′, n′, r ),C)(γ,δ)
are as predicted by Theorem 1.1. A similar argument using Proposition 3.2 then finishes
the proof. 2

3. Rational homology

The goal of this section is to sketch the proof of an old observation on Betti numbers of
semigroup modules over semigroup rings, and then apply this to deduce Theorem 1.3 and
other consequences.

To this end, we introduce some terminology. Let3 be a finitely generated additive sub-
semigroup ofNd, and letM ⊆ Nd be a finitely-generated3-module, i.e.λ+ µ ∈M for
all λ ∈ 3 andµ ∈M. The semigroup ringk[3] may be identified with a subalgebra of
k[z1, . . . , zd] generated by some minimal generating set of monomialsm1, . . . ,mn. Then
Mgives rise to a finitely generated moduleM = kMoverk[3] insidek[z], simply by taking
thek-span of all monomials of the formzµ whereµ ∈M. SurjectingA = k[x1, . . . , xn]
onto k[3] by xi 7→ mi , we endowk[3] and M with the structure of finitely generated
A-modules. Furthermore, all the rings and modules just defined carry anNd-grading,
and hence so does TorA

˙
(M, k). We will refer to theαth-graded piece of TorA

i (M, k) by

TorA
i (M, k)α for α ∈ Nd.

Givenµ ∈ M, define a simplicial complexKµ on vertex set [n] := {1, 2, . . . ,n} as
follows:

Kµ :=
{

F ⊆ [n] :
zµ∏

i∈F mi
∈ M

}
.

Proposition 3.1 (cf. [7, Proposition 1.1], [24, Theorem 7.9], [8], [25, Theorem 12.12])
For 3,M, A,M andµ ∈M as above, we have

TorA
i (M, k)µ ∼= H̃i−1(Kµ; k)

whereH̃ denotes reduced(simplicial) homology, and all other graded piecesTorA
i (M, k)α

for α 6∈M vanish.

Proof: For completeness, we sketch the proof as in [7, Proposition 1.1].
First note that TorAi (M, k)µ ∼= TorA

i (k,M)µ. We can compute the right-hand side starting
with the well-known Koszul complexK resolvingk as anA-module. This complex has as



MATCHING AND CHESSBOARD COMPLEXES 147

its t th termKt the module∧t An which is the freeA-module withA-basis{
ei1 ∧ · · · ∧ eit

}
1≤i1<···<i t≤n

and whereei carries the sameNd-grading as the monomial generatormi of k[3]. Tensoring
the resolutionK with the A-moduleM gives a complexK ⊗ M . Fix µ ∈ Nd and restrict
attention to theµth-graded piece(K⊗ M)µ, which is a complex ofk-vector spaces. The
t th term(K⊗ M)t,µ in this complex has typicalk-basis element of the form

zγei1 ∧ · · · ∧ eit

wherezγ ∈ M , and

zγ ·mi1 · · ·mit = zµ. (3.1)

Equation (3.1) implies that(K⊗M)µ vanishes unlessµ ∈M. Furthermore, whenµ ∈M,
note that in the above basis vector,γ is uniquely determined byµ and{i1, . . . , i t } from
Equation (3.1). If we identify the above basis vector with the oriented simplex [i1, . . . , i t ]
in Kµ, one can check that(K ⊗ M)µ is identified with the (augmented) simplicial chain
complexC̃

˙
(Kµ; k) up to a shift in grading by 1. The proposition then follows. 2

To apply this result along with Theorems 1.1 and 1.2, we note that Segre(m, n, 0) is the
semigroup ring for the submonoid ofNm × Nn generated by{(ei , ej )}1≤i≤m,1≤ j≤n where
ei is the i th standard basis vector, and Segre(m, n, r ) is the semigroup module generated
over this semigroup by{(v, 0)} asv runs over all vectors inNm with

∑
i vi = r if r > 0

(and similarly{(0, w)} if r < 0). For any multidegree(γ, δ) occurring in Segre(m, n, r ),
the complexK(γ,δ) from Proposition 3.1 is isomorphic to thechessboard complex with
multiplicities1γ,δ defined in [7, Remark 3.5]:1γ,δ is the simplicial complex whose vertex
set is the set of squares on anm× n chessboard, and whose simplices are the setsF of
squares having no more thanγi squares from rowi and no more thanδ j squares from rowj
for all i, j . The isomorphismK(γ,δ)

∼= 1γ,δ comes from identifying the generator(ei , ej )

of the semigroup with the square in rowi and columnj of the chessboard. Note that in
the square-free multidegree(γ, δ) = ((1, . . . ,1), (1, . . . ,1)), this complex1γ,δ = 1m,n

is them× n chessboard complexconsidered in [5], whose vertices are the squares of the
chessboard, and whose simplices are the sets of squares which correspond to a placement
of rooks on the board so that no two rooks lie in the same row or column. The complex
13,3 is depicted in figure 4(a).

Similarly, Veronese(n, 2, 0) is the semigroup ring for the submonoid ofNn generated
by {(ei + ej )}1≤i≤ j≤n , and Veronese(n, 2, 1) is the semigroup module over this semigroup
generated by{ei }1≤i≤n. For any multidegreeγ which occurs in Veronese(n, 2, r ), the
complexKγ from Proposition 3.1 may be identified with what we will call abounded-
degree graph complex1γ . In the square-free multidegreeγ = (1, . . . ,1), this complex
1γ is thematching complex1n for a complete graph onn vertices, as considered in [5].
The matching complex for a graphG is the simplicial complex whose vertex set is the set
of edges ofG, and whose simplices are the subsets of edges which form apartial matching,
i.e. an edge-subgraph in which every vertex lies on at most one edge. The isomorphism
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Figure 4. (a) The chessboard complex13,3 = 1(1,1,1),(1,1,1). The vertices are labelled by the generatorsxi yj

of Segre(3, 3, 0). The triangular face with verticesx2y1, x3y2, x1y3 is shown transparent so as not to obscure the
faces underneath. (b) The matching complex15 = 1(1,1,1,1,1) with vertices labelled by some of the generators
xi x j of Veronese(5, 2, 0). Note that the generatorsx2

i do not appear as vertices, since they do not divide into
x(1,1,1,1,1) = x1x2x3x4x5.

1(1,...,1)
∼= 1n comes from the fact that1(1,...,1) cannot use any vertices corresponding to

the generators{2ei } of the semigroup because of the square-free multidegree(1, . . . ,1), and
the vertex corresponding to the generatorei + ej may be identified with the edge between
verticesi and j in the complete graph. The matching complex15 is depicted in figure 4(b).
For more generalγ which are not square-free,1γ is the bounded-degree graph complex,
whose vertices correspond to the possible loops and edges in a complete graph onn vertices,
and whose faces are the subgraphs (with loops allowed) in which the degree of vertexi is
bounded byγi . Here a loop on a vertex is counted as adding 2 to the degree of the vertex.

We record the preceding observations in the following Proposition:

Proposition 3.2 For any field k there are isomorphisms

TorAm,n

i (Segre(m, n, r ), k)(γ,δ) ∼= H̃i−1(1γ,δ; k)
TorAn

i (Veronese(n, 2, r ), k)γ ∼= H̃i−1(1γ ; k).

We next consider symmetries which lead to group actions on these complexes. Notice that
one can re-index the rows and columns of the chessboard (which corresponds to permuting
the coordinates of(γ, δ) independently via an element of6m×6n), without changing the
chessboard complex1γ,δ up to isomorphism. Consequently, we may assume without loss
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of generality thatγ, δ are partitions, i.e. that their coordinates appear in weakly decreasing
order. Thereforeγ, δ are completely determined by the multiplicities of the parts which
occur in them, so we can writeγ = 1a12a2 · · · andδ = 1b12b2 · · ·. With this notation, define
theYoungor parabolic subgroup

6a×6b ↪→ 6m ×6n

where6a = Sa1×Sa2×· · · and similarly for6b. Then6a×6b acts as a group of simplicial
automorphisms of1γ,δ. Note that in the square-free case, it is the entire group6m × 6n

which acts on1m,n.
Similarly, one can re-index the vertices [n] of the complete graph (which corresponds

to permuting the coordinates ofγ via an element of6n), without changing the bounded
degree graph complex1γ up to isomorphism. Consequently, we may assume without loss of
generality thatγ is a partition, and completely determined by the multiplicities of the parts
which occur, so we can writeγ = 1a12a2 · · ·. There is then a Young subgroup6a ↪→ 6n

acting as a group of simplicial automorphisms of1γ , and in the square-free case it is the
entire symmetric group6n which acts on1n.

In order to state our next result, we need to recall the notion of aweight spacein a
GLn(k)-representation (see [12] for this and other facts from the representation theory of
GLn(k)). Let diag(x)denote the diagonal matrix inGLn(k)having eigenvaluesx1, . . . , xn. It
is known that whenk has characteristic zero, any finite-dimensional (rational) representation
U of GLn(k) decomposes as a direct sum ofk-vector spaces

U =
⊕
γ∈Nn

Uγ

whereUγ is thexγ -eigenspace for diag(x), andUγ is usually called theweight spaceof
U corresponding to theweightγ . It is well-known and easy to see that when we act onγ

by an element of6n by permuting coordinates we obtain a weightγ ′ whose weight space
Uγ ′ is isomorphic toUγ . As a consequence, in studying weight spaces we may restrict
attention to those withγ a partition (i.e. adominant weight), soγ = 1a12a2 · · ·. As in the
previous two paragraphs, the Young (parabolic) subgroup6a ↪→ 6n ↪→ GLn(k) acts onU
and preservesUγ , so thatUγ is a6a-representation.

Theorem 3.3r Let(γ, δ) ∈ Nm×Nn be partitions, r := |γ | − |δ|, 6a×6b the group described above,
and k a field of characteristic zero. Then as a6a × 6b-representation, the reduced
homologyH̃

˙
(1γ,δ; k) of the chessboard complex with multiplicity1γ,δ is isomorphic

to the direct sum of the(γ, δ)-weight spaces⊕
(λ,µ)

(Vλ ⊗Wµ)(γ,δ)

as(λ, µ) runs through the same indexing set as in Theorem1.1, and where(λ, µ) occurs
in H̃s(s−r )+|α|+|β|−1(1γ,δ; k).
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r Letγ ∈ Nn be a partition, r := |γ | mod 2, and6a the permutation group as described
above. Then as a6a-representation, the reduced homologỹH

˙
(1γ ; k) of the complete

graph matching complex1γ is isomorphic to the direct sum of theγ -weight spaces⊕
λ

Vλ
γ

as λ runs through the same indexing set as in Theorem1.2, and whereλ occurs in
H̃( s

2)+|α|−1(1γ ; k).

Proof: By Proposition 3.2 we have

H̃i−1(1γ,δ; k) ∼= TorAm,n

i (Segre(m, n, r ), k)(γ,δ)

wherer := |γ | − |δ|. Since the grading by multidegrees(γ, δ) ∈ Nm × Nn is easily seen
to coincide with the decomposition of TorAm,n

i (Segre(m, n, r ), k) into GLn(k) × GLm(k)-
weight spaces, the assertion for1γ,δ then follows from Theorem 1.1.

Similarly, by Proposition 3.2 we have

H̃i−1(1γ ; k)=TorAn
i (Veronese(n, 2, r ), k)γ

wherer := |γ | mod 2, and hence the assertion for1γ follows from Theorem 1.2. 2

Proof of Theorem 1.3: We simply recall the fact that the(1, . . . ,1)weight-spaceVλ
(1,...,1)

of the irreducibleGLn(k)-representationVλ affords the irreducible6n-representationSλ.
This fact follows, for example, from a comparison of Weyl’s construction ofVλ with the
Specht construction ofSλ (see [12, Part I §§4 and 6]). 2

Remark 3.4 The reader may be unsatisfied with our general description of the rational
homologiesH̃

˙
(1γ,δ; k), H̃

˙
(1γ ; k), since the answers are stated in terms of the mysteri-

ous6a-representations on the weight-spacesVλ
γ of the irreducibleGLn(k)-representations

Vλ. However, we would like to point out that from this description one can deduce
their decompositions into irreducible6a-representations, once one knows the irreducible
6a-decomposition ofVλ

γ . The latter decomposition can be reduced to computations of
Littlewood-Richardson coefficientsand some instances of theplethysm problem, as we
now explain. The authors would like to thank Mark Shimozono and William Doran for
explaining this reduction to us.

Let γ = 1a12a2 . . . tat , and letGLa be the subgroup

GLa1 × · · · ×GLat ↪→ GLn(k).

By restriction, ResGLn
GLa

Vλ becomes aGLa-representation, and as such has a decomposition
into GLa-irreducibles

ResGLn
GLa

Vλ ∼=
⊕

(ρ1,...,ρt )

(Vρ1 ⊗ · · · ⊗ Vρt )
⊕cλρ1,...,ρt



MATCHING AND CHESSBOARD COMPLEXES 151

where cλρ1,...,ρt
is a nonnegative integer which can be computed using theLittlewood-

Richardson rule[12, p. 455]. In fact,cλρ1,...,ρt
has the following combinatorial interpre-

tation: it is the number ofcolumn-strict(semi-standard) tableauxof shapeλ and content
(ρ1, . . . , ρt ) which areYamanouchiwith respect to each of the alphabets 1, 2, . . . ,a1 and
a1+ 1, . . . ,a1+ a2 anda1+ a2+ 1, . . . ,a1+ a2+ a3, etc. We refer the reader to [12] for
the definition of column-strict tableaux and contents. A tableaux is said to be Yamanouchi
with respect to an alphabeta,a + 1, . . . ,b − 1, b if when one restricts attention to the
entries of the tableaux that lie in this alphabet, and read these entries from right to left in
a row, proceeding from the top row and moving down, one obtains a word that has more
occurrences of the letteri than the letteri + 1 in any initial segment, for alli .

Now using the inclusions

6a ↪→ GLa ↪→ GLn(k)

it is easy to see that we have the following isomorphism of6a-representations:

Vλ
γ
∼=

⊕
(ρ1,...,ρt )

(
Vρ1

1a1 ⊗ Vρ2
2a2 · · · ⊗ Vρt

tat

)⊕cλρ1,...,ρt

where6ai acts onVρi
i ai for eachi .

Consequently, we have reduced the original description to the following problem: given
a, b nonnegative integers, andρ a partition with|ρ| = ab, how do we decompose the
6a-representationVρ

ba into 6a irreduciblesSν with |ν| = a? By a result of Gay [13],
this is an instance of theplethysm problem[12, Part I §6]: the multiplicity ofSν as a
6a-representation inVρ

ba is the same as the multiplicity ofVρ in Sν(SymbV) whereSν is
theSchur functor[2] corresponding toν. Alternatively, the above multiplicity is the same as
the coefficient of theSchur function sρ in theplethysmic composition sν [s(b)]. Algorithms
for computing these multiplicities are contained in [9].

4. Remarks and open problems

Most of the results in this paper have been limited to the case wherek has characteristic zero,
since some of the methods involved break down in positive characteristic. The question
of how TorA(·, k) varies with the characteristic ofk for the Segre and quadratic Veronese
modules, and consequently what torsion can occur in the homology of the chessboard and
matching complexes1m,n,1n is wide open, and of great interest. For this reason, we
review some of what little is known here.

Hashimoto [14] was the first to show that TorA5,5

3 (Segre(5, 5, 0), k) depends upon whether
k has characteristic 3, and consequently that15,5 has 3-torsion in its 2-homology (see also
[5, Proposition 2.3] which contains an error that was later corrected). Anderson [3] showed
that TorA7

5 (Veronese(7, 2, 0), k) depends upon whetherk has characteristic 5, by an explicit
calculation ofH̃4(1γ ,Z) for the multidegreeγ = (2, 2, 2, 2, 2, 2, 2). Bouc [6] showed that
H̃1(17) has 3-torsion (see also Table 3 of [4]), and hence TorA7

2 (Veronese(7, 2, 1), k)γ for
γ = (1, 1, . . . ,1) will depend upon whether the characteristic ofk is 3. More specificially,
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Bouc shows that̃Hk(13k+4;Z) = Z/3Z for k ≥ 1, and also fork ≥ 3 thatH̃k(13k+3;Z) is
a finite 9-torsion group requiring at least 3k+ 2 generators.

On the other hand, the resolutions of determinantal ideals generated byt × t minors of
anm× n matrix are known to be characteristic-free whent = m,m− 1,m− 2 by results
of Eagon and Northcott [10], Akin, Buchsbaum, and Weyman [1], and Hashimoto [15],
respectively. This implies (using the 2× 2 minor case) that Segre(m, n, 0) has a character-
istic free resolution wheneverm≤ 4. This suggests the following problems:

Problem 4.1. DoesSegre(m, n, r ) have a characteristic-free resolution for m≤ 4?Does
Veronese(n, 2, r ) have a characteristic-free resolution for n≤ 6? Equivalently do the
complexes1γ,δ have torsion-free integral homology wheneverγ has at most4 parts, and
similarly for1γ whenγ has at most6 parts?

One might be tempted to approach Problem 4.1 by showing that the complexes1γ,δ and
1γ are homotopy equivalent to wedges of spheres in the above situations. This was indeed
verified by Xun Dong (personal communication) for1γ,δ whenγ has at most 2 parts.
However Dong points out that it is not true already for the 3× 4 chessboard complex
1(1,1,1),(1,1,1,1), since it was observed in [5] that this complex triangulates a 2-dimensional
torus.

Another question deals with vanishing theorems and the connectivity of the associated
simplicial complexes. In [5], it is proven that1m,n is topologically(ν − 2)-connected,
where

ν = min

{
m, n,

⌊
1

3
(m+ n+ 1)

⌋}
and it is conjectured that this bound is tight, i.e. that1m,n has some nontrivial(ν − 1)-
homology. It is also proven there that1n is

(⌊
n+1

3

⌋− 2
)
-connected.

Problem 4.2. Generalize these connectivity results to arbitrary chessboard complexes with
multiplicity1γ,δ and the multi-matching complexes1γ .

Such results would give constraints on the resolutions of Segre(m, n, r )and Veronese(n, 2, r )
which are independent of the field characteristic.

Remark 4.3 It turns out that the modules Segre(m, n, r ) belong to a larger family of
modulesMt,λ supported in determinantal varieties fort × t minors witht ≥ 2, which we
briefly describe below. These modules were considered in a recent preprint of Weyman [26].
We thank Mark Shimozono and an anonymous referee for pointing out that the methods of
Lascoux [19] and Pragacz and Weyman [20] can be used to describe TorA

˙
(Mt,λ,Q), thus

generalizing Theorem 1.1.
Let A := Am,n = Sym(V ⊗ W) as above. LetIt be the ideal inA generated by the

t × t-minors of them× n matrix (zi j ). Let Yt := Spec(A/It ) be thedeterminantal variety,
and letX := Spec(A), an affine space which we identify withV∗ ⊗W∗ = Hom(V,W∗).
Let G be the Grassmannian of(t−1)-dimensional quotients ofV . We have the tautological
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exact sequence of vector bundles onG

0→ R→ VG → Q→ 0

whereVG := OG⊗V . Similarly defineWG := OG⊗W. Inside ofX×G = Hom(V,W∗)
× G there is a subbundle

Z := Hom(Q,W∗G) = {(ϕ,U ) : ϕ induces a mapU → W∗}.

Let ρ : Z → G be induced by the projection onto the second factor inX × G. For
any partitionλ := (λ1, . . . , λt−1) with at most(t − 1)-parts, letLλQ be the vector bun-
dle onG obtained by applying theSchur functor[2] associated withλ to Q. Then Mt,λ

:=H0(Z, ρ∗(LλQ)) is an A-module supported onYt . If t = 2 andλ has a single part
λ1 = r , thenMt,λ = Segre(m, n, r ).

Presumably, although we have not checked this, similar constructions and resolutions
exist generalizing Theorem 1.2.
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