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Abstract. LetA be a real arrangement of hyperplanes. LetB = B(q) be Varchenko’s quantum bilinear form
of A, introduced [15], specialized so that all hyperplanes have weightq. B(q) is nonsingular for all complexq
except certain roots of unity. Here, we examine the kernel ofB at roots of unity in relation to the topology of the
hyperplane singularity.

We use Varchenko’s work [16] to relateB(q) to a Salvetti complex for the Milnor fibration ofA. This paper’s
main result is specific to the arrangement of reflecting hyperplanes associated with theAn−1 root system. We use a
geometric property of the Milnor fibre to resolve a conjecture due to Hanlon and Stanley regarding theSn-module
structure of the kernel ofB(q) at certain roots of unity.
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1. Introduction

LetAbe an arrangement of hyperplanes inRn. In what follows, all hyperplanes are assumed
to contain the origin. LetL(A) denote their lattice of intersections. For eachH ∈ A, let
`H be a linear functional whose kernel isH . Let Q =∏H∈A `H . Q is said to be a defining
polynomial of the hyperplane arrangementA. Also letC be the set of chambers ofA; that
is, the set of connected components ofRn\⋃H∈A H .

In [15], Varchenko defines a matrixB = B(A) whose rows and columns are indexed by
the chambersC. The entries of the matrix areB(C,C′) = ∏H aH , where{aH : H ∈ A}
is a set of indeterminates, and where the product is taken over hyperplanesH ∈ A that
separate chambersC andC′. In this paper, we restrict our attention to the case where each
hyperplane has the same weightq; hereB(C,C′) = qn(C,C′), wheren(C,C′) is the number
of hyperplanes that lie between chambersC andC′.

Let V be the complex vector space with basisC. RegardB as an endomorphism ofV by
specializingq to a complex number. Varchenko gives a formula for the determinant ofB
in [15] that showsB is singular if and only ifq2k = 1, where

k = |{H : H ⊇ X}|

for some subspaceX ∈ L(A) for which Crapo’s beta invariant [4] is nonzero. See [15] or
[7] for a complete statement of this result.
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WhenA is the set of reflecting hyperplanes given by a root system, the Weyl groupG
permutes the chambersC, which givesV the structure of aG-module. For anyσ ∈ G,
one can see thatn(σC, σC′) = n(C,C′); therefore multiplication byB is a G-module
endomorphism ofV . Using the traditional labelling of the chambers ofAwith the elements
of G, it turns out thatB acts as multiplication by an element of the group algebraCG.

The focus of this note shall be arrangement given by the root systemAn−1, also known
as the braid arrangement. Here, the defining polynomial is

Q =
∏

1≤i< j≤n

(xi − xj ), (1.1)

and the Weyl group is the symmetric groupSn. Varchenko’s determinant formula special-
izes to

detB =
n∏

k=2

(
1− qk(k−1)

)(n
k)(k−2)!(n−k+1)!

(1.2)

ThusB is singular if and only ifq = ζ whereζ satisfiesζ k(k−1) = 1 for somek, 2≤ k ≤ n.
Hanlon and Stanley [7] have shown that the kernel ofB has an interesting structure as

anSn module for some values ofq. More precisely, letξ be akth root of unity. In context,
we shall useξ also to denote the one-dimensional representation of the cyclic subgroup of
Sn generated by thek-cycle(12· · · k), whose value on the generator isξ . They prove:

Theorem 1.3 (Theorem3.3 in [7]) Let q = ζ be a n(n − 1)th root of unity, for which
ζ j ( j−1) 6= 1 for 1≤ j < n. Then, as anSn-module,

kerB ∼= IndSn
Cn−1

ζ n − IndSn
Cn
ζ n−1.

If ρ is a faithful, one-dimensional representation ofCn, then IndSn
Cn
ρ = Lien, where Lien

is the representation ofSn afforded on the multilinear part of the free Lie algebra withn
generators.

Corollary 1.4 ([7]) Let q= ζ be a primitive, n(n− 1)th root of unity. Then

kerB ∼= IndSn

Sn−1
Lien−1− Lien.

This representation has appeared in other contexts, such as the theory of noncommutative
symmetric functions, and a version of graph cohomology [6, 13]. However, computational
evidence given in Hanlon and Stanley’s paper suggests that kerB has no comparably simple
description for general values ofq. In particular, without the condition thatζ j ( j−1) 6= 1
for j < n, it is not always true that the virtual representation IndSn

Cn−1
ζ n − IndSn

Cn
ζ n−1 is

even an actual representation. They conjecture that a generalization holds for certain values:
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Conjecture 1.5([7]) For anyk satisfying 2≤ k ≤ n, let q = ζ , whereζ j ( j−1) = 1 for
2≤ j ≤ n if and only if j = k. Then, as aSn-module,

kerB ∼= (n− k+ 1)
(
IndSn

Ck−1
ζ k − IndSn

Ck
ζ k−1

)
. (1.6)

The main objective of this paper is to show that the conjecture above is true, subject to
the additional restriction thatk > n/2. The proof occupies Section 3. However, it turns out
that the conjectured result does not hold for any values ofk ≤ n/2. The smallest value ofn
for which somek andζ meet the other hypotheses isn = 8, with k = 4 andζ a primitive,
twelfth root of unity. Then the dimension of the right-hand side of(1.6) is strictly greater
than that of kerB, for reasons which will appear below.

The proof relies on identifying the role of the matrixB in a calculation of the singular
homology of a topological space associated with the hyperplane arrangement. This is
the subject of Section 2. For an arbitrary arrangement ofm hyperplanes, consider the
defining polynomial as a mapQ : Cn→C. Let N= Q−1(0), andM =Cn\N, respectively
the variety and the complement of the arrangement. The restriction ofQ : M→C∗ is a
fibration (see [9]), andF = Q−1(1) is known as the Milnor fibre of the arrangement. Its
topology is the subject of ongoing investigation: see, for example, [3] or [2].

We give an explicit chain complex that computes the homology ofF for any real ar-
rangement. A geometric property ofF , its monodromy action, provides information about
the algebraic properties of the matrixB.

Conversely, Theorem 1.3 applies to describe the representation of the alternating group
afforded by certain monodromy eigenspaces in the homology ofF ; see Section 4.

2. A complex for the Milnor fibre

Here we describe the connection between Varchenko’s matrixB and the homology of the
Milnor fibre. Section 2.1 uses traditional algebraic topology to express the Milnor fibre as
an infinite cyclic cover of the complement space,M . In [14], Salvetti gives a CW-complex
that is homotopic toM , whose structure is determined by combinatorial data from the
hyperplane arrangement (the face lattice.) With methods of Varchenko [16], one can use
this to build a chain complex (Section 2.2) that computes the homology ofF , whereB
appears as a chain map.

2.1. An infinite cyclic cover

Choose 1 as the base point ofC∗, and choose an arbitrary pointx0 ∈ F as the base point
of M . A standard device of homotopy theory [17] makes it possible to extend the fibration
sequence

F ↪→ M
Q→ C∗
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to the left, to obtain a new fibration, up to homotopy:

ÄC∗ → F → M.

Here,ÄC∗ is the (based) space of homotopy classes of maps fromS1 to C∗, homotopically
equivalent to the integersZ. The inclusionF ↪→ M is not itself a fibration, but one can
replaceF by a homotopically equivalent spaceF(Q) to get an actual fibration overM :

Z → F(Q)
π→ M (2.1)

The spaceF(Q) is thehomotopy fibreof Q:

F(Q) = {(x, ω) : x ∈ M, ω ∈ [ I ,C∗], ω(0) = 1, ω(1) = Q(x)},

where [I , X] is meant to denote the continuous maps betweenI = [0, 1] and a spaceX,
modulo homotopies that preserve endpoints. To see how(2.1) works, observe thatF(Q)
consists of points inM paired with homotopy classes of paths inC∗ leading from 1 (the
base point) to the imageQ(x) of x underQ. The mapπ in (2.1) is given by projection
onto the first coordinate.

The fibreπ−1(x0) consists of homotopy classes of loops inC∗, sinceQ(x0) = 1, and
these are indexed naturally by the integers. Fix an explicit homotopy equivalence as follows.
Defineφ : F → F(Q) by φ(x) = (x, 1), where1 is the constant path. Letm = |A|, and
define a path-lifting function9 : F(Q)→ [ I ,M ] by

9(x, ω)(t) = [ω(1− t)]−
1
m x

for points(x, ω) ∈ F(Q). Finally, defineψ : F(Q)→ F byψ(x, ω) = 9(x, ω)(0). It is
not hard to verify the following:

Proposition 2.2 The mapsφ andψ establish a homotopy equivalence between F and
F(Q). Furthermore, suppose a group G acts on M in such a way that Q is constant on
orbits. Thenφ andψ are equivariant with respect to the group action that G induces on F
and F(Q).

In other words, the Milnor fibreF is homotopically equivalent to an infinite cyclic cover
of M , in which the sheets of the cover are counted by the winding numbers of paths inC∗.
Milnor’s article [8] describes this situation in generality. Our next observation will be that
the deck transformations coincide with the geometric monodromy action onF .

The fundamental groupπ1(M) has a presentation with one generator for each hyperplane,
given by a loopαH around that hyperplane (Randell, [12]). Since the image underQ of
such a loop is a loop around the origin inC∗, eachαH has the same action on points
(x, ω) ∈ F(Q): namely, it adds another loop around the origin to the pathω. Denote this
map byh′ : F(Q)→ F(Q). One can check that a generator ofπ1(C∗, 1) acts onF(Q) as
the self-maph′.
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By way of comparison, leth : F→ F be the monodromy action, given byh(x) =
e−2π i /mx. Then the following diagram commutes:

F(Q)
h′−→ F(Q)

↓ψ ↓ψ
F

h
—–−→ F

Sinceψ is an isomorphism in homology, we can identifyH∗(F(Q),C) with H∗(F,C).
Thenh : F → F andh′ : F(Q)→ F(Q) induce the same endomorphismh∗ of H∗(F,C).
Sincehm = Id, the action ofZ = π1(C∗, 1) on H∗(F,C) factors throughZ/mZ, andh∗
represents a generator of the group.

The Leray-Serre spectral sequence applied to the fibration(2.1) states that

E2
pq = Hp(M, Hq(Z))⇒ Hp+q(F,C).

This stage of the spectral sequence has only one nonzero row, so

H∗(F,C) ∼= H∗(M,C[t, t−1]). (2.3)

It follows from the discussion above that the local coefficient systemC[t, t−1] is aπ1(M)-
module in which each generator ofπ1(M) acts by multiplication byt . At the same time,
H∗(F,C) is aC[t, t−1]-module by identifying multiplication byt with the action ofh∗.

2.2. Cellular homology of M

We continue by restating Varchenko’s method of calculating the homology of a local coef-
ficient system onM . The reader should refer to Chapter 2 of [16] for complete details. We
begin with a brief description of Salvetti’s complex; for the details of the construction, see
[14], or the concise presentation in [11].

Three CW-complexesX, Y, A are required, whereY is a subcomplex ofA. X is, by
construction, homotopically equivalent toM . ComplexesA ⊂ Y are contractible, and the
pair (A,Y) is homotopically equivalent to the pair(Cn, N).

The data for the construction comes from the face lattice of the real arrangementA,
which we shall denoteL = L(A). Let≤ denote its partial ordering by reverse inclusion,
and writeQ ≺ P if P coversQ. The rankρ(P) of a faceP is given by its codimension.
LetLp denote the faces of rankp; thenC = L0, the set of chambers. Recall the definition
of the vector productPC ∈ C of any P ∈ L andC ∈ C. PC is the chamber determined by
“pushing” a point in the interior ofP in the direction of chamberC.

Cells in the CW-complexes are labelled with symbolsE(P, Q), whereP andQ are faces
with Q ≤ P. For 0≤ r ≤ n and 0≤ s ≤ n− r , let

Ers = {E(P, Q) : P ∈ Lr+s, Q ∈ Ls, Q ≤ P}.
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The cells of complexA in dimensionr are indexed by the set∪sErs. The cells of the
subcomplexY are indexed by∪s>0Ers. Last, ther -cells of X are indexed byEr 0 alone.

In A, the boundary of ar -cell E(P, Q)consists of all cellsE(P′, Q), whereQ ≤ P′ ≺ P.
In X, the boundary of ar -cell E(P, Q) consists of allr −1-cellsE(Q, QC), whereQ ≺ P.

The cellular chain complexes corresponding to the complexX and the pair(A,Y) have
the same bases, but differing boundary maps.Cp(X) andCp(A,Y) are both isomorphic to
the complex vector space generated by

{E(P,C) : P ∈ Lp,C ∈ C,C ≤ P}.

In order to describe boundary maps that compute the homology ofX and of the pair
(A,Y), let Hyps= {H ∈ A : P ⊆ H, Q 6⊆ H}, and letb(C, Q; P) be the number of
H ∈ Hyps that separateC andQ, minus the number that do not. Coorient the faces of the
arrangementA, and for facesQ ≺ P let ε(P, Q) be+1 or−1 according to whether or not
the coorientations ofP andQ agree. See(2.4.2) in [16]. The following proposition is a
specialization of Lemmas 2.5.13 and 2.5.15 of [16].

Proposition 2.4 ([16]) LetW be a local coefficient system and let s4 = t be automor-
phisms ofW so that eachαH ∈ π1(X) acts by t. Then
1. H∗(X,W) is computed by the chain complex C∗(X)⊗W, with boundary map

∂E(P,C) =
∑
Q≺P

ε(P, Q)sb(C,Q;P)E(Q, QC).

2. H∗(A,Y,W) is computed by C∗(A,Y)⊗W, with boundary map

∂ ′E(P,C) =
∑

C≤Q≺P

ε(P, Q)E(Q,C).

The main objective of this section is an application of the result above. LetW = C[t, t−1]
be the local coefficient system of(2.3). Let C̃∗ = C∗(X)⊗W, andC̃′∗ = C∗(A,Y)⊗W.

Corollary 2.5 Regard s as an indeterminate satisfying s4 = t . Then

H∗(F,C) = H∗(C̃∗, ∂(t))

asC[t, t−1]-modules.

Proof: LetW = C[t, t−1] as in(2.3), and apply the proposition. SinceX is homotopically
equivalent toM ,

H∗(M,C[t, t−1]) = H∗(C̃∗, ∂(t)).

The proof is completed by recalling Eq. (2.3). 2
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Figure 1. The A2 arrangement.

Example 2.6 Consider the arrangement with defining polynomialQ= (x − y)(x − z)
(y − z) and faces labelled as in figure 1. The face lattice has maximum element1̂ =
{(x, y, z) : x = y = z}. One can check that, for example,

• ∂ ′2E(1̂, x>y>z) = −E(x = y>z, x>y>z)− E(x>y>z, x>y>z);
• ∂1E(x = y>z, x>y>z) = s−1E(x>y>z, x>y>z)− sE(y>x>z, y>x>z).
• ∂2 : C̃2→ C̃1 is a 6×12 matrix with invariant factors 1, 1− t , 1− t , 1− t , 1− t3, 1− t3.

We shall also require the observation that, since the pair of spaces(Cn, N) is contractible,

Lemma 2.7 The chain complex(C̃′∗, ∂
′) is exact.

We introduce another important tool from [16]. For chambersC,C′ ∈ C, letb(C,C′) be
the number ofH ∈ A that separateC andC′, minus the number that do not. Now define
a bilinear formB′ from the arrangementA whose matrix hasC,C′ entry equal tosb(C,C′).
We shall be interested in this bilinear form for various subarrangements ofA. For any
X ∈ L(A), let B′X denote the corresponding bilinear form determined by the arrangement
AX, the subarrangement of hyperplanes containingX. Note that if one setsq = s2,

B = s|A|B′. (2.8)

Define a mapS∗ : C̃∗ → C̃′∗ by

SpE(P,C) =
∑
C′∈C

B′|P|(C,C
′)E(P,C′),
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for C ∈ C, P ∈ Lp, where|P| denotes the subspace spanned byP. S∗ is a block sum of
matricesB′; via Corollary 2.5, then,S∗ provides a relation between the homology of the
Milnor fibre and Varchenko’s matrices:

Proposition 2.9 ([16]) S∗ : C̃∗ → C̃′∗ is a homomorphism of chain complexes. S∗ is an
injection, and its cokernel is a torsion module over the ringC[t, t−1].

The last two lemmas have to do with the action ofZ/mZ on H∗(M,C[t, t−1]). Recall
that the group’s generator acts as multiplication byt . Thus tm acts as the identity, and
multiplication by(1− tm) kills H∗(M,C[t, t−1]). Consequently:

Lemma 2.10 Whenλ ∈ C satisfiesλm 6= 1, the chain complex(C̃∗, ∂(λ)) is exact.

To state the remaining lemma, letβ = β(A) denote Crapo’s beta invariant of the matroid
associated withA. It is equal to the reduced Euler characteristic of the decone ofA.

Lemma 2.11([3]) Whenλ ∈ C is an mth root of unity, theλ-eigenspace of h∗, acting on
Hn−1(F,C), has dimension at leastβ(A).

3. Generalizing Hanlon and Stanley’s theorem

Our main theorem is based on Conjecture 1.5.

Theorem 3.1 For any k satisfying n/2 < k ≤ n, let q = ζ , whereζ j ( j−1) = 1 for
2≤ j ≤ n if and only if j= k. Then, as aSn-module,

kerB(n) ∼= (n− k+ 1)
(
IndSn

Ck−1
ζ k − IndSn

Ck
ζ k−1

)
.

3.1. Preliminaries

For what follows, it will be convenient to restrict theAn−1 braid arrangement toRn−1 by
eliminating the subspace contained in all hyperplanes,x1 + x2 + · · · + xn = 0. Call the
arrangementA(Sn), and fix a defining polynomial for it by substitutingxn = −

∑n−1
i=1 xi in

Eq. (1.1). LetB(n) = B(A(Sn)), and note that the matrix is unaffected by this restriction.
TakeB(1) = (1), corresponding to the empty arrangement. The symmetric groupSn acts
onA(Sn) andM by permuting the coordinates.

The complexes defined in the previous section have nice descriptions for the braid ar-
rangements. We begin with the face lattice: it is well known that the faces of the arrangement
A(Sn) are determined by block-ordered partitions of the set ofn elements. That is, to any
faceP ∈ Ln−k there corresponds a partition [n] = ∐k

r=1 Xr , where eachXr is nonempty.
The values(|X1|, . . . , |Xk|) form a composition: an ordered sequence of positive integers
whose sum isn. The points ofP are those whose coordinates satisfyxi ≤ xj whenxi ∈ Xr

andxj ∈ Xs with r < s, andxi = xj exactly whenr = s. In particular, chambers are
indexed by permutations. Recall that the cells of the complexesC∗(X) andC∗(A,Y) are
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indexed by pairs(P,C) for which P ∈ Lk, C ∈ C, and P ≤ C. Let (a1, . . . ,an−k)

be the composition ofn corresponding toP, andσ ∈ Sn the permutation given byC. We
express the pair(P,C) by writing σ in one-line notation and delimiting the blocks ofP’s
block-ordered partition with “/”’s:(

σ1, . . . , σa1/σa1+1, . . . , σa1+a2/ · · · /σa1+···+an−k−1+1, . . . , σn
)
.

In [16], Varchenko shows that one can construct the complexesX, Y, andA so thatSn acts
cellularly.

Proposition 3.2([16]) Let E(P,C)be a cell of X or A indexed by the pairσ , (a1, . . . ,an−k)

as above. Then, eachτ ∈ Sn induces the mapτE(P,C) = ε(τ )E(P′,C′) in C∗(X) and
C∗(A,Y), whereε is the sign character, and(P′,C′) is determined by the expression

((τσ )1, . . . , (τσ )a1/ · · · /(τσ )a1+···+an−k−1+1, . . . , (τσ )n).

Furthermore, ∂∗ and∂ ′∗ areSn-module homomorphisms.

We also require some notation to describe the invariant factors ofB(n) over the ring
C[q,q−1]. For a reference on the Smith Normal Form of a matrix, see [10].

Definition 3.3 Let R be a Euclidean domain,A a matrix overR, andu ∈ R a nonunit.
Let d1, d2, . . . ,dk be the invariant factors ofA, ordered as usual so thatdi |di+1. Let mr be
the number of invariant factorsdi that are divisible byur , but not byur+1. Letµ(A, u, x)
be the generating function for the numbersmr : that is,µ(A, u, x) =∑r mr xr .

For example, over the integers,

A =

1 2 1 0

2 6 0 4

1 0 7 −8

 ∼
1 0 0 0

0 2 0 0

0 0 4 0

,
soµ(A, 2, x) = 1+ x + x2, whereasµ(A, u, x) = 3 for u 6= 2 or 4.

Note that Eq. (2.8) implies thatµ(B, f, x) = µ(B′, f, x) for any polynomialf ∈ C[q],
as long asf (0) 6= 0, subject to the usual identifications2 = q.

We shall need to use the following property of the generating function.

Lemma 3.4 LetA⊕A′ denote the direct sum of two real hyperplane arrangements. Then
for any nonunit f∈ C[q],

µ(B(A⊕A′), f, x) = µ(B(A), f, x) · µ(B(A′), f, x).

Proof: From [16, Section 2.6], we haveB(A⊕A′) = B(A)⊗ B(A′). Let S(A) denote
the Smith Normal Form of a matrixA. For any two square matricesA andA′, it is known
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thatS(A⊗ A′) equalsS(A)⊗S(A′), up to a reordering of the rows and columns. Then one
only needs to verify the identityµ(A⊗ A′, f, x) = µ(A, f, x)µ(A′, f, x) whenA andA′

are diagonal. 2

Definition 3.5 For any arrangementA of rankn and nonunitf ∈ C[q] satisfying f (0) 6=
0, let

χ(A, f, x) =
n∑

k=0

(−1)kµ(Sk, f, x).

Sinceµ is additive over direct sums of matrices, it follows from the definition ofSk in
Section 2.2 that

χ(A, f, x) =
∑
P∈L

(−1)ρ(|P|)µ
(
B|P|, f, x

)
, (3.6)

whereB|P| = B(A|P|).
The next lemma gives a more specific relation between functionsχ andµ in the case

of braid arrangements. For any nonunitf ∈C[q,q−1] with f (0) 6= 0, define a generating
function

G( f, x, y) = 1+
∑
k≥1

µ(B(k), f, x)yk

k!
.

Lemma 3.7 G( f, x, y) satisfies the identity

G( f, x, y)−1 = 1+
∑
n≥1

(−1)nχ(A(Sn)), f, x)yn

n!
.

Proof: Given a faceP ∈ Lk, let (a1, . . . ,an−k) be the composition ofn associated with
it. It is not hard to verify that the arrangementA|P| is the direct sum of the arrangements
A(Sar ). By Lemma 3.4, then,

µ
(
B|P|, f, x

) = k∏
r=1

µ(B(ar ), f, x). (3.8)

Now let us determine the coefficient ofyn/n! in G( f, x, y)−1. Put
T =∑k≥1−µ(B(k), f, x)yk/k!. Then

G( f, x, y)−1 = 1

(1− T)

= 1+
∑
n≥1

∑
(a1,...,ak)

(
n

a1, . . . ,ak

) k∏
r=1

(−1)kµ(B(ar ), f, x)yn

n!
,
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where the sum is taken over sequences of positive integers(a1, . . . ,ak) whose sum isn.
Using(3.8) to compare this with(3.6) yields the desired identity. 2

Example 3.9 Let f = q2 − 1, and letP(A, x) denote the Poincar´e polynomial of the
intersection latticeL(A). With respect to the prime factors ofq2 − 1, the Smith Normal
Form of Varchenko’s matrix is known: we have

µ(B(n), f, x) = P(A(Sn), x) By Theorem 3.1 of [5],

=
n−1∏
r=1

(1+ r x) by Arnold’s Theorem [1].

ThenG( f, x, y) = (1−xy)−1/x, by the generalized binomial theorem. ClearlyG( f, x, y)−1

= G( f,−x,−y), from which

χ(A(Sn), f, x) = P(A(Sn),−x).

(In fact, one can show that this last formula holds for any arrangementA.)

Describing the invariant factors of Varchenko’s matrices at primes other thanq ± 1 is
closely related to describing the nontrivial monodromy eigenspaces ofH∗(F,C), how-
ever, and remains an open problem: see [5]. The alternating sumχ(A, f, x) introduced in
Definition 3.5 is a weaker invariant of an arrangement. At the same time, one can regard
it as a refinement of the Reidemeister torsion or zeta function ofF that Milnor considers
in [9].

3.2. Proof of Theorem 3.1

The proof of the theorem depends on considering the relation between the generating
functionsµ(B(n),q − ζ, x) andχ(A(Sn),q − ζ, x) for appropriate roots of unityζ .

Lemma 3.10 LetA be an essential, n-dimensional arrangement of m hyperplanes, and
let ζ be a nonzero complex number.
1. If ζ 2m 6= 1, thenχ(A,q − ζ, x) = 0.
2. If q = ζ is a root ofdetB(A), but not of anydetB(AX) for X ∈ L(A)\{1} satisfying
β(AX) 6= 0, thenχ(A,q − ζ, x) = (−1)n(x − 1)β(A).

Proof: In order to isolate the behaviour ofq− ζ , we shall localizeC[t, t−1] at the prime
generated byt − ζ 2. (Recall thatt = q2.) Let R denote the local ring, and assume this
localization is in effect through this proof without further reference to it. SinceS∗ is an
injection (Proposition 2.9), there is an exact sequence

0→ C̃∗(t)
S∗→ C̃′∗ → cokerS∗ → 0.
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To prove claim (1), decompose cokerSk for eachk as a direct sum

cokerSk =
⊕
r≥1

(
R

(t − ζ 2)r

)ark

.

By the properties of the Smith Normal Form,ark is the coefficient ofxr in µ(Sk, t − ζ 2, x).
From Lemmas 2.10 and 2.7, respectively, the complexesC̃∗(t) andC̃′∗ are exact. Using
the long exact sequence in homology, we find that cokerS∗ is also exact. SincẽC∗(t) and
C̃′∗ are both exact sequences of free modules, they both split. This induces a splitting on
cokerS∗, from which it follows that the alternating sum of the multiplicitiesark is zero, for
eachr . That is, each coefficient of the polynomialχ(A,q − ζ, x) is zero.

Now we prove claim (2). Lemma 2.11 asserts that ker∂n(ζ
2) has dimension at leastβ.

From Lemma 2.7 and Proposition 2.9,∂ ′n and Sn−1 are injections whent = ζ 2. Since
∂ ′nSn = Sn−1∂n(ζ

2), the dimension of kerSn is also at leastβ whent = ζ 2. On the other
hand, Varchenko’s determinant formula shows thatt − ζ 2 divides detSn exactlyβ times; it
follows thatµ(Sk, t − ζ 2, x) = βx + c for a constantc.

To complete the argument, note thatµ(Sk, f, 1) = dimC Ck for eachk. By exactness,
then,χ(A, t − ζ 2, 1) = 0, and we find thatχ(A,q − ζ, x) = (−1)n(x − 1)β. 2

Lemma 3.11 Let k > 1. For any ζ satisfyingζ k(k−1) = 1, let n > 1 be the smallest
integer satisfyingζ n(n−1) = 1, excluding k. Suppose n> k. Then
1. µ(B(r ),q − ζ, x) = r ! for 1≤ r < k;
2. µ(B(r ),q − ζ, x) is a linear function of x for k≤ r < min{n, 2k}.

Proof: Apply the previous lemma to the arrangementA(Sr ). For 2≤ r < n, r 6= k, case
(1) applies. Forr = k, case (2) applies. Using the generating function identity (Lemma 3.7),

G(q − ζ, x, y) =
[
1− y+ x − 1

k(k− 1)
yk + O(yn)

]−1

.

G is the exponential generating function forµ(B(r ),q − ζ, x). From the equation above,
its coefficients are constant whenr < k and linear inx when bothr < 2k andr < n. 2

Lemma 3.12 Let k > 1 and k ≤ n < 2k. Suppose thatζ satisfiesζ r (r−1) = 1 for
2 ≤ r ≤ n only when r= k. For the arrangementA(Sn) and map S∗ : C̃∗ → C̃′∗, let
q = ζ . Then
1. kerSr = 0 for 0≤ r < k− 1.
2. For k − 1 ≤ r ≤ n− 1, there exists someα > 0 for whichkerSr

∼= α(IndSn

Sk
kerB(k))

asSn-modules.

Proof: Assertion (1) follows from the determinant formula(1.2). To prove (2), suppose
k−1≤ r ≤ n−1, and leta= (a1, . . . ,an−r ) be a composition ofn. Let B(a) =⊕P B|P|,
where the direct sum is taken over all facesP ∈ Lr whose block-ordered partition has block
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sizesa. Using Proposition 3.2 and(2.8),

Sr = c
⊕

a

B(a),

is a direct sum ofSn-homomorphisms, wherec is some nonzero scalar, and the sum is
taken over all compositions ofn with n− r parts. Then

kerSr
∼=
⊕

a

kerB(a).

Since the hypotheses dictate thatn < 2k, k appears at most once in each composition
of n. Recall thatB|P| ∼= B(a1) ⊗ B(a2) ⊗ · · · ⊗ B(an−r ) as aSa1 × · · · ×San−r -module
homomorphism. At most one factor isB(k), and the rest are isomorphisms. It follows that
kerB(a) = IndSn

Sk
kerB(k) if someai = k, and 0 if not. 2

Now we are prepared to prove Theorem 3.1:

Proof of 3.1: Suppose thatn, k, andζ satisfy the hypotheses of the theorem, and set
q = ζ . We shall use induction onn−k. If n = k, Theorem 1.3 applies. Otherwise, suppose
further that, for allr satisfyingk ≤ r < n, kerB(r ) is the direct sum of copies of the
Sr -module IndSr

Ck−1
ζ k − IndSr

Ck
ζ k−1. We must show that the same is true whenr = n.

By Lemma 3.12 and the induction hypothesis, kerSr−1 = br U for eachr < n, for some
numbersbr ≥ 0, where

U = IndSn
Ck−1

ζ k − IndSn
Ck
ζ k−1. (3.13)

Consider the exact sequence of chain complexes overCSn

0→ kerS∗ → C̃∗(ζ 2)
S∗→ C̃′∗ → 0. (3.14)

From Lemmas 2.7 and 2.10, respectively,C̃∗(ζ 2) andC̃′∗ are exact. The long exact sequence
in homology shows that kerS∗ is also exact. It follows that kerSn−1 = bnU , where

bn = −
∑

1≤r<n

(−1)n−r br .

SinceB(n) = qn(n−1)/4Sn, by (2.8), it remains only to determinebn. From Lemma 3.11,
the dimension of kerB(n) equals the multiplicity ofq − ζ as a factor of detB(n). This
equals( n

k )(k−2)!(n−k+1)!, by (1.2). Since dimU = n!/k(k−1), one finds kerB(n) =
(n− k+ 1)U . 2

4. Remarks

The proof of Theorem 3.1 shows why Hanlon and Stanley’s conjecture needs the restriction
thatn < 2k. Whenn ≥ 2k,A(Sn)has edges that contain a direct sum of more than one braid
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sub-arrangementA(Sk). In this case, the methods used here describe the representation of
Sn on the kernel ofB(n) in terms of sums of tensor products of the representation(3.13)
with itself.

At the same time, Theorem 1.3 (Theorem 3.3 of [7]) describes the representation ofSn on
the homology ofC̃∗(ζ ), whereζ is a root of unity satisfying the conditions of the theorem:
one uses the exact sequence (3.14) as before. Equivalently, the theorem characterizes the
representation of the alternating groupAn on theζ -eigenspace ofH∗(F,C). One might
hope for an approach that simultaneously accounts for more of the structure of the (co)kernel
of Varchenko’s quantum bilinear form and of the homology of the arrangement’s Milnor
fibre.
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