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Abstract. The automorphism groupsAut(C(G, X)) andAut(CM(G, X, p)) of a Cayley graphC(G, X) and a
Cayley mapCM(G, X, p) both contain an isomorphic copy of the underlying groupG acting via left translations.
In our paper, we show that both automorphism groups are rotary extensions of the groupG by the stabilizer
subgroup of the vertex 1G. We use this description to derive necessary and sufficient conditions to be satisfied
by a finite group in order to be the (full) automorphism group of a Cayley graph or map and classify all the finite
groups that can be represented as the (full) automorphism group of some Cayley graph or map.
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1. Introduction and preliminaries

The only graphs considered in this paper are finiteCayley graphs0 = C(G, X) which are
finite simple graphs defined for any finite groupG and a set of generatorsX ⊂ G with the
property 1G 6∈ X andx−1 ∈ X for eachx ∈ X. The setV(0) of vertices of the Cayley
graph0 = C(G, X) is the set of elements ofG and any two verticesa andb of 0 are
adjacent if and only ifb−1 · a ∈ X. It is easy to see that Cayley graphs defined in this way
are simple loop-less non-oriented regular graphs of valency|X|.

The (full) automorphism group Aut(0) of a graph0 with the vertex setV(0) and edge
set E(0) is the group of all permutations of the setV(0) preserving the edge structure
E(0), i.e., the subgroup of the full symmetric group of all permutationsϕ ∈ SV(0) sat-
isfying the property thatϕ(u) is adjacent toϕ(v) if and only if u is adjacent tov, for
all pairs of verticesu, v ∈V(0). In the case when0=C(G, X), the automorphism group
Aut(0) can be alternately described as the subgroup ofSG of all permutationsϕ with the
propertyϕ(a)−1ϕ(a · x) ∈ X for all a ∈ G andx ∈ X. It easily follows that the set ofleft
translations Aa defined for each elementa ∈ G by Aa(b) = a · b constitutes a subgroup
of Aut(0) isomorphic to the underlying groupG. As this subgroup acts transitively on
the set of verticesV(0), every Cayley graphC(G, X) is a vertex-transitive graph. Due to
their inherent abundance of automorphisms as well as their “compact” description, Cayley
graphs have been intensely studied over the last hundred years, and have played an important
role in many interesting problems ranging from combinatorial group theory through alge-
braic combinatorics, extremal graph theory, and, especially lately, applied and theoretical
computer science.
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Our aim in Section 3 is to describe the structure of the automorphism groupAut(0) of
any Cayley graph0 = C(G, X) in terms of arotary extension[7] of the groupG. This will
allow us to characterize all finite groups representable as the full automorphism group of
some Cayley graph0. Related problems have been studied especially in the relation to the
classification of thegraphical regular representations—representations of abstract groups
as regular (full) automorphism groups of graphs (which all turn out to be Cayley, due to the
regularity requirement). Among the many articles devoted to this problem, let us mention
at least the following few: [3, 5, 12, 13].

All the relevant theory concerning rotary extensions of groups will be developed in
Section 2.

Section 4 of our paper is devoted to automorphism groups of combinatorial structures
closely related to Cayley graphs—the Cayley maps. Automorphism groups of Cayley maps
are isomorphic to subgroups of the automorphism groups of their underlying Cayley graphs,
and so the problem of characterizing the automorphism groups of Cayley maps is closely
tied to the above mentioned problems concerning Cayley graphs.

Let0 be an arbitrary graph. A 2-cell embeddingM of 0 in an orientable surface is called
amap, and can be simply thought of as a drawing of0 on an orientable surface with all faces
homeomorphic to the open disc. Each of the original edges of the graph0 can be endowed
in M with two opposite directions and gives thereby rise to two oppositely orientedarcs
of M . We denote the set of all arcs ofM by D(M); note that|D(M)| = 2|E(0)|. The
arc-reversing involutionacting on the setD(M) by sending an arc to its oppositely oriented
mate is denoted byT . Further, given an arbitrary vertexv of M , the cyclic permutation of
the set of arcs emanating fromv induced by the chosen orientation of the underlying surface
will be denoted bypv and the product of all cyclic permutationspv which is a permutation
of D(M) called therotation of M will be denoted byR. It is well-known [4] that each
mapM is completely determined by its underlying graph0 together with the permutations
R andT , and we shall use this fact freely throughout our paper. The (full ) automorphism
group Aut(M) of a mapM is the group of all permutations of the setD(M) preserving the
faces ofM , namely, the group of all permutationsϕ ∈ SD(M) that commute with bothR
andT .

In our paper we focus on maps whose underlying graph is a Cayley graph. Let0 =
C(G, X), the arc setD(M) of any embedding of a Cayley graph can then be represented
as the set of all ordered pairs(g, x), g ∈ G andx ∈ X, with (g, x) representing the arc
emanating from the vertexg and terminating at the vertexg · x. Thus,|D(M)| = |G| · |X|,
the arc-reversing involutionT can then be defined by means ofT(g, x) = (g · x, x−1), and
each of the local cyclic permutations ordering the arcs emanating from a vertexg induces
a cyclic permutationpg of the setX defined by the formulaR(g, x) = (g, pg(x)).

One special case of a Cayley graph embedding into an orientable surface that has received
particular attention is the case of an embedding for which all the local permutationspg are
equal in its action onX to a fixed cyclic permutationp of X. Such Cayley graph embeddings
are calledCayley mapsand are denoted byCM(G, X, p). The main reason for the attention
they receive, beside the obvious fact that they are easy to describe, is the richness of their
automorphism groups. Each elementg of G induces a map automorphismAg defined on
the setD(M) via left translation by means of the formulaAg(a, x) = (g · a, x), for all
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g ∈ G andx ∈ X. ThatAg is indeed a map automorphism follows easily from the following
identities:

R Ag(a, x) = R(g · a, x) = (g · a, pg·a(x)) = (g · a, p(x)) = Ag(a, p(x))

= Ag(a, pa(x)) = Ag R(a, x),

TAg(a, x) = T(g · a, x) = (g · a · x, x−1) = Ag(a · x, x−1) = AgT(a, x),

where the first sequence of identities also clearly indicates why left translations do not
induce map automorphisms for arbitrary embeddings of Cayley graphs. Thus, the (full)
automorphism groupAut(M) of a Cayley mapM =CM(G, X, p) acts transitively on the set
of vertices ofM via a copy ofG, and|G| ≤ |Aut(M)|. Moreover, it is well-known [2] that the
group of orientation preserving automorphisms of any map in an orientable surface (not just
of a Cayley map) acts semiregularly on the set of arcs of the map, i.e., the stabilizer of each of
the arcs is a trivial group. This implies the upper bound|Aut(M)| ≤ |D(M)| = |G| · |X|. In
the case when the upper bound|Aut(M)| = |G| · |X| is achieved andAut(M) acts regularly
on D(M), we say that the mapM is regular. Hence, regular Cayley maps are Cayley maps
with the richest automorphism group possible and have an eminent position among the class
of Cayley maps. For further results on regular Cayley maps see, for instance, [2, 6, 8, 9, 15,
16]. The paper [6] also contains a description of the automorphism groups of Cayley maps
in terms of rotary extensions which will allow us in Section 4 to characterize automorphism
groups of Cayley maps, and classify the abstract finite groups that can be represented as
(full) automorphism groups of Cayley maps.

2. Rotary extensions

The concept of a rotary extension first occurred in relation to automorphism groups of Cayley
maps in [6], where it was proved that the automorphism groupAut(M) of any Cayley map
CM(G, X, p) is a rotary extension of the underlying groupG by a group〈ρ〉 generated by
a special graph-automorphismρ stabilizing the identity 1G and called a “rotary mapping”.
The main idea behind rotary extensions is a generalization of the semidirect extension of a
groupH by a subgroupK ≤Aut(H)where the group of automorphismsAut(H) is replaced
by the group of all permutations onH stabilizing the identity 1H , denoted byStabSH (1H ).
Rotary extensions of groups form a special case of a much more general group extension
discussed in [14].

Most of the preliminary definitions and ideas for rotary extensions can be found in the
article [7], and we include them in this section for the sake of completeness. Also, the
paper [7] does not go beyond stating the basic definitions and properties. Although rotary
extensions can be defined for both finite and infinite groups, we will mostly restrict ourselves
to the finite case.

Let H be a finite group, and letStabSH (1H ) be the subgroup of the full symmetric group
SH of all permutationsϕ of the setH with the propertyϕ(1H ) = 1H . For eachh ∈ H ,
define a binary operation̄h onStabSH (1H ) as follows:

(φ ¯h ψ)(a) = φ(h)−1 · φ(h · ψ(a)), (1)
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for all a∈ H , where all the multiplications are to be carried out inH . Alternately,φ¯h ψ =
Aφ(h)−1φAhψ , whereAφ(h)−1 andAh are left translations by the indicated elements, and the
compositions are to be taken from the right. It is easy to verify that each of the operations
¯h is a non-associative binary operation onStabSH (1H ) with a left identity idH and a
right inverse for each elementφ ∈StabSH (1H ), namely the elementh−1 · φ−1(φ(h) · idH ).
Moreover, in the case when bothφ andψ are group automorphisms ofH , the operation̄ h

is the operation of composition of group automorphisms.
Now, instead of extendingH by a subgroup ofAut(H), we shall extend it by special sub-

groups ofStabSH (1H ) closed under all binary operations̄h. A subgroupK ≤ StabSH (1H )

is said to berotary closedif φ ¯h ψ ∈ K , for all φ,ψ ∈ K and allh ∈ H . The simplest
possible examples of rotary closed groups are the trivial group,StabSH (1H ) and any sub-
group ofAut(H), but we shall see soon that there are many more examples of rotary closed
subgroups related to automorphism groups of Cayley graphs.

Let H be a finite group, and letK be a rotary closed subgroup ofStabSH (1H ). Therotary
extensionof H by K , H ×rot K , is the set of all ordered pairs(h, k) ∈ H × K together with
the binary operation

(a, φ) ? (b, ψ) = (a · φ(b), φ ¯b ψ). (2)

Note that the product operation in the first coordinate is the “usual” semidirect product
multiplication, while the second coordinate multiplication is defined by formula (1). This
defines a group structure onH × K :

Theorem 1 Let H be a group, and let K be a rotary closed subgroup of StabSH (1H ).
Then the rotary extension H×rot K is a group.

Proof: Although the proof of this theorem is not particularly hard, it is relatively technical,
and we shall just state here that the identity element ofH ×rot K is the pair(1H , idH ) and
the inverse of the element(a, φ) is the pair(φ−1(a−1), φ−1(a−1) · φ−1(a−1 · idH )) (where
the element ofH upon which the second coordinate mapping acts has been omitted).2

We have already mentioned that in the caseK ≤ Aut(H), the rotary extensionH ×rot K
is a semidirect product ofH by K , and in this sense, the rotary extension defined here is
a generalization of the concept of a semidirect product. It is well-known that any group
productG = H · K with the propertyH ∩ K = {1G} is a semidirect product ofH by K
if and only if H is a normal subgroup ofG. To characterize rotary extensions in a similar
vein, consider a groupG that can be expressed as a product of two of its subgroupsH, K ,
G = H · K andH ∩ K = {1G}. ThenG is also equal to the productK · H , and, moreover,
for every pair of elementsh ∈ H andk ∈ K there exists a unique pairhk ∈ H andkh ∈ K
such thatkh = hkkh. Let 9 be the mapping fromK to SH sending elementsk ∈ K to
permutations9k defined by the equation9k(h) = hk, for all h ∈ H . We can easily see
that9 is a homomorphism fromK to StabSH (1H ). The following is a characterization of
rotary extensions in terms of the homomorphism9.

Theorem 2 Let G be a group and H, K be two subgroups of G such that G= H · K
and H∩K = {1G}. If the homomorphism9 : K −→StabSH (1H ) is injective and the image
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9(K ) is rotary closed in StabSH (1H ), then G is isomorphic to a rotary extension of H
by K .

Conversely, let G= H ×rot K . Then G contains two subgroups H′ and K′, isomorphic
to H and K respectively, such that H′ ∩ K ′ = {1G}, G = H ′ · K ′, the homomorphism
9 : K ′ −→ StabSH ′ (1H ′) is injective and9(K ′) is rotary closed in StabSH ′ (1H ′).

Proof: The proof of this theorem follows along the same lines as the usual proof of the
characterization of semidirect products. 2

We close this section with a simple observation that immediately follows from the injec-
tivity of 9:

Let G = H ×rot K be a rotary extension ofH by K ≤ StabSH (1H ). ThenK ∩CG(H) =
{1G} and H 6≤ Z(G), whereCG(H) is the centralizer ofH in G andZ(G) is the center
of G.

3. Automorphism groups of Cayley graphs

The first theorem of this section relates rotary extensions of groups to the structure of
automorphism groups of Cayley graphs.

Theorem 3 Let 0=C(G, X) be a Cayley graph, and let K=StabAut(0)(1G) be the
stabilizer of the identity vertex in Aut(0). Then K is a rotary closed subgroup of
StabSG(1G) and Aut(0) ∼= G×rot K .

Proof: Recall thatK is the subgroup ofSG of all permutationsρ satisfying the properties
(i) ρ(1G) = 1G and (ii)ρ(a)−1 · ρ(ax) ∈ X, for all a ∈ G andx ∈ X. Thus,K is clearly a
subgroup ofStabSG(1G), and to prove the first statement of our theorem it remains to prove
that K is rotary closed. Letφ,ψ ∈ K anda be an arbitrary element ofG. The mapping
φ ¯a ψ stabilizes the vertex 1G, asStabSG(1G) itself is rotary closed. Now, letb be any
element ofG andx be any element ofX. The following series of identities verifies that
φ ¯a ψ also satisfies the condition (ii).

((φ ¯a ψ)(b))
−1 · (φ ¯a ψ)(bx) = (φ(a)−1φ(aψ(b)))−1 · φ(a)−1φ(aψ(bx))

= φ(aψ(b))−1φ(a)φ(a)−1φ(aψ(bx))

= φ(aψ(b))−1φ(aψ(bx))

= φ(aψ(b))−1φ(aψ(b)y) ∈ X,

whereψ(b)−1ψ(bx) = y ∈ X follows from the fact thatψ satisfies (ii).
Sinceφ ¯a ψ satisfies both (i) and (ii),φ ¯a ψ belongs toK which is therefore rotary

closed.
Now, let us prove thatAut(0) is isomorphic to the rotary extensionG ×rot K . Let ρ

be any graph automorphism of0. Thenρ(1G) ∈ G, and so the composition ofρ with
the left translationAρ(1G)−1 is a graph automorphism of0 that stabilizes the identity:
Aρ(1G)−1 · ρ(1G) = ρ(1G)

−1 · ρ(1G) = 1G. Thus,Aρ(1G)−1 · ρ belongs toK and the map-
ping8 sending any graph automorphismρ to the pair(ρ(1G), Aρ(1G)−1 · ρ) is a bijective
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mapping fromAut(0) onto G ×rot K . It remains to prove that8 is a homomorphism of
groups.

Let ρ and ψ be two graph automorphisms of0. Then8(ρ ◦ ψ)= ((ρ ◦ ψ)(1G),

A((ρ◦ψ)(1G))−1 · (ρ ◦ ψ)) = ((ρ ◦ ψ)(1G), ((ρ ◦ ψ)(1G))
−1 · (ρ ◦ ψ)). On the other hand,

8(ρ) ? 8(ψ) = (ρ(1G), Aρ(1G)−1 · ρ) ? (ψ(1G), Aψ(1G)−1 · ψ) = (ρ(1G), ρ(1G)
−1 ·

ρ) ? (ψ(1G), ψ(1G)
−1 ·ψ) = (ρ(1G) · (ρ(1G))

−1 · ρ(ψ(1G)), (ρ(1G)
−1 · ρ(ψ(1G)))

−1 ·
ρ(1G)

−1 · ρ(ψ(1G) ·ψ(1G)
−1 ·ψ)= (ρ(ψ(1G)), ρ(ψ(1G))

−1 · ρ(1G)·ρ(1G)
−1·(ρ◦ψ)) =

((ρ ◦ ψ)(1G), ((ρ ◦ ψ)(1G))
−1 · (ρ ◦ ψ)), which completes the proof of our theorem.2

The above theorem asserts that the full automorphism group of any Cayley graph has
the structure of a rotary extension of the underlying group. This result allows for a nice
extension of the well-known Cayley theorem.

Corollary 1 Let G be a finite group of order n. Then G is a rotary factor of the full
symmetric groupSn, i.e., Sn is a rotary extension of G:

Sn = G×rot StabSn(1G).

Proof: This is a direct corollary of the previous theorem based on the fact thatSn =
Aut(C(G, X)), whereX is the set of all non-identity elements ofG, and thus,C(G, X) is
a complete graph. 2

It is not hard to see that Theorem 3 is true for any vertex-transitive automorphism group
of a Cayley graph—not just thefull automorphism group. The connection between auto-
morphism groups of Cayley graphs and rotary extensions goes even deeper.

Theorem 4 A finite group G can be represented as a vertex-transitive subgroup of the
full automorphism group of a Cayley graph if and only if G∼= H ×rot K and there exists a
family of orbits{Oi | i ∈ I} of the action of K on H satisfying the properties1H 6∈

⋃
Oi ,

(
⋃
Oi )
−1 =⋃Oi and〈⋃Oi )〉 = H.

Proof: One of the implications of the theorem follows from the discussion preceding the
theorem. The other implication follows from the simply verifiable fact thatG is a vertex-
transitive subgroup of the full automorphism group of the graphC(H,

⋃
Oi ). 2

Knowing the structure of the (full) automorphism groups of Cayley graphs, we can finally
address the problem of classifying all finite groups that are the full automorphism groups
of some Cayley graphs, i.e., we will classify all the finite groupsG for which there exists
a Cayley graph0 = C(H, X) such thatG ∼= Aut(0) (note that dropping the requirement
thatG has to be thefull automorphism group would make our task trivial: any finite group
G is asubgroupof the automorphism group of any Cayley graph based onG).

Let G be an (abstract) finite group. IfG∼=Aut(0) for some Cayley graph0 = C(H, X),
then H has to be isomorphic to a subgroup ofG. To simplify our notation, let us simply
assume thatH is a subgroup ofG itself. In the case whenH =G, the action ofG on the
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vertices of0 is regular, and the Cayley graphC(G, X) is called agraphical regular repre-
sentationof G. Graphical regular representations (GRR’s) have been extensively studied
in the 70’s and 80’s and the concentrated effort of several authors resulted in a classification
of all finite groups possessing graphical regular representations. A nice overview of these
results can be found in [3]. Here, we are particularly interested in the following complete
list of finite groups that do not have a graphical regular representation originally introduced
by M. Watkins.

Let G be a finite group that does not have a GRR. ThenG is an abelian group of exponent
greater than 2 orG is a generalized dicyclic group orG is isomorphic to one of the following
13 groups

(1) Z2
2, Z3

2, Z4
2

(2) D6,D8,D10

(3) A4

(4) 〈a, b, c | a2 = b2 = c2 = 1, abc= bca= cab〉
(5) 〈a, b |a8 = b2 = 1, b−1ab= a5〉
(6) 〈a, b, c |a3 = b3 = c2 = 1, ab= ba, (ac)2 = (bc)2 = 1〉
(7) 〈a, b, c |a3 = b3 = c3 = 1, ac= ca, bc= cb, b−1ab= ac〉
(8) Q× Z3,Q× Z4, whereQ denotes the quaternion group.

Clearly, any group possessing a GRR can be represented as the full automorphism group of
some Cayley graph, namely, the full automorphism group of its GRR. Thus, the only groups
for which the question of whether or not they can be represented as the full automorphism
group of some Cayley graph needs to be decided are the groups from the above list. Since
these groups do not have a GRR, the only way they can possibly be represented as the
Aut(0) of some Cayley graph0 is via a transitive action on a Cayley graph of some proper
subgroup of theirs. These observations lead to the following classification.

Theorem 5 Let G be a finite group. Then G is isomorphic to the full automorphism group
Aut(0) of a Cayley graph0 = C(H, X) if and only if G is not an abelian group of exponent
greater than2, a generalized dicyclic group, or one of the groups(1), (3), (4), (5), (6), (7),
(8) from the above list.

Proof: The dihedral groupsD6,D8, andD10 are well-known to be the full automorphism
groups of the Cayley graphsC(Zn, {1,−1}), n = 3, 4, 5, of their cyclic subgroups. To
prove the theorem we only need to show that none of the groups listed in the theorem can
be isomorphic to someAut(0), 0 = C(G, X).

First, suppose thatG is an abelian group that does not have a GRR. Thus,G ∼=
Aut(C(H, X)) would imply |H | < |G| andG would have to act transitivelybut not regu-
larly on the elements ofH . This contradicts the well-known theorem that transitive actions
of abelian groups have to be regular (see e.g. [18]). Another way of arguing this statement
is to observe that ifG does not have a GRR andG ∼= Aut(C(H, X)) thenG must be a
non-trivial rotary extension ofH , but no non-trivial rotary extension is abelian as one can
deduce from the last note of the previous section.
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Next, letG be a generalized dicyclic group. ThenG is generated by an abelian group
A and an elementb 6∈ A satisfying the relationsb4 = 1, b2∈ A andb−1ab = a−1 for
all a ∈ A. Suppose (by means of contradiction) thatG ∼= Aut(C(H, X)). G, being a
generalized dicyclic group, does not admit a GRR and must be therefore a nontrivial rotary
productG = H ×rot K with both H and K nontrivial andK ∩ CG(H) = 〈1G〉. First,
K ⊆ A as any elementba, a ∈ A, that would belong toK would also force the element
bababelong toA, however,baba= baa−1b = b2 ∈ Z(G) ⊆ CG(H). Also, any involution
a ∈ A, a2 = 1G, belongs toZ(G), and thus,K contains no involutions. It follows that there
exists an elementk ∈ K , k 6= k−1. Consider now the mappings9k and9k−1 defined in our
characterization of rotary products in the previous section. Clearly,9k | A = 9k−1 | AasA is
abelian andk, k−1 ∈ A. Furthermore, letba be any element ofH not belonging toA. Then
k · ba = bak · kba implies the identityk−1 · ba = k−2bakkba = bk2akkba = bak · k2kba.
Thus9k = 9k−1 on all of H which contradicts the injectivity of9.

Since the paragraph about the abelian case applies also to the groups from line (1) of
the list, all that is left to prove is that none of the groups from lines (3) through (8) are
isomorphic to a full automorphism group of a Cayley graph. Using the packages “GAP”
and “nauty”, we have constructed all Cayley graphsC(H, X) satisfying the property that
H is a proper subgroup of some group from (3) to (8), and all their automorphism groups.
None of the groups listed in lines (3) through (8) appeared on our list. We conclude that
none of these groups is isomorphic to the full automorphism group of a Cayley graph. This
completes the proof of our classification. 2

4. Automorphism groups of Cayley maps

As mentioned in the introduction, automorphism groups of Cayley maps are isomorphic
copies of special vertex-transitive subgroups of the automorphism groups of their underly-
ing Cayley graphs. Using Theorem 3, it follows that the automorphism groups of Cayley
mapsAut(CM(G, X, p)) are rotary extensions of the underlying groupG. This has been
first observed in [6], where one can also find the following results relevant to the theory
developed further in this section.

Let M = CM(G, X, p) be a Cayley map, and letρ be a bijection of the groupG onto
itself. We say thatρ is a rotary mappingof M if ρ satisfies for alla ∈ G andx ∈ X the
following three properties:

(i) ρ(1G) = 1G

(ii) ρ(a)−1ρ(ax) ∈ X
(iii) ρ(a)−1ρ(ap(x)) = p(ρ(a)−1ρ(ax))

(i.e., ρ is a graph automorphism ofC(G, X) stabilizing the identity, and “commuting”
with p on X). For each Cayley mapM = CM(G, X, p), there exists a positive integerk,
1≤ k ≤ |X| and a rotary mappingρk such that the restriction ofρk to X is equal topk. Let
k be the smallest integer with this property, and letρk be the rotary mapping associated with
k (ρk | X = pk). Thenk divides|X| andAut(M) ∼= G×rot 〈ρk〉, i.e., automorphism groups
of Cayley maps are rotary extensions of the underlying group by a cyclic subgroup of order
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|X|/k. The paper [6] also provides us with a useful formula defining the rotary mapping
ρk : Let a be an arbitrary element ofG, and leta = x1x2, . . . , xn be any expression ofa in
terms of the generators fromX. Then

ρk(a) = ρk(x1x2, . . . , xn) = b1b2, . . . ,bn, (3)

whereb1 = pk(x1), bi+1 = pli (b−1
i ), for 1≤ i ≤ n−1, and the exponentsl i are the natural

numbers determined by the equationsxi+1 = pli (x−1
i ).

In what follows, we shall use the above results from [6] to classify the finite groups
isomorphic to some full automorphism group of a Cayley map.

First we state an analogue of Theorem 4 the proof of which follows from the above stated
description of the automorphism groups of Cayley maps and from an argument similar to
the one in the proof of Theorem 4.

Theorem 6 A finite group G can be represented as a vertex-transitive subgroup of the full
automorphism group of some Cayley map if and only if G∼= H ×rot 〈ϕ〉 and there exists a
collection of orbits{Oi | i ∈ I} of ϕ acting on H such that all orbits are of the same size,

their union X=⋃Oi is closed under taking inverses, 1H 6∈ X, and X generates all of H.

Next, consider the following analogue of the concept of a GRR for a groupG. A Cayley
mapCM(G, X, p) is said to be amapical regular representation, MRR, for a groupG
if Aut(CM(G, X, p)) ∼= G. Thus, an (abstract) groupG is said to possess an MRR if it
can be represented as a vertex-regular full automorphism group of some Cayley map ofG.
Naturally, a question arises which finite groups allow for an MRR.

The following theorem provides a complete answer to this question together with a
classification of all finite groups representable as full automorphism groups of Cayley
maps.

Theorem 7 Let G be a finite group. Then G is isomorphic to thefull automorphism group
Aut(M) of some Cayley map M=CM(H, X, p) if and only if G is not one of the two groups
Z3 andZ2

2 .
Moreover, each finite group not isomorphic toZ3 or Z2

2 also possesses an MRR.

Proof: LetG be a finite group. If0 = C(G, X) is a graphical regular representation forG,
thenAut(C M(G, X, p)) ∼= G, for all cyclic permutationsp of X. This is due to the fact that
Aut(C M(G, X, p)) is isomorphic to a vertex-transitive subgroup ofAut(C(G, X)) = G.
Thus, any finite groupG that has a GRR has also an MRR and is isomorphic to the
automorphism group of some Cayley map. Once again, we only need to focus on the
groups that do not have a GRR. We shall, however, adopt a different approach this time,
and we shall prove the theorem for all sufficiently large finite groups at once, regardless of
whether they have a GRR or not. The proof will be slightly different for groups of even
and odd order.

First, letG be a finite group of an odd order greater than or equal to 13. LetX be the
set of all non-identity elements ofG, X = {a |a ∈ G,a 6= 1G}. We will construct a
cyclic permutationp = (p1, p2, . . . , p|X|) of X such thatAut(CM(G, X, p)) ∼= G. Since
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|X| ≥ 12 and|G| is odd, we can find two distinct elementsx andy from X such that all
five elementsx, x−1, y, y−1 andx · y are different. Now, letp be any cyclic permutation
of X with the first five elements defined as follows:p1 = x, p2 = x−1, p3 = y, p4 = y−1

and p5 = x · y, that satisfies the property that each element ofX is listed in p next to
its inverse (i.e.,p−1

i is equal to either the predecessor or the successor ofpi ). Such a
cyclic permutation ofX clearly exists asX contains no involutions. Recall now that the
results from [6] yield thatAut(CM(G, X, p)) ∼= G if and only if the smallest divisor of
|X| associated to a rotary mapping is|X| itself in which case the rotary mappingρ|X| is
simply equal toidG andAut(CM(G, X, p)) is a rotary extension ofG by a trivial group.
We are going to alter the permutationp in such a way that will guarantee that none of
the bijectionsρk defined by formula (3) and associated with a divisork of |X|, k 6= |X|,
will be equal topk on X. Thus, the automorphism group of the resulting Cayley map will
be a rotary extension ofG by a trivial group and will therefore be isomorphic toG. Let
J = {1, k1, k2, . . . , kj } be the list of divisors of|X| smaller than|X| listed in an increasing
order. First, we are going to “disable” the rotary mappingρ1. Consider the image ofx · y
under the mappingρ1 defined by formula (3) :ρ1(x · y) = p1(x) · pl1((p1(x))−1), where
l1 is the solution ofy = pl1(x−1

1 ), i.e.,l1 = 1 (sincey follows immediately afterx−1 in p).
Hence,ρ1(x · y) = p(x) · p1((p(x))−1) = x−1 · p((x−1)−1) = x−1 · p(x) = x−1 · x−1. On
the other hand,p(x·y) = p5. In the case whenp5 6= x−1 · x−1, we obtainρ1(x·y) 6= p(x·y),
hence,ρ1 | X 6= p and therefore the smallest divisor of|X| for which the corresponding
ρk equalspk on X is not 1 (and|Aut(CM(G, X, p))|< |G| · |X|/1). A more interesting
situation occurs whenp5 = x−1 · x−1. In this case there is a chance forρ1 | X to be equal
to p, which would cause the automorphism group to be too big. To avoid that, we will alter
the permutationp by swapping the fifth and sixth element ofp, i.e., if p5 = x−1 · x−1 and
p6 = b, we will set p5 = b and p6 = x−1 · x−1. If we consider the rotary mappingρ1

defined by the new permutationp and formula (3), we still obtainρ(x · y) = x−1 · x−1 (as
the first four elements ofp have not been changed!), whilep(x · y) = p5 = b is not equal
to x−1 · x−1 anymore, andρ1 | X 6= p. Thus, in both cases (p5 equal tox−1 · x−1 or not),
we obtain a permutationp such that|Aut(CM(G, X, p))| < |G| · |X|/1.

In order to “disable” all the possible rotary mappings other thanρ|X|, we just need to
repeat the above described swapping process for allρk, k ∈ J . We will do it using induction.
We have already shown a way to disable the rotary mappingρ1 without changing the order
of the first five elements. Now suppose (the induction hypothesis) thatρkj | X 6= pkj for all
j ≤ n. We will alter the permutationp in such a way that will disableρkn+1 while at the same
time the alteration will not affect the fact thatρkj | X 6= pkj for j ≤ n. Consider the image
of x ·y underρkn+1 as defined by formula (3):ρkn+1(x ·y) = pkn+1(x)· pl1((pkn+1(x))−1). The
exponentl1 is equal to 1 again (we have not changed the order of the first five elements), and
thus,ρkn+1(x · y) = pkn+1(x) · p((pkn+1(x))−1). If pkn+1(x · y) 6= pkn+1(x) · p((pkn+1(x))−1),
thenρkn+1 | X 6= pkn+1, and we do not need to do any changes. Ifpkn+1(x · y) = pkn+1(x) ·
p((pkn+1(x))−1), then we need to swap the elementpkn+1(x · y) = pkn+1+5 with its right
neighbor. It is obvious that this swap will disableρkn+1. Moreover, none of the computations
that disabled the mappingsρ j , j ≤ n, will be affected by this change, as all the images
ρ j (x · y) = pj (x) · p((pj (x))−1) and pj (x · y), as well as all the elements used in their
computation are positioned left of the swap, and are not changed by the swap (notice that



STRUCTURE OF AUTOMORPHISM GROUPS 83

the fact thatp((pj (x))−1) is to the left of the swap is due to the fact that we have started
with a permutationp where elements and their inverses were close one to another).

To complete this proof by induction we just need to argue that the last swap (the one
disablingρkj ) will not accidentally spill over to the beginning of the permutation and change
the elementp1 = x. This follows from our choice of the size ofX, |X| ≥ 12. The last
two elements that might possibly be swapped arepkj+5 and pkj+6, wherekj is the largest
divisor of |X| not equal toX. Hence, the swap will not spill over top1 if kj + 6 ≤ |X|.
SinceG is an odd degree group,|X| is even, and the largest divisorkj of |X| is at most
|X|/2. It follows thatkj + 6 ≤ |X| if (|X|/2)+ 6 ≤ |X|, i.e., |X| ≥ 12 or |G| ≥ 13, and
this requirement is enough to guarantee that we can perform all the changes.

This completes the proof by induction, and we conclude that any finite groupG of odd
order≥13 allows for the existence of a cyclic permutationp of the setX = G− {1G} such
thatAut(CM(G, X, p)) ∼= G.

Now, suppose thatG is a finite group of an even order greater than or equal to 8. LetX
again be the set of all non-identity elements ofG. SinceG is of even order, it contains at
least one involutionx, and since|G| ≥ 8, it also contains an elementy different fromx.
Let p = (p1, p2, . . . , p|X|) be again a cyclic permutation ofX. There are two possibilities
to define the beginning ofp this time, depending on whethery can be chosen to be an
involution (i.e., whetherG contains more involutions than justx) or not. If y can also be
chosen to be an involution, setp1= x, p2= y andp3= x · y. If there are no more involutions
besidex, choose the elementy in such a way so that the four elementsx, y, y−1, x · y are
all different (this is possible since|G| ≥ 8) and choose the beginning ofp to be p1 = x,
p2 = y, p3 = y−1 and p4 = x · y. In both cases, complete the permutationp so that
the elements that are not involutions stand next to their inverses. Next, starting from the
above described permutationp disable the non desirable rotary mappings just like we did
in the case of odd order groups. This can be done by induction as long the last swapped
element does not spill over top1. The last two elements that might possibly be swapped
are pkj+3 and pkj+4 or pkj+4 and pkj+5 depending on which of the two possibilities forp
we are using (wherekj is once again the largest divisor). Thus, the last swap will not effect
p1 if kj + 5 ≤ |X|. Since|X| is odd,kj is at most|X|/3, which finally implies|X| ≥ 7.5
or |G| ≥ 10. Finally, in the case when|G| = 8, the setX is of size 7. The only divisor of 7
smaller than 7 is 1, and so we only need to disableρ1. There is obviously enough room to
do that, which extends our arguments to all even order groupsG of size at least 8. We will
leave the details of this part of the proof out as they are quite similar to the odd order part.

The above proofs leave us with only finitely many groups that may not be isomorphic to
the automorphism group of any Cayley map, namely, the odd order groupsZ11, Z9, Z2

3,
Z7, Z5, Z3, andZ1, and the even order groupsZ6, S3, Z4, Z2

2, andZ2. Following the
above ideas about choosing the permutationp, one can easily find permutationsp such
thatAut(CM(G, X, p)) ∼= G for all the groups in this list butZ3 andZ2

2. Finally, one can
easily construct all the Cayley maps based on the remaining two groups—there is only one
Cayley map forZ3 (even if we drop the requirement thatX must generate the group, we
only obtain one more map that way), and only two isomorphic classes forZ2

2 (four, if we
drop the requirement forX to be a generating set). None of the maps has eitherZ3 orZ2

2
as its automorphism group. Moreover, none of the two groups can be the automorphism
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group of a Cayley map of a smaller group as that would lead to a non-trivial rotary exten-
sion that is non-abelian. We can conclude that the only groups that are not isomorphic to
the full automorphism group of some Cayley map and that do not have an MRR areZ3

andZ2
2. 2

It follows from the above theorem, that each finite groupG different fromZ3 orZ2
2 allows

for the existence of a Cayley map of a complete graph based onG with the automorphism
group being as small as possible. The opposite side of the spectrum, namely the finite
groupsG that give rise to the existence of a Cayley map based on a complete graph ofG
that has aregular automorphism group have been studied by James and Jones in [10] who
have shown that the only regular Cayley maps whose underlying graphs are complete are
balanced Cayley maps of orderpn, p a prime.
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