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Abstract. We give two generalizations of some known constructions of relative difference sets. The first one is
a generalization of a construction of RDS by Chen, Ray-Chaudhuri and Xiang using the Galois ringGR(4,m).
The second one generalizes a construction of RDS by Ma and Schmidt from the setting of chain rings to a setting
of more general rings.
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1. Introduction

Let N G G be finite groups such that|N| = n and|G| = mn. A k-subsetR of G is called
an (m, n, k, λ) relative difference set (RDS) ofG relative to N if the differencesr1r

−1
2

(r1, r2 ∈ R) represent each element ofG\N exactlyλ times but represent no element of
N\{e}. If we identify R with

∑
g∈R g ∈ Z[G], thenR is an(m, n, k, λ) RDS relative toN

if and only if the equation

RR(−1) = ke+ λ(G\N) (1.1)

is satisfied in the group ringZ[G], whereR(−1) = ∑
g∈R g−1. WhenG is abelian, (1.1)

holds if and only if for every characterχ of G,

|χ(R)|2 =


k2, if χ is principal,

k− λn, if χ is principal onN but not onG,

k, if χ is not principal onN.

(1.2)

An (m, n, k, λ) RDS with k= λn is called semi-regular. ThusR is an (m, n, k, k/n)
semi-regular RDS in a finite abelian groupG relative toN if and only if for every character
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χ of G,

|χ(R)|2 =


k2, if χ is principal,

0, if χ is principal onN but not onG,

k if χ is not principal onN.

(1.3)

The RDS’s constructed in this paper are semi-regular.
For a survey of results on relative difference sets up to 1995, we refer the reader to Pott

[11]. Since then, there have been some new constructions of relative difference sets in
abelian groups using certain ring structures on the groups. Roughly speaking, the required
ring structure on an abelian groupG enables us to generate all additive characters ofG
from any “nondegenerate” character. Chen, Ray-Chaudhuri and Xiang [2] constructed a
family of RDS in abelian 2-groups using Galois rings. LetG = GR(4, 2t +1)×W, where
GR(4, 2t+1) is the Galois ring of characteristic 4 and size 42t+1 andW= Zr

4× (Z2×Z2)
s,

r+s= t . Their result is a family of RDS ofG relative to the maximal ideal ofGR(4, 2t+1).
We will generalize this construction toGR(4,m)×W, wherem is not necessarily odd and
W is any abelian 2-group with|W| ≤ 2m and expW ≤ 4. Another recent construction of
RDS was by Ma and Schmidt [8] using finite commutative principal ideal local rings. We
shall see that their construction can be generalized to a larger class of rings—finite rings
with a unique minimal left ideal. The purpose of this paper is not only to provide more
general ways to construct RDS’s but also to demonstrate some connections between RDS
and other interesting topics such as quasi-Frobenius rings and generalized bent functions.
The reader will find that the proofs here differ from those in [2] and [8] considerably.

2. A generalized construction of RDS using the Galois ringGR(4,m)

Let p be a prime,t > 0 and f ∈ Zpt [x] a monic polynomial of degreem whose imagef̄ in
Zp[x] is irreducible. The ring structure ofZpt [x]/( f ) depends only onm. Zpt [x]/( f ) is
called a Galois ring of characteristicpt and is denoted byGR(pt ,m). We refer the reader to
McDonald [9] for a comprehensive treatment of Galois rings. For the role of Galois rings
in some recent important discoveries in coding theory, we refer the reader to [1, 5].

The Galois ring needed here isGR(4,m). It is a local ring with maximal ideal 2GR(4,m).
The group of unitsGR(4,m)∗ of GR(4,m) contains a unique cyclic subgroupT∗ of order
2m− 1. T = T∗ ∪ {0} is called the Teichmuller set ofGR(4,m). GR(4,m)/2GR(4,m)
is the Galois fieldGF(2m) and T is a system of coset representatives of 2GR(4,m) in
GR(4,m). Each elementa∈GR(4,m) has a unique 2-adic representationa = x0 + 2x1

wherex0, x1 ∈ T . The mapσ : GR(4,m)→ GR(4,m) : x0+2x1 7→ x2
0+2x2

1 (x0, x1 ∈ T)
is the Frobenius map ofGR(4,m). σ is an automorphism ofGR(4,m) of orderm and〈σ 〉 is
the full automorphism ofGR(4,m).The trace ofGR(4,m) is the map Tr :GR(4,m)→ Z4

defined by Tr(a) =∑m−1
i=0 σ

i (a).
Let ξ = √−1. Then forx0 ∈ T∗ andx1 ∈ T ,∑

x∈T

ξTr((x0+2x1)x) = ξ−Tr(x1/x0)
∑
x∈T

ξTr(x). (2.1)
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This is a result of Calderbank whose proof can be found in [2]. The exponential sum∑
x∈T ξ

Tr(x) was determined up to 4 possibilities in [1] and was completely determined in
[12]. For our purpose here, we shall only need the fact that∣∣∣∣∣∑

x∈T

ξTr(x)

∣∣∣∣∣ = 2m/2. (2.2)

Let W be a finite abelian group andh : W→ T any function. LetG = GR(4,m)×W
and

R=
⋃
w∈W

((1+ 2h(w))T, w) ⊂ G. (2.3)

We shall explore conditions onW andh that will makeR a semi-regular RDS inG relative
to N = 2GR(4,m)× {0}. We need the following notion of generalized bent functions [6].

Definition 2.1 Let A be a finite abelian group with character groupA∗ and letS1 = {z ∈
C : |z| = 1}. A function f : A→ S1 is called a bent function if for everyχ ∈ A∗,∣∣∣∣∣∑

x∈A

f (x)χ(x)

∣∣∣∣∣ = |A|1/2. (2.4)

Theorem 2.2 The set R in(2.3) is a semi-regular RDS of G relative to N if and only if
for each z∈ T , the function

fz : W→ S1

w 7→ ξTr(h(w)+2zh(w)) (2.5)

is a bent function on W.

Proof: Sufficiency. Assumeχ × λ is a nonprincipal character ofG whereχ andλ are
characters ofGR(4,m) andW respectively.

Case 1.χ is principal on 2GR(4,m). Thenχ(·) = ξTr(a·) for somea ∈ 2GR(4,m). Then

(χ × λ)(R) =
∑
w∈W

λ(w)
∑
x∈T

ξTr(a(1+2h(w))x) (2.6)

=
∑
w∈W

λ(w) ·
∑
x∈T

ξTr(ax).

If a ∈ 2GR(4,m)\{0}, then
∑

x∈T ξ
Tr(ax)= 0; if a = 0, thenλ is nonprincipal onW and∑

w∈W λ(w) = 0. Thus we always have

(χ × λ)(R) = 0 (2.7)

in this case.
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Case 2.χ is nonprincipal on 2GR(4,m). Thenχ(·) = ξTr(a·) for somea = x0+2x1 where
x0 ∈ T∗, x1 ∈ T . Then

(χ × λ)(R) =
∑
w∈W

λ(w)
∑
x∈T

ξTr(a(1+2h(w))x)

=
∑
w∈W

λ(w)
∑
x∈T

ξTr(1+2(h(w)+z))x) (2.8)

wherez= x1/x0. Note thath(w)+z≡ h(w)+z+2σm−1(zh(w)) (mod 2GR(4,m)) and
thath(w) + z+ 2σm−1(zh(w)) = (σm−1(h(w)) + σm−1(z))2 ∈ T , sinceT consists of
all the squares ofGR(4,m). Using (2.1) and (2.2) in (2.8), we have

|(χ × λ)(R)| =
∣∣∣∣∣ ∑
w∈W

λ(w) · ξ−Tr(h(w)+z+2σm−1(zh(w)))
∑
x∈T

ξTr(x)

∣∣∣∣∣
= 2m/2

∣∣∣∣∣ ∑
w∈W

λ(w) · ξ−Tr(h(w)+2zh(w))

∣∣∣∣∣
= 2m/2

∣∣∣∣∣ ∑
w∈W

λ(w) fz(w)

∣∣∣∣∣
= 2m/2|W|1/2. (2.9)

ThereforeR is a semi-regular RDS ofG relative toN.

Necessity. It follows from (2.9). 2

For anyx ∈ T , the 2-adic expansion of Tr(x) ∈ Z4 is known (cf. [5]):

Tr(x) = (ι ◦ tr ◦ π)(x)+ 2Q(π(x)). (2.10)

In (2.10),π : GR(4,m) → GR(4,m)/2GR(4,m) = GF(2m) is the canonical projection;
tr : GF(2m)→ Z2 is the trace ofGF(2m); ι :Z2 → {0, 1} ⊂ Z4 is the obvious inclusion;
Q : GF(2m)→ Z2 is given by

Q(y) =
∑

0≤i< j≤m−1

ρ i (y)ρ j (y), (2.11)

whereρ is the Frobenius map ofGF(2m). Q is a quadratic function onGF(2m) = Zm
2 . For

eacha∈GF(2m), the functionDaQ : GF(2m)→Z2 is defined by(DaQ)(y) = Q(y+a)−
Q(y), y ∈ GF(2m). It’s easy to determine that

dim{a ∈ GF(2m) : DaQ ≡ 0 (modZ2)} =
{

0, if m is even,

1, if m is odd.
(2.12)
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(In fact, {a∈GF(2m) : DaQ ≡ 0 (modZ2)} is {0} for evenm and isZ2 for odd m.)
Then using the well-known canonical forms of quadratic functions onZm

2 (cf. [4]), we can
identify GF(2m) with Zm

2 suitably such that

Q(x1, . . . , xm) = x1x2+ x3x4+ · · · + x2bm/2c−1x2bm/2c + l (x1, . . . , xm) (2.13)

for all (x1, . . . , xm) ∈ GF(2m), wherel (x1, . . . , xm) is a linear function of(x1, . . . , xm).
Let

tr(x1, . . . , xm) = a1x1+ · · · + amxm, (x1, . . . , xm) ∈ GF(2m), (2.14)

whereai ∈ Z2. Note that whenm is odd,am 6= 0. (To see this, one only has to check that
DaQ 6≡ tr(modZ2) for all a ∈ GF(2m).) Therefore, by a suitable linear transformation of
(x1, . . . , xm) in (2.13), we may further assume, in addition to (2.13), that

tr(x1, . . . , xm) = xm for (x1, . . . , xm) ∈ GF(2m). (2.15)

From now on, we assume thatGF(2m) is so identified withZm
2 such that both (2.13) and

(2.15) hold.

Corollary 2.3 Let W be a finite abelian group and h: W→ T a function. Let

π ◦ h = (α1, . . . , αm) : W→ GF(2m) = Zm
2 . (2.16)

Then R= ⋃w∈W((1+ 2h(w))T, w) ⊂ GR(4,m) ×W = G is a semi-regular RDS of G
relative to2GR(4,m)× {0} if and only if

ξ ι◦αm(−1)α1α2+···+α2bm/2c−1α2bm/2c+a1α1+···+amαm (2.17)

is a bent function on W for all(a1, . . . ,am) ∈ Zm
2 .

Proof: By (2.10), (2.13), (2.15) and (2.16), for eachz ∈ T, w ∈ W,

ξTr(h(w)+2zh(w)) = ξTr(h(w))(−1)tr(π(z)π(h(w)))

= ξ (ι◦tr◦π◦h)(w)+2(Q◦π◦h)(w)(−1)tr(π(z)π(h(w)))

= ξ ι(αm(w))(−1)α1(w)α2(w)+···+α2bm/2c−1(w)α2bm/2c(w)+a1α1(w)+···+amαm(w)

(2.18)

where(a1, . . . ,am) ∈ Zm
2 is determined byz. As z runs overT , (a1, . . . ,am) runs overZm

2 .
Thus the corollary follows from Theorem 2.2. 2

In order for the construction of RDS in Corollary 2.3 to work, we only have to find func-
tionsα1, . . . , αm : W→ Z2 such that the function (2.17) is bent onW for all (a1, . . . ,am)

∈ Zm
2 .
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Lemma 2.4
(i) Letα : Z2→ Z2 be a bijection and a∈ Z2. Thenξ ι◦α(−1)aα is bent onZ2.

(ii) Let (α1, α2) :Z2→ Z2
2 be such thatα2 is a bijection and a1,a2∈ Z2. Then ξ ι◦α2

(−1)α1α2+a1α1+a2α2 is bent onZ2.
(iii) Let (α1, α2) : Z2

2→ Z2
2 be a bijection and a1,a2∈Z2. Thenξ ι◦α2(−1)α1α2+a1α1+a2α2 is

bent onZ2
2.

(iv) Let (α1, α2) : Z4→ Z2
2 be a bijection such thatα2(0) = α2(2) and a1,a2 ∈ Z2. Then

ξ ι◦α2(−1)α1α2+a1α1+a2α2 is bent onZ4.
(v) Let W=Z2

2 or Z4, (α1, α2) : W→ Z2
2 a bijection and a1,a2 ∈ Z2. Then

(−1)α1α2+a1α1+a2α2 is bent on W.
(vi) Letπ be a permutation ofZs

2 and let(α1, . . . , α2s) : Z2s
2 → Z2s

2 be defined by

(α1, α3, . . . , α2s−1, α2, α4, . . . , α2s)(x1, . . . , x2s)

= (x1, . . . , xs, π(xs+1, . . . , x2s)), (x1, . . . , x2s) ∈ Z2s
2 . (2.19)

Then for any a1, . . . ,a2s ∈ Z2, (−1)α1α2+···+α2s−1α2s+a1α1+···+a2sα2s is bent onZ2s
2 .

Proof: (i)–(v) can be easily checked because the groups there are only of orders 2 and 4.
The function in (vi) is the well-known Maiorana-McFarland bent function [11]. 2

Let W1 andW2 be two finite abelian groups. Iff1 is bent onW1 and f2 is bent onW2,
then f1 · f2 is bent onW1×W2 [6]. Another obvious fact is that any functionf : {0} → S1

is bent on{0}. Using these two facts and Lemma 2.4, we conclude that ifW is an abelian
2-group such that|W| ≤ 2m and expW≤ 4, there are many ways to choose functions
α1, . . . , αm : W→ Z2 such that the function (2.17) is bent onW for all (a1, . . . ,am) ∈ Zm

2 .
For each suchW and each such choice ofα1, . . . , αm, we have a semi-regular RDS of
GR(4,m)×W relative to 2GR(4,m)× {0} by Corollary 2.3. The construction given here
generalizes the one in [2].

3. A generalized construction of RDS using local rings

Let R be a finite ring with identity. A characterχ of (R,+) is called nondegenerate if
kerχ does not contain any nonzero left ideal ofR. (In the definition of a nondegenerate
character, the words “left ideal” can be replaced by “right ideal”.) Ifχ is a nondegenerate
character ofR, thenχ(a·) gives all the additive characters ofR as a runs overR and
the same is true forχ(·a). For any subsetS of a ring R, the left and right annihilators of
Sare

l (S) = {x ∈ R : xs= 0 for all s ∈ S}, (3.1)

r (S) = {x ∈ R : sx= 0 for all s ∈ S}. (3.2)

The rings used for our construction of RDS are finite local rings with a nondegenerate
character. (Cf. [6] for the use of such rings for constructions of bent functions and partial
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difference sets.) In the following proposition, we list some characterizations and properties
of such rings without proof. (When the ring is commutative, the proof of Proposition 3.1
can be found in [6]. The proof in the noncommutative case is similar.)

Proposition 3.1 Let R be a finite ring with identity. Then the following are equivalent.
(i) R is local and has a nondegenerate character.

(ii) R is local and for any left ideal L and right ideal J of R, l(r (L)) = L, r (l (J)) = J .
Equivalently, R is local and quasi-Frobenius.

(iii) R has a unique (nonzero) minimal left ideal.
(iv) R has a unique (nonzero) minimal right ideal.

Assume that one of(i)–(iv) is satisfied, then the minimal left ideal and the minimal right
ideal of R coincide; they are r(M) = l (M), where M is the unique maximal ideal of R.
Furthermore, for any left ideal L and right ideal J of R, R/r (L) ∼= L and R/ l (J) ∼= J as
abelian groups.

Theorem 3.2 Let R be a finite local ring with a nondegenerate characterχ . Let M be
the unique maximal ideal of R, A a system of coset representatives of R/M, B a system
of coset representatives of M/r (M), and f : A→ R\M any function. For each a∈ A,
define

Da = {(au+ b( f (a)+ u), u) : u ∈ M, b ∈ B} ⊂ M × M. (3.3)

Then we have the following conclusions.
(i) For each a∈ A and each characterλ of M × M,

|λ(Da)| =


|M |2
|r (M)| , if λ is principal,

0, if λ is principal on r(M)×{0} but not on M× M,

0or |M |, if λ is not principal on r(M)× {0}.
(3.4)

Furthermore, ifλ is not principal on r(M)× {0}, there is exactly one a∈ A such that
|λ(Da)| = |M |. In the terminology of[3, 7], {Da : a ∈ A} form a (|M |2/|r (M)|,
|M |, |r (M)|) building set of M× M relative to r(M)× {0}.

(ii) Let G⊃M ×M be any group such that[G : M ×M ]= |r (M)| and M×M is contained
in the center of G. Then for any system of coset representatives{ga : a∈ A}of G/M×M,⋃

a∈A(ga + Da) is a semi-regular RDS of G relative to r(M)× {0}.

Proof: (ii) is the well known construction of semi-regular RDS from building sets
[3, 7]. We only have to prove (i). Letλ be a character ofM ×M anda∈ A. Thenλ =
χ(α·)× χ(β·) whereχ is a nondegenerate character ofR andα, β ∈ R.

Case 1.λ is principal. Then

|λ(Da)| = |Da| = |M |
2

|r (M)| . (3.5)
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Case 2.λ is principal onr (M)×{0} but not principal onM ×M . Thenα ∈M . If α 6∈ r (M),
we have

λ(Da) =
∑
u∈M

χ(αau)χ(βu)
∑
b∈B

χ(αb( f (a)+ u))

= 0. (3.6)

(Note that
∑

b∈B χ(αb( f (a) + u)) = 0 sinceB( f (a) + u) is a system of coset repre-
sentatives ofM/r (M) andχ(α·) is a nonprincipal character ofM/r (M).) If α ∈ r (M),
thenβ 6∈ r (M) sinceλ is nonprincipal onM × M . Then we have

λ(Da) = |B|
∑
u∈M

χ(βu) = 0. (3.7)

Case 3.λ is not principal onr (M)× {0}. Thenα ∈ R\M . We have

λ(Da) =
∑
b∈B

χ(αbf (a))
∑
u∈M

χ((α(a+ b)+ β)u). (3.8)

If a 6≡ −β/α (mod M), the inner sum in (3.8) is 0 for allb ∈ B, sinceα(a+ b)+ β 6∈
r (M). If a≡−β/α (mod M), there is a uniqueb0∈ B such thatb0 ≡ −a − β/α
(mod r (M)), and

λ(Da) = χ
(
αb0 f (a)

)|M |. (3.9)

Therefore

|λ(Da)| =
{

0, if a 6≡ −β/α (mod M),

|M |, if a ≡ −β/α (mod M).
(3.10)

The proof of (i) is now completed. 2

WhenR is a chain ring, i.e., a finite commutative principal ideal local ring, the construc-
tion in Theorem 3.2 coincides with the construction by Ma and Schmidt [8]. However, the
category of finite rings with a unique minimal left ideal is much larger than the category of
chain rings. We give some examples of finite rings with a unique minimal left ideal without
proofs. In these examples, the rings are not chain rings in general.

Example 3.3 Let R be a finite ring with a unique minimal left idealL and letn1, . . . ,nk

> 1 be integers. Then

R = R[X1, . . . , Xk]
/(

Xn1
1 , . . . , Xnk

k

)
(3.11)

is a finite ring with a unique minimal left idealL · X̄n1−1
1 · · · X̄nk−1

k , whereX̄i is the image
of Xi inR.
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Example 3.4 Let R be a finite ring with a unique minimal left idealL. Letφ ∈ Aut(R).
Then

R =
{[

a b

0 φ(a)

]
: a, b ∈ R

}
(3.12)

is a finite ring with a unique minimal left ideal

L =
{[

0 b

0 0

]
: b ∈ L

}
. (3.13)

Example 3.5 Let R be a finite ring with a unique minimal left idealL. SinceR is local,
char(R) = pk for some primep. Let G be any finitep-group. ThenR[G] is a finite ring
with a unique minimal left idealL ·∑g∈G g.
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