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Abstract. Graph homomorphisms are used to study good characterizations for coloring problems (Trans. Amer.
Math. Soc. 384(1996), 1281–1297;Discrete Math.22(1978), 287–300). Particularly, the following concept arises
in this context: A pair of graphs(A, B) is called ahomomorphism dualityif for any graphG either there exists a
homomorphismσ : A→ G or there exists a homomorphismτ : G→ B but not both. In this paper we show that
maxflow-mincut duality for matroids can be put into this framework using strong maps as homomorphisms. More
precisely, we show that, ifCk denotes the circuit of lengthk+1, the pairs(Ck,Ck+1) are the only homomorphism
dualities in the class of duals of matroids with the strong integer maxflow-mincut property (Jour. Comb. Theor.
Ser.B23 (1977), 189–222). Furthermore, we prove that for general matroids there is only a trivial homomorphism
duality.
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1. Introduction

Let e be a fixed element. Then amatroid port[4] is matroidM on a finite setE such that
e ∈ E. Let M and M ′ be two matroid ports on finite ground setsE(M) and E(M ′) and
o 6∈ E(M ′). A mapσ : E(M)→ E(M ′)∪ {o} is called astrong port map from M to M′ (or
a homomorphism) if

SP1σ(e) = eandσ−1({e}) = {e}, (fixed ground point)
SP2σ is a strong map fromM to M ′, i.e. if S′ ⊂ E(M ′) is closed inM ′ thenσ−1(S′ ∪ {o})
is closed inM .
We denote the existence of a strong port map fromM to M ′ by M→M ′ and byM 6→ M ′

the non-existence of such a map. Ahomomorphism dualityfor a classM of matroid
ports is a pair(A, B) such that for any matroid portM ∈M either there exists a homo-
morphismσ : A→M or there exists a homomorphismτ : M → B but not both. For any
k ∈ N∪{0} let Ck denote the(k+1)-circuit that is the matroid port consisting of the circuit
{e,a1,a2, . . . ,ak}. Furthermore, we defineC∞ as the free matroid on{e, g}.

We will show that the only homomorphism duality for the class of all matroids is the
trivial pair (C0,C1). On the other hand(Ck,Ck+1) is a homomorphism duality for a class of
matroidsM if and only if a dual version of Menger’s theorem on edge disjoint paths holds
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inM. Thus, these pairs are homomorphism dualities for the class of duals of the matroids
with the strong integer maxflow-mincut property [7]. We will show that they constitute the
only homomorphism dualities in this class.

The paper is organized as follows. In the next section we will characterize those matroid
ports that allow a homomorphism fromCk and those for which there exists a strong map
to Ck. We discuss the relations to maxflow-mincut duality in Section 3. In Section 4 we
put these findings into the framework of homomorphism duality and prove that, while
general matroids ports have only a trivial duality, the maxflow-mincut duality is the only
homomorphism duality for the duals of matroids with the strong integer maxflow-mincut
property.

We assume familiarity with matroid theory, standard references are [5, 8]. All matroids
will be finite and we will denote the ground set of a matroidM by E(M) or sometimes just
by E.

2. From and to the circuit

Let M be a matroid port andC a shortest circuit ofM containinge. Then we define the
girth of M as girth(M) = |C| − 1. If there is no such circuit we set the girth to infinity.

Theorem 1 Let M be a matroid port and k∈ N. Then

Ck → M if and only if girth(M) ≤ k.

Proof: If C = {e, b1, . . . ,bl }, l ≤ k is a circuit inM , then clearly the port map defined
by σ(e)= e, σ (ai )= bi for i ≤ l andσ(ai )= o for l < i ≤ k is strong. Assume on the other
hand thatσ : Ck → M is a strong port map and considerS= σ(Ck)\{e}. Thenσ−1(S) is
not closed, thus, asσ is strong,e must be on a circuit inS∪ {e}. 2

Note thatC∞ → M for any matroid portM . This gives rise to the following:

Corollary 1 Let k, l ∈ N ∪ {∞}. Then

Ck → Cl if and only if k≥ l .

Since the restriction of a strong map is strong we also have:

Corollary 2 If M → M ′ then girth(M) ≥ girth (M ′).

Next we study the existence of strong port maps to the(k+1)-circuit. We will show that
this is equivalent to the existence ofk “disjoint” cocircuits containing{e}. One direction of
this equivalence is:

Lemma 1 Let M be a matroid port. Assume that M has k cocircuits C∗1, . . . ,C
∗
k containing

e which, apart from that, are pairwise disjoint, more precisely C∗i ∩ C∗j = {e} for i 6= j .
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Letσ : M → Ck denote the map defined by

σ( f ) =


e if f = e,

ai if f ∈ C∗i \{e},
o otherwise.

Thenσ is a strong port map.

Proof: Let A ⊆ Ck be a closed set. We have to verify thatσ−1(A∪{o}) is closed. Ife 6∈ A,
thenσ−1(A ∪ {o})= ⋂ai 6∈A(E\C∗i ) is the intersection of closed sets and thus is closed.
Assume now thate∈ A and, for a contradiction, thatσ−1(A ∪ {o}) is not closed. Hence,
there exists a circuitC in M such thatC∩ (E\σ−1(A∪ {o}))={g}. As E\σ−1(A∪ {o}) =⋃

ai 6∈A(C
∗
i \e) there exists somei0 such thatg ∈ C∗i0 andai0 6∈ A. SinceC is a circuit and

C∗i0 a cocircuit we must have|C ∩ C∗i0| ≥ 2 and thuse ∈ C. Therefore,C has to intersect
eachC∗i whereai 6∈ A at least twice. We conclude thatσ−1(A ∪ {o}) = E\C∗i0 implying
A = Ck\{ai } contradicting the fact thatA is closed. 2

Theorem 2 Let M be a matroid port and k∈ N∪{∞}. Then M→ Ck if and only if there
exist k cocircuits C∗1, . . . ,C

∗
k in M such that C∗i ∩ C∗j = {e} for i 6= j .

Proof: Sufficiency has been proven in Lemma 1. Thus assumeσ is a strong port map from
M→Ck. We setC̃∗i := σ−1({e,ai }) for 1≤ i ≤ k. The claim follows if we can show that each
C̃∗i contains a cocircuitC∗i containinge. To see this note thatF := σ−1(Ck ∪ {o}\{e,ai , })
is a closed set which is a proper subset of the ground set and does not containe. Thus, there
is a hyperplaneH such thatF ⊆ H ande 6∈ H andC∗i : = E\H is as required. 2

Note thatM → C∞ if and only if e is a cocircuit inM .

3. Maxflow-mincut and homomorphic equivalence

Given a matroid portM , a flow is defined to be a set of circuitsC1, . . . ,Ck such that
Ci ∩C j = {e}. (We do not consider capacities here, as they can be simulated by parallels.)
The value of the flow isk and a maxflow is a flow of maximum value. By the results of the
last section, the existence of a flow of valuek in M is equivalent toM∗→Ck whereM∗

denotes the matroid dual ofM . We have also shown that the existence of a cocircuitC∗

containinge in M∗ such that|C∗\{e}| ≤ l is equivalent toCl → M∗. As, obviously, there
cannot be a flow of a value larger than such anl , we can formulate the well-known weak
duality for matroid flows as

max{k | M∗→Ck} ≤ min{l | Cl → M∗}.

If equality holds in the above inequality, we say thatM has themaxflow-mincut property.
(Note, that this is weaker than Seymour’s definition of the strong integer maxflow-mincut
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property in [7]). Let us say that two matroid portsM,M ′ arehomomorphically equivalent,
denoted byM ↔ M ′, if M → M ′ andM ′ → M . With this terminology we can summarize:

Theorem 3 Let M be a matroid port. Then there exists a unique k∈ N ∪ {∞} such that
M∗ ↔ Ck if and only if M has the maxflow-mincut property.

This also shows that the homomorphic equivalence is a well structured property.

4. Homomorphism duality

In this section we study strong port maps from a homomorphism duality point of view as
introduced in [6], [1]. LetM be a class of matroid ports and(A, B) denote a pair of matroid
ports inM. By A→we denote the subclass of matroid portsM ∈M such that there exists
a strong port map fromA→ M

A→:= {M ∈M | A→ M}.

Similarly we set

6→ B := {M ∈M | M 6→ B}.

A homomorphism duality forM (which is introduced in the introduction) is then the
equation of classes,

A→= 6→ B.

In other words this means that for anyM ∈Mwe have the homomorphic alternative: either
M is the homomorphic image ofA or maps ontoB but not both.

We will show that for the class of all matroid ports there is no non-trivial such theorem,
but restricting to the classF of binary matroids withoutF7-minor, whereF7 denotes the
Fano-matroid port containing a special element markede, the quasiordering defined by the
existence of maps has an extremely simple structure. Furthermore, we can expose Menger’s
theorem as the unique homomorphism duality in this class.

A trivial example of a homomorphism duality for any class of matroid ports is the
observation that eithere is a loop inM or it is not. With the following theorem we show
that in fact this is the only homomorphism duality for the class of all matroid ports.

Theorem 4 Assume that A, B are matroid ports such that A→= 6→ B is a homomor-
phism duality for the classM of all matroid ports. Then A↔ C0 and B↔ C1.

We will derive Theorem 4 from the following lemma. Forn ≥ k ∈ N let Un
k denote the

uniform matroid port of rankk with n elements.

Lemma 2 Let k∈ N and B be a matroid port such that girth(B) ≥ 2. Then there exists
an n such that Unk 6→ B.
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Proof: Assume the lemma were false. Then, forn large enough and a strong mapσ : Un
k →

B, there is some elementf ∈ E(B) such that|σ−1({ f, o})| ≥ k. Let F denote the closure
of f in B. By assumptione 6∈ F , thusσ−1(F) is not closed, a contradiction. 2

Proof of Theorem 4: By Corollary 1 and Theorem 2C0→M if and only if e is a loop
in M and M → C1 if and only if e is on some cocircuit. Thus,C0 →= 6→ C1 is a
homomorphism duality theorem.

Now let A→= 6→ B be a homomorphism duality. Since all matroid ports map to the
loop we must have girth(B) ≥ 1. If girth(B)= 1 then B↔C1 and, by the preceding,
A ↔ C0. Assume now that girth(B) ≥ 2. Then by Lemma 2 , for all k ∈ N there is
somen(k) such thatUn(k)

k 6→ B. Hence, necessarilyA→Un(k)
k . By Corollary 2 this implies

girth(A)=∞ and thusA↔C∞. Since any port maps toC∞ we, in particular haveB→ A,
a contradiction. 2

It should be clear by now that, in the following, in order to derive some interesting
homomorphism duality, we restrict our considerations to a class of matroids with a strong
maxflow-mincut duality. P. Seymour [7] proves that every parallel extension of a matroid
M has the maxflow-mincut property if and only ifM does not have anF∗7 or aU2,4-minor
that usese. Thus, we consider theclassF of dual maxflow-mincut ports, whereM ∈ F if
and only ife is neither on anF7 nor on aU2,4-minor.

In this class, the quasiorder defined by the existence of strong port maps on the classes
of homomorphically equivalent ports has the simple structure of an infinite chain with
minimum and maximum, since every port is equivalent to someCk. We derive:

Theorem 5
1. Let k∈ N. Then Ck → = 6→ Ck+1 is a homomorphism duality forF .
2. Let A, B ∈ F be two matroid ports and A→=6→ B a homomorphism duality forF .

Then there exists a unique k, such that A↔ Ck and B↔ Ck+1.

Proof: Let M ∈ F . Thene is neither on anF∗7 -minor nor on aU2,4-minor in M∗. By
Seymour’s theorem ([7])M∗ has the maxflow-mincut property. Hence, by Theorem 3 there
is a uniquel0 such thatM ↔ Cl0. Corollaries 1 and 2 imply thatM → Ck ⇔ l0 ≥ k
andCk → M ⇔ k ≥ l0. For the second statement letA ↔ Cl0. Then A 6→ Cl0+1 and
thusCl0+1→ B. By Theorem 3 there exists a uniquel ≤ l0 + 1 such thatB ↔ Cl . Since
A→ Cl for l < l0+ 1, the claim follows. 2

We would like to point out that for graphic matroids the dualityCk →= 6→ Ck+1 reflects
the “trivial fact” that the length of a shortestst-path in a graph with unit weights limits the
number of pairwise disjointst-cuts. For cographic matroids we get the existence of either
k+1 edge-disjointst-paths or anst-cut of sizek. Thus, the class equation “Ck →= 6→ Ck+1”
is a formulation of Menger’s theorem as a theorem of the alternatives.

Remark This paper was motivated by the companion paper [2] where we considered
dualities for strong maps of oriented matroids and showed that Farkas’ lemma is the only
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instance of such a duality. In the more restrictive context of matroid ports we obtained a
richer spectrum of duality results.
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