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Abstract. We develop an iterated homology theory for simplicial complexes. This theory is a variation on one
due to Kalai. For1 a simplicial complex of dimensiond − 1, and eachr = 0, . . . ,d, we definer th iterated
homology groupsof 1. Whenr = 0, this corresponds to ordinary homology. If1 is a cone over1′, then when
r = 1, we get the homology of1′. If a simplicial complex is (nonpure) shellable, then its iterated Betti numbers
give the restriction numbers,hk, j , of the shelling. Iterated Betti numbers are preserved by algebraic shifting, and
may be interpreted combinatorially in terms of the algebraically shifted complex in several ways. In addition, the
depth of a simplicial complex can be characterized in terms of its iterated Betti numbers.
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1. Introduction

Let1 = v ∗1′ be a cone over the simplicial complex1′. Then1 is acyclic, i.e., all of its
reduced homology vanishes, and thus any information about the reduced homology of1′ is
lost. Iterated homology is a way to algebraically recover the reduced homology of1′ from
1. The first iterated homology of1 is just the ordinary homology of1′ and subsequent
iterates are gotten by “deconing”1′. If the complex is a “near-cone,” which is almost
a cone, then this deconing process makes sense. For an arbitrary complex0, the idea is
to algebraically transform0 into a near-cone, and then iterate the deconing process. The
“zeroth” iterated homology of0 is just the ordinary homology, and the iterates provide a
combinatorial generalization of homology. However, iterated homology is not topological;
that is, there are complexes with the same topological realization that have different iterated
homology. The iterated homology theory that we present here is a variation on one due to
Kalai [12], and we were heavily influenced by his work.

A simplicial complex is calledpure if all of its facets have the same dimension. A pure
simplicial complex isshellableif it can be assembled, facet by facet, in a nice way (see §5).
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Scholar Fellowship of Radcliffe College.
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Björner and Wachs [5, 6] extended the definition of shellability to include complexes that
are not pure. They showed that many interesting and important nonpure complexes are
shellable. In addition, they introduced a triangle of restriction numbershk, j (0) ( j ≤ k)
of a shelling of0. When0 is pure(d − 1)-dimensional, the numbershd, j (0) correspond
to h j (0), the ordinary restriction numbers of a shelling of0. In the pure shellable case,
it is a basic result thatβd−1(0) = hd(0), andβi (0) = 0 for i < d − 1. Björner and
Wachs generalized this result to nonpure shellable complexes, showing that for eachk,
βk−1(0) = hk,k(0). In this paper, we extend their result to the entireh-triangle, showing
thatβk−1[r ](0) = hk,k−r (0), whereβk−1[r ](0)denotes the(k−1)-dimensionalr th iterated
Betti number of0.

We use the method of algebraic shifting to transform0 into a new complex1(0) that is
much easier to work with. A full definition is in §3.

We summarize the main results in the following theorems.

Theorem 1.1 Let0 be a simplicial complex, and let1(0) denote the algebraically shifted
complex obtained from0. Then

βk−1[r ](0) = βk−1[r ](1(0))

= hk,k−r (1(0))

= #{facetsF ∈1(0) : |F | = k, init(F)= r }.

Proof: Theorem 4.1, Corollary 4.2, and Theorem 5.4. 2

This theorem says that the iterated Betti numbers remain invariant under the operation of
algebraic shifting and that they can be described combinatorially in terms of the algebraically
shifted complex.

Theorem 1.2 If 0 is a shellable simplicial complex, and1(0) denotes the algebraically
shifted complex obtained from0, then

βk−1[r ](0) = hk,k−r (0) = hk,k−r (1(0)).

Proof: Theorems 5.4 and 5.7, and Corollary 5.8. 2

In other words, when0 is shellable, then theh-triangle remains invariant under the
operation of algebraic shifting. Moreover, the iterated Betti numbers can be computed
directly from the shelling of0 itself.

In §§2–3, we present background material on shifted complexes, near-cones, and alge-
braic shifting. We also show that shifted complexes are “iterated near-cones,” extending a
result of Björner and Kalai.

We define iterated homology in §4, and prove basic results. We also show that our
definition of iterated homology is distinct from Kalai’s, and that iterated homology is not
topological. In §5, we discuss generalized or nonpure shelling, and complete the proofs of
Theorems 1.1 and 1.2.
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In §6, we show how the depth of0 can be described in terms of its iterated Betti numbers.

2. Shifted complexes and near-cones

We start with basic definitions that are used throughout this paper. Let1be a finite (abstract)
simplicial complex. We allow the possibility that1 is the empty simplicial complex∅
consisting of no faces, or the simplicial complex{∅} consisting of just the empty face, but we
do distinguish between these two cases. Thedimensionof F ∈ 1 is dimF = |F |−1, and
thedimensionof 1 is dim1 = max{dim F : F ∈ 1}. The maximal faces of1 are called
facets, and1 is pure if all the facets have the same dimension. Let1k denote the set of
k-faces (i.e.,k-dimensional faces) of1. The f -vector of1 is the sequence( f0, . . . , fd−1),
where fk = #1k andd − 1 = dim(1). The same notion offk(1) and the f -vector will
apply to every finite collection of sets.

We callβi (1) = dimK H̃ i (1; K ) the i th reduced Betti number of 1 with respect to
the fieldK , whereH̃ i (1; K ) is thei th reduced cohomology group with respect toi . The
Betti sequenceof1 isβ(1) = (β0, . . . , βd−1). Recall that over a field dimK H̃ i (1; K ) =
dimK H̃i (1; K ), so that the Betti sequence measures reduced homology as well as reduced
cohomology of1.

Let [r ] = {1, 2, . . . , r }, for anyr ≥ 1, and let [0]= ∅.

Definition If S = {i1 < · · · < i k} andT = { ji < · · · < jk} arek-subsets of integers,
then:

1. S≤P T under thecomponentwise partial order if i p ≤ j p for all p.
2. S<L T under thelexicographic order if there is aq such thatiq < jq andi p = j p for

p < q.

Lexicographic order is a total order which refines the componentwise partial order.

Definition A collectionC of k-subsets of integers isshifted if S≤P T andT ∈ C together
imply that S ∈ C. A simplicial complex1 with vertices labelled by distinct integers is
shifted if 1k is shifted for everyk.

Shifted complexes are central to the development of iterated homology. We will need
the following lemma in §4 and §5.

Lemma 2.1 Let F be a face of a shifted complex1. If [r ] ⊆ F , but F ∪ {r + 1} 6∈ 1,
then F is a facet of1.

Proof: Assume thatF is not maximal; i.e., assume there is somej such thatj 6∈ F and
F ∪ { j } ∈ 1. Then j ≥ r + 1, so, since1 is shifted, F ∪ {r + 1} ∈ 1, which is a
contradiction. 2
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Björner and Kalai showed in [4] that shifted complexes are near-cones, defined below.

Definition A near-conewith apexv0 is a simplicial complex1 satisfying the following
property: For each faceF ∈ 1, if v0 6∈ F andw ∈ F then

(F − {w}) ∪ {v0} ∈ 1. (1)

For every near-cone1 with apexv0, let

B(1) = {F ∈ 1 : F ∪ {v0} 6∈ 1},

and let

1′ = lk1(v0) = {F ∈ 1 : v0 6∈ F, F ∪ {v0} ∈ 1}. (2)

If B(1) = ∅, then1 is acone.

It follows from the definition of1′ andB(1) that

1 = (v0 ∗1′) ∪̇ B(1), (3)

where∗ denotes topological join (sov0 ∗ 1′ = 1′ ∪̇ {F ∪̇ {v0} : F ∈ 1′}). Both1′ and
1′ ∪̇ B(1) are subcomplexes of1. Furthermore, everyF ∈ B(1) is maximal in1, so the
collection of subsets inB(1) forms an antichain.

We can use Eq. (3) for an alternate definition of a near-cone: Let1′ ∪̇ B be a simplicial
complex such thatB is a set of maximal faces in1′ ∪̇ B (so1′ is a subcomplex andB is
an antichain); then1 = (v0 ∗1′) ∪̇ B is a near-cone (wherev0 is some new vertex not in
1′ ∪̇ B).

Note, in particular, that∅ and {∅} are near-cones and that∅ = v0 ∗ ∅ and {∅} =
(v0 ∗ ∅) ∪̇ {∅}. If 1 is a near-cone with apexv0, then v0 is one of the vertices of1,
unless1 = ∅ or {∅}.

For a finite sequence of non-negative integersα = (α0, α1, . . . , αn), an α-wedge of
spheresis the wedge ofαi spheres of dimensioni , for eachi .

Proposition 2.2 (Björner-Kalai [4, Theorem 4.3]) Let 1 be a near-cone. Then1 is
homotopy equivalent to the f(B(1))-wedge of spheres. In particular,

βk(1) = fk(B(1)).

The observation that a shifted simplicial complex1 is a near-cone(1∗1′) ∪̇ B is crucial
to the results in [4]; equally, the following observations are crucial here.

Proposition 2.3 If1 is a non-empty shifted simplicial complex on vertices{1, 2, 3, . . . , k},
then
(a) (Björner-Kalai [4]) 1 is a near-cone with apex1, so1 = (1 ∗1′) ∪̇ B;
(b) 1′ is a shifted simplicial complex on vertices{2, 3, . . . , k}.
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Proof: (a) Use the definition of near-cone, Eq. (1), to show that1 is a near-cone with apex
v0 = 1: If w ∈ F , but 1 6∈ F , then(F − {w}) ∪̇ {1} ≤P F ; therefore(F − {w}) ∪̇ {1} ∈ 1,
sinceF ∈ 1 and1 is shifted. (b) To show that1′ is shifted on{2, . . . , k}, assume that
S, T ⊆ {2, . . . , k}, and thatS≤P T ∈ 1′; we must then showS ∈ 1′. By the definition
of 1′, equation (2),T ∈ 1′ meansT ∪̇ {1} ∈ 1. Further, 16∈ S, T andS ≤P T imply
that S ∪̇ {1} ≤P T ∪̇ {1} ∈ 1, so, since1 is shifted,S∪̇ {1} ∈ 1. Then by Eq. (2) again,
S∈ 1′. 2

This means, for instance, that if1 = (1 ∗1′) ∪̇ B is shifted, then1′′ = (2 ∗1′′) ∪̇ B1

for someB1 and1′′, and thus,

1 = (1 ∗ ((2 ∗1′′) ∪̇ B1)) ∪̇ B.

More generally, we have the following corollary.

Corollary 2.4 Let1 = 1(0) be a shifted simplicial complex of dimension d− 1. Then
we may inductively define1(r+1) = (1(r ))′, i.e.,

1(r ) = ((r + 1) ∗1(r+1)
) ∪̇ Br (0≤ r ≤ d − 1), (4)

for some Br . Furthermore,

1 = 1 ∗ (2 ∗ (3 ∗ (· · · (d − 1) ∗ ((d ∗ Bd) ∪̇ Bd−1) ∪̇ Bd−2 · · ·) ∪̇ B2) ∪̇ B1) ∪̇ B0,

(5)

where Bd = {∅} = 1(d).

Proof: Proposition 2.3 shows, inductively, that1(r ) is a near-cone with apexr + 1,
allowing1(r+1) to be defined by Eq. (4). Equation (5) then follows from iterating Eq. (4).

2

By Proposition 2.2, we have

βk
(
1(r )

) = fk(Br ). (6)

Iterated homology will give us an algebraic way to recover these Betti numbers, even when
the simplicial complex is not shifted.

Example We illustrate Corollary 2.4 for the shifted complex1 in figure 1, whose facets
are (omitting commas and set brackets): 123, 124, 15, 16, 34, 7. The complexes1′ = 1(1)

and1′′ = 1(2) are pictured along with1 in figure 1.
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Figure 1. A shifted complex.

r facets of1(r+1) Br

3 – ∅
2 ∅ 4

1 3, 4 5, 6

0 23, 24, 5, 6 34, 7

We tabulate the datafk(Br ), indexing rows byr and columns byk.

r, k −1 0 1 2

0 0 1 1 0

1 0 2 0

2 0 1

3 1

3. Algebraic shifting

Algebraic shifting transforms a simplicial complex into a shifted simplicial complex with
the samef -vector and Betti numbers. It also preserves many algebraic properties of the
original complex. Algebraic shifting was introduced by Kalai in [10]; our exposition is
summarized from [4] and included for completeness (see also [3, 12]). We start with the
exterior face ring.

Definition Let0 be a(d−1)-dimensional simplicial complex with verticesV = {e1, . . . ,

en} linearly orderede1 < · · · < en. Let3(K V) denote the exterior algebra of the vector
spaceK V ; it has aK -vector space basis consisting of all the monomialseS := ei1∧ · · · ∧eik ,
whereS = {ei1 < · · · < eik} ⊆ V (ande∅ = 1). Note that3(KV) = ⊕n

k=03
k(KV) is
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a gradedK -algebra, and that3k(KV) has basis{eS : |S| = k}. Let (I0)k be the subspace
of 3k+1(KV) generated by the basis{eS : |S| = k + 1, S 6∈ 0}. Then I0 :=⊕d−1

k=−1(I0)k
is the homogeneous graded ideal of3(KV) generated by{eS : S 6∈ 0}. Let 3k[0] :=
3k+1(KV)/(I0)k. Then the graded quotient algebra3[0] :=⊕d−1

k=−13
k[0] = 3(KV)/I0

is called theexterior face ring of 0 (over K ).

The exterior face ring is the exterior algebra analogue to the Stanley-Reisner face ring of
a simplicial complex [14, 16]. See [17] and [8] for another use of the exterior face ring. For
x ∈ K V , let x̃ denote the image ofx in 3[0]. The set of allface-monomials{ẽS : S∈ 0}
is a K -vector space basis for3[0], so fk(0) = dimK (3

k[0]).
We can use the exterior face ring to compute cohomology. Iff = α1e1 + · · · + αnen,

thenδ f :3[0] → 3[0] defined byδ f (x) = f̃ ∧ x is aweighted coboundary operator,
so-called because

δ f (ẽS) = f̃ ∧ ẽS =
n∑

i=1

αi ẽi ∧ ẽS =
∑
i 6∈S

S∪{i }∈0

±αi ẽS∪{i }.

Setting everyαi = 1 gives the usual coboundary operator. Ordinary Betti numbers may be
computed using weighted coboundary operators:βk−1(0) = dimK (kerδ f )k−1/(im δ f )k−1,
if f = α1e1+ · · · + αnen and everyαi is non-zero [4, pp. 289–290].

To create a “generic” basis in the following definition, letK̄ = K (α11, α12, . . . , αnn)

be the field extension overK by n2 transcendentals,{αij }1≤i, j≤n, algebraically independent
over K . We will consider3[0] as being overK̄ instead ofK from now on. We are, in
effect, simply adjoining theseαij ’s to our field of coefficients.

Definition For 1≤ i ≤ n, let

fi =
n∑

j=1

αij ej ,

so{ f1, . . . , fn} forms a “generic” basis of̄KV . Define fS := fi1 ∧ · · · ∧ fik for S= {i1 <

· · · < i k} (and setf∅ = 1). Let

1(0, K ) := {S⊆ [n] : f̃S 6∈ span{ f̃R : R<L S}}

be thealgebraically shifted complexobtained from0. We will write 1(0) instead of
1(0, K ) when the field is understood to beK .

Thek-subsets of1(0) can be chosen by listing all thek-subsets of [n] in lexicographic
order and omitting those that are in the span of earlier subsets on the list, moduloI0 and
with respect to thef -basis.

We collect here the basic facts we need about algebraic shifting.

Proposition 3.1(Kalai [4, Theorem 3.1]) Let0 be a simplicial complex, and let K be a
field. Then1 = 1(0, K ) is a shifted simplicial complex such that
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(a) fi (0) = fi (1) for i ≥ 0,
(b) βi (0) = βi (1) for i ≥ 0 (Betti numbers with coefficients in K),
and1 is independent of the numbering of the vertices of0.

Proposition 3.2(Kalai [11, §4, Remark (4)]) If 0 is shifted, then1(0) = 0.

Corollary 3.3 Let0 be a simplicial complex. Then1(1(0)) = 1(0).

4. Iterated homology

Because1 = 1(0) is shifted, we may write1 = (1 ∗1′) ∪̇ B. We wish to find the Betti
numbers of1′ from 0 algebraically, without first constructing1. This would in effect
extend Proposition 3.1(b) to1′.

To simplify notation, we will from now on usẽf in place of its corresponding coboundary
operatorδ f = f̃ ∧ ·.

Consider the set11 = {F ∈ 1 : 1 ∈ F}, which has a natural bijection with1′. Alge-
braically,11 is a basis of the subspace im̃f1, the space off̃ -monomials that are multiples
of f̃1. (Note that in [17] and [8],1′ is considered directly, by examining3[0]/ ker f̃1.)
We need to find a coboundary operator to compute the cohomology groups of imf̃1; we
cannot usef̃1, since it annihilates the entire subspace. Fortunately, thef̃i ’s are linearly
independent coboundary operators, so we may usef̃2 as a coboundary operator. Thus, the
(k− 1)st cohomology group of1′ is given by(

kerim f̃1
f̃2
)/(

im im f̃1
f̃2
)= (x ∈ f̃1∧3k−1[0] : f̃2 ∧ x = 0)/( f̃2∧ ( f̃1∧3k−2[0])).

We continue this process to find the Betti numbers of1(r ) (r ≤ d − 1). Algebraically,
{F ∈ 1 : {1, . . . , r } ⊆ F} (which has a natural bijection with1(r )) is a basis of the image
of f̃[r ] = f̃1 ∧ f̃2 ∧ · · · ∧ f̃r . To find the Betti numbers of im̃f[r ] , we can use the weighted
coboundary operator̃fr+1, which is linearly independent of̃f1, f̃2, . . . , f̃r . We make the
following definitions and notation.

Definition If 0 is a simplicial complex and 0≤ r ≤ k+ 1≤ d, we define

3k[r ](0) = f̃[r ] ∧3k−r [0] = f̃1 ∧ · · · ∧ f̃r ∧3k−r [0],

Zk[r ](0) = {x ∈ 3k[r ](0) : f̃r+1 ∧ x = 0},

Bk[r ](0) =
{

f̃r+1 ∧3k−1[r ](0) if r < k+ 1

0 if r = k+ 1
,

Hk[r ](0) = Zk[r ](0)/Bk[r ](0).

Notice thatBk[r ](0) = 3k[r + 1](0). The Hk[r ](0)’s are called ther th iterated coho-
mology groupsof 0. We define ther th iterated Betti numbers by

βk[r ](0) = dim Hk[r ](0).

Ther = 0 case is just ordinary reduced cohomology.
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Remark Kalai [12] defined another version of iterated cohomology. We distinguish
between the two definitions by putting bars over his. Assume 1≤ r ≤ n. First let
Fr = span{ f̃1, . . . , f̃r }. Then define

Z̄k[r ](0) = {x ∈ 3k+1[0] : f̃1 ∧ · · · ∧ f̃r ∧ x = 0},
B̄k[r ](0) = span{Fr ∧3k[0]},

and defineH̄ k[r ](0) andβ̄k[r ](0) in terms ofB̄k[r ](0) and Z̄k[r ](0) as above. We show
below, following Corollary 4.3, that the two iterated cohomology definitions are different.

Definition Let F be a set of positive integers. Define

init(F) = min{r > 0 :r 6∈ F} − 1

= max{r ≥ 0 : [r ] ⊆ F}.

In other words, init(F)measures the largest “initial segment” inF , and is 0 if there is no
initial segment (i.e., 16∈ F).

Theorem 4.1 Let0 be a simplicial complex, and let1(0) denote the result of applying
algebraic shifting to0. Then

βk[r ](0) = #{facetsF ∈ 1(0) : |F | = k+ 1, init(F) = r }.

Proof: (Very similar to the proof of ther = 0 case by Bj¨orner and Kalai, Claim 2 in
[4, Theorem 3.1].) Let1 = 1(0) and let

1k[r ] = {S∈ 1 : |S| = k+ 1, [r ] ⊆ S}.
We claim that

3k[r ](0) = span{ f̃S : S∈ 1k[r ]}. (7)

First, letA={S∈ ( [n]
k+1
) : [r ]⊆ S}; sinceA is initial with respect to lexicographic ordering,

{ f̃S : S∈ 1k[r ]} is a basis for span{ f̃S : S∈ A}. Now, if y ∈ 3k[r ](0), theny = f̃[r ] ∧ x
for somex ∈ 3k−r [0]. Sayx =∑ γR f̃R; then

y = f̃[r ] ∧ x =
∑

R∩[r ]=∅
±γR f̃R∪[r ] ∈ span{ f̃S : S∈ A} = span{ f̃S : S∈ 1k[r ]}.

Conversely, ifS∈ 1k[r ], then f̃S = f̃[r ] ∧ f̃S−[r ] ∈ 3k[r ](0), and Eq. (7) follows.
Now

dim Zk[r ](0) = dim3k[r ](0)− dim Bk+1[r ](0),

and, by definition,

Bk[r ](0) = 3k[r + 1](0);
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therefore,

βk[r ](0) = dim Zk[r ](0)− dim Bk[r ](0)

= (dim3k[r ](0)− dim Bk+1[r ](0))− dim Bk[r ](0)

= (dim3k[r ](0)− dim3k+1[r + 1](0))− dim3k[r + 1](0)

= #1k[r ] − #1k+1[r + 1]− #1k[r + 1].

Further,

#1k[r + 1] = #{S∈ 1k[r ] : r + 1 ∈ S},

and, via the bijectionS↔ S′ = S∪ {r + 1},

#1k+1[r + 1] = #{S′ ∈ 1k+1[r ] : r + 1 ∈ S′}
= #{S∈ 1k[r ] : r + 1 6∈ S, S ∪̇ {r + 1} ∈ 1},

so

βk[r ](0) = #1k[r ]− #{S∈ 1k[r ] : r + 1 6∈ S, S∪̇ {r + 1} ∈ 1}
− #{S∈ 1k[r ] : r + 1 ∈ S}
= #{S∈ 1k[r ] : S∪ {r + 1} 6∈ 1}.

Finally note that if [r ] ⊆ S andS∪ {r + 1} 6∈ 1, then init(S) = r and, by Lemma 2.1,
Smust be maximal, completing the proof. 2

Corollary 4.2 Let0 be a simplicial complex. Then

βk[r ](0) = βk[r ](1(0)).

Proof: Using Theorem 4.1 twice and the stability of algebraic shifting (Corollary 3.3),

βk[r ](0) = #{facetsF ∈ 1(0) : |F | = k+ 1, init(F) = r }
= #{facetsF ∈ 1(1(0)) : |F | = k+ 1, init(F) = r }
= βk[r ](1(0)). 2

Corollary 4.3 Let 0 be a simplicial complex, let 1 = 1(0) be the result of applying
algebraic shifting to0, and define B1, . . . , Bd as in Corollary2.4. Then

βk+r [r ](0) = fk(Br ) = βk
(
1(r )

)
.

Proof: It is easy to see by Eq. (5) that

fk(Br ) = #{facetsF ∈ 1(0) : |F | = k+ 1+ r, init(F) = r }.

Then apply Theorem 4.1 and Eq. (6). 2
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Remark We can now show that Kalai’s iterated cohomology is different from the one
presented here. In [12], Kalai gives the formula

β̄k[r ](0) = #{F ∈ 1(0) : |F | = k+ 1, F ∩ [r ] = ∅, F ∪ [r ] 6∈ 1(0)}. (8)

To see that the definitions are essentially different, consider the following 1-dimensional
shifted simplicial complexes:

It is easy to check, using Eq. (8), thatβ̄1[2](11) = 1 but β̄1[2](12) = 0; it is also easy to
check, using Theorem 4.1, thatβk[r ](11) = βk[r ](12) for all k, r . These complexes are
built by taking a cone over four vertices and adjoining three of the six possible remaining
edges in the only two ways to make shifted complexes.

On the other hand, it is not hard to verify that if a simplicial complex is “s-fold acyclic”
(i.e., all ther th iterated homology groups vanish forr = 0, . . . , s) under either definition,
then it is “s-fold acyclic” under the other definition (both conditions correspond to the
algebraically shifted complex1 being an “s-fold cone”, i.e.,1 = [s] ∗1′ for some1′).

Remark It is easy to see now that iterated homology is not topological, i.e., that two
simplicial complexes whose realizations are homeomorphic need not have the same iterated
Betti numbers. Simply take two triangulations of the same space that use different numbers of
facets; the sum of the iterated Betti numbers is equal to the number of facets, by Theorem 4.1,
so the two triangulations will have different sets of iterated Betti numbers.

5. Iterated homology and non-pure shelling

A simplicial complex is shellable [5, 6] if it can be constructed by adding one facet at a
time, so that as each facetF is added, auniquenew minimal face, called the restriction
faceR(F), is added. Equivalently, as each facet is added, it intersects the existing complex
(previous facets) in a union of codimension 1 faces. We take the following as the formal
definition.

Definition (Björner-Wachs [5]) A simplicial complex0 is shellableif there is a map

R : {facets of0} → 0
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called therestriction map and an ordering of the facetsF1, . . . , Ft of 0 such that:

0 =
⋃

1≤i≤t

[R(Fi ), Fi ]; and (9)

R(Fa) ⊆ Fb⇒ a ≤ b. (10)

Note that condition (10) implies that the union in Eq. (9) is disjoint. Therestriction
numbersare defined by

hk, j (0) = #{facetsF : |F | = k, |R(F)| = j }

and are independent of the shelling order.

In [5], the numbershk, j are defined differently, and for all complexes (not just shellable
ones). But thehk, j ’s equal the restriction numbers for shellable complexes [5, Theorem 3.4],
and since we are only interested in thehk, j ’s for shellable complexes, we will usehk, j to
denote shelling restriction numbers.

The original definition of shellability also required0 to be pure; we will refer to this
property aspure shellability. In [5, 6], Björner and Wachs dropped the assumption of
purity, and proved basic results about general shellability.

The restriction numbers of pure shellability areh j (0) = #{facetsF : |R(F)| = j }, so
h j (0) = hd, j (0) for a pure(d − 1)-dimensional shellable complex. It is well-known that
a pure(d − 1)-dimensional shellable complex has homology only in top dimension (i.e.,
βk(0) = 0 for k < d − 1) and thatβd−1(0) = hd(0) = hd,d(0). Björner and Wachs
extended this to (generalized) shelling, with the following theorem.

Proposition 5.1(Björner-Wachs [5, Theorem 4.1])If 0 is shellable, then

βk−1(0) = hk,k(0)

for any k.

Iterated homology provides an algebraic interpretation of the non-diagonal restriction num-
bers (i.e.,hk, j (0), wherek 6= j ), generalizing Proposition 5.1. (See Corollary 5.8.)

We collect here other useful facts about shelling.

Proposition 5.2 (Björner-Wachs [5, Theorem 2.6])If 0 is a shellable, then there is a
shelling F1, . . . , Ft of 0 such that

a ≤ b⇒ |Fa| ≥ |Fb|.

This means that we can always construct a shellable complex using higher-dimensional
facets first and lower-dimensional facets last. Recall from §4 that init(F) measures the
largest “initial segment” of a setF .



ITERATED HOMOLOGY OF SIMPLICIAL COMPLEXES 291

Proposition 5.3 (Björner-Wachs [6, Corollary 11.4]) If 1 is shifted, then it is shellable
with restriction numbers given by

hk, j (1) = #{facetsF ∈ 1 : |F | = k, init(F) = k− j }.

Theorem 5.4 Let 0 be simplicial complex, and let1(0) denote the result of applying
algebraic shifting to0. Then

βk−1[r ](0) = hk,k−r (1(0)).

Proof: Apply Theorem 4.1 and Proposition 5.3. 2

Example We illustrate Proposition 5.3 for the shifted complex1 in figure 1. The shelling
order is 123, 124, 15, 16, 34, 7. The restriction faces are given by the following table.

F 123 124 15 16 34 7

R(F) ∅ 4 5 6 34 7

We tabulate the datahk, j (1), indexing rows byk and columns byj .

k, j 0 1 2 3

0 0

1 0 1

2 0 2 1

3 1 1 0 0

The table ofhk, j (1) data differs from the table offk−1(Br ) data at the end of §2 only in
whether each column starts in the top row or ends in the bottom row. This is a consequence
of Corollary 4.3 and Theorem 5.4, since1 is shifted:

hk,k−r (1) = βk−1[r ](1) = fk−r−1(Br ).

Collapsing is a different kind of decomposition and is closely related to shelling.

Definition (Kalai [12, §4]) A faceR of a simplicial complex0 is called free if it is
included in a unique facetF . The empty set is a free face of0 if and only if0 is a simplex.
(This definition is slightly nonstandard in that facets are themselves free.) If|R| = p and
|F | = q, then we sayR is of type (p,q). A (p,q)-collapse stepis the deletion from0 of a
free face of type(p,q) and all faces containing it (i.e., the deletion of the interval [R, F ]).
Performing a collapse step may create new free faces. Acollapsing sequenceis a sequence
of collapse steps that reduce0 to the empty simplicial complex.
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The following lemma is implicit in [12, §4]. It is also a special case of [7, Proposition 2.2],
where “S-partitions” are used intead of collapsing sequences, but it is easy to see the two
concepts are equivalent.

Lemma 5.5 If a collapsing sequence of a simplicial complex0 consists of the intervals
[Rt , Ft ], . . . , [R1, F1], and each Fi is a facet in the original complex0, then F1, . . . , Ft is
a shelling order of0. Furthermore, the restriction map of this shelling is given by setting
R(Fi ) = Ri .

Conversely, if G1, . . . ,Gt is a shelling order of a simplicial complex0, then

[R(Gt ),Gt ], . . . , [R(G1),G1]

is a collapsing sequence of0.

Proof: The collapsing sequence and definition ofR(Fi ) give the decomposition of0,
Eq. (9); eachR(Fi ) being a free face at thei th collapse establishes condition (10). The
important assumption here is that eachFi is a facet;everycollapsing sequence gives a
decomposition that satisfies (9) and (10), but the tops of the intervals are not necessarily
facets.

The proof of the converse is similar: Condition (10) ensures that eachR(Gi ) is free and
Eq. (9) shows that the sequence of collapses reduces0 to the empty complex. 2

Proposition 5.6 (Kalai [12, Theorem 4.2]) If 0′ is obtained from0 by a collapse step,
then1(0′) is obtained from1(0) by a collapse step of the same type.

Theorem 5.7 If 0 is a shellable simplicial complex, and1(0) denotes the result of
applying algebraic shifting to0, then

hk, j (0) = hk, j (1(0)).

Proof: Let the shelling order of0 beG1, . . . ,Gt . By Proposition 5.5,

[R(Gt ),Gt ], . . . , [R(G1),G1]

is a collapsing sequence of0, and Proposition 5.6 then implies that1(0) has a collapsing
sequence

[Rt , Ft ], . . . , [R1, F1]

such that

|Ri | = |R(Gi )| and |Fi | = |Gi |

for all i . To apply Proposition 5.5 again to show that1(0) has the desired shelling, we
must show that everyFi is a facet in1(0); it suffices to show thatFa is not contained in
Fb for anya 6= b.
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If a > b, then at the collapse step whenFa is removed as a maximal face of the remaining
complex,Fb is still present, soFa 6⊂ Fb. On the other hand, by Proposition 5.2, we may
assume that ifa < b, then

|Ga| ≥ |Gb|,
so

|Fa| = |Ga| ≥ |Gb| = |Fb|,
andFa 6⊂ Fb.

Thus everyFi is a facet, and therefore, by Proposition 5.5,F1, . . . , Ft is a shelling order
of 1(0) with

|R(Fi )| = |Ri | = |R(Gi )| and |Fi | = |Gi |

for all i , sohk, j (1(0)) = hk, j (0). 2

We can now prove the desired generalization of Proposition 5.1.

Corollary 5.8 If 0 is a shellable simplicial complex, then

βk−1[r ](0) = hk,k−r (0).

Proof: By Theorems 5.4 and 5.7,

βk−1[r ](0) = hk,k−r (1(0)) = hk,k−r (0). 2

6. Depth

A sequence(x1, . . . , xk) of elements of a ringR is a regular sequenceon R if eachxi is
not a zero divisor on the quotientR/(x1, . . . , xi−1). Thedepth of a ring is the length of
the longest regular sequence onR, and the depth of a simplicial complex0 is defined to
be the depth ofK [0], the face ring of0 over K (see [16] for more details). Smith [15]
and Munkres [13] have described the depth of0 in terms of combinatorial and topological
properties of0. In [1] and [2, §§2, 3], Bj¨orner gives a description of the depth of a shellable
complex0 in terms of the shelling restriction numbershi, j (0). Using Theorem 5.4 we
describe depth in terms of iterated homology.

Theorem 6.1 Let0 be a simplicial complex; thendepth(0) = k if and only if:
(a) β i [r ](0) = 0 for i < k; and
(b) βk[r ](0) 6= 0 for some r.

Proof: Using [15, Theorem 4.8] (see also Hibi [9]), we know that depth(0) = k if and
only if k is the largest integer such that thek-skeleton of0 is Cohen-Macaulay. From [12,
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Theorem 5.3], this is equivalent tok being the largest integer such that thek-skeleton of the
shifted complex1(0) is pure. This means that all facets of1(0) have dimension at least
k, and there exists a facet of dimension exactlyk. Thus, in any shelling of1(0), we have
hi, j (1(0)) = 0 wheneveri ≤ k, buthk+1, j (1(0)) 6= 0 for somej . By Theorem 5.4, this
is equivalent toβ i [r ](0) = 0 if i < k, for anyr , butβk[r ](0) 6= 0, for somer . 2
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