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1. Introduction

The algebra of noncommutative symmetric functionsSym, introduced in [2], is the free
associative algebra (over some field of characteristic zero) generated by an infinite sequence
(Sn)n≥1 of noncommutating inderminates (intended to correspond to the complete noncom-
mutative symmetric functions) and endowed with some extra structure imitated from the
usual algebra of commutative symmetric functions. This point of view consists typically
in defining other noncommutative symmetric functions, in terms of the complete functions
that are initially given, by taking noncommutative analogues of the classical relations that
exist between usual commutative symmetric functions.

Noncommutative symmetric functions have already been used in several contexts. They
provide a simple and unified approach to several topics such as noncommutative continued
fractions, Pad´e approximants and various generalizations of the characteristic polynomial
of noncommutative matrices arising in the study of classical enveloping algebras and their
quantum analogues (cf [2, 10]). They also provided a new point of view regarding the
classical connections between the free Lie algebra and Solomon’s descent algebra (see
[2, 4, 5, 11] for more details). One can in particular use the theory of noncommutative
symmetric functions in order to characterize the Lie idempotents that belong to Solomon’s
descent algebra (cf [2]) and obtain new families of Lie idempotents within Solomon’s
descent algebra that interpolate between all classical Lie idempotents (cf [4]).
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More recently quantum interpretations of the algebras of noncommutative symmetric
functions and of quasi-symmetric functions (the Hopf dual ofSymconstructed initially by
Gessel in [3]) were obtained (cf [6, 8]). It indeed appears that the algebra of noncommutative
symmetric functions (resp. of quasi-symmetric functions) is isomorphic to the Grothendieck
ring of finitely generated projective (resp. finitely generated) modules over 0-Hecke algebras
(cf [6]). A similar interpretation of these two algebras can also be obtained in terms of
the representation theory of Takeuchi’s version ofUq(Gln) (cf [14]) taken atq= 0 (see
[7, 8]). Noncommutative ribbon Schur functions and quasi-ribbon functions appear then
respectively in these interpretations as

• the cocharacters of the irreducible and the projective comodules over the crystal limit of
the Dipper-Donkin version of the quantum linear group (see [1, 6] for more details),
• the characters of the irreducible and the projective polynomial modules over the crystal

limit of the Takeuchi version of the quantum enveloping algebraUq(Gln) (see [7, 8, 14]
for more details).

In this paper, we are however going back to the beginning of the theory of noncommutative
symmetric functions. Indeed, our article solves a conjecture, originally stated in [4], that
establishes a strange connection between the family of Zassenhaus Lie idempotents and the
Lie idempotents corresponding to the projection onto the Lie algebra associated with theq-
bracketing operator. This connection is obtained by introducing a new exponential/logarithm
like correspondence which allows us to describe in a very simple way the Lie idempotents
associated with theq-bracketing operator as mentioned above.

This paper is therefore organized as follows. In Section 2, we briefly present noncommu-
tative symmetric functions (the reader is referred to [2, 4] for more details on this subject).
Section 3 is devoted to the construction of our new analog of the exponential and the ob-
tention of its main properties. Section 4 makes then the connection between this analog
of the exponential and noncommutative symmetric functions in order to solve the above
mentioned conjecture. In the short concluding Section 5, we finally give some indications
for a further possible generalization of our work.

2. Preliminaries

2.1. Noncommutative symmetric functions

The algebra offormal noncommutative symmetric functionsis the free associative algebra
Sym= K〈S1, S2, . . .〉 (over some fieldK of characteristic zero) generated by an infinite se-
quence of noncommutative indeterminatesSk, called thecompletesymmetric functions (see
[2] for more details). We set for convenienceS0 = 1. Let t be another variable commuting
with all theSk. Introducing the generating series

σ(t) :=
∞∑

k=0

Sktk,
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one can define other noncommutative symmetric functions by the following relations

λ(t) = σ(−t)−1,
d

dt
σ(t) = σ(t)ψ(t), σ (t) = exp(φ(t)),

whereλ(t), ψ(t) andφ(t) are the generating series

λ(t) :=
∞∑

k=0

3ktk, ψ(t) :=
∞∑

k=1

9ktk−1, φ(t) :=
∞∑

k=1

8k

k
tk.

The noncommutative symmetric functions3k are calledelementary functions. The elements
9k (resp.8k) are calledpower sumsof first kind(resp.second kind).

The algebraSym is graded by the weight functionw defined byw(Sk) = k. Its homo-
geneous component of weightn will be denoted bySymn. If (Fn) is a sequence of noncom-
mutative symmetric functions withFn ∈ Symn for everyn ≥ 1, we set

F I = Fi1 Fi2 . . . Fir

for every compositionI = (i1, i2, . . . , i r ). The families(SI ), (3I ), (9 I ) and(8I ) are then
homogeneous bases ofSym.

The set of all compositions of a given integern is equipped with thereverse refinement
order, denoted¹. For instance, the compositionsJ of 4 such thatJ ¹ (1, 2, 1) are(1, 2, 1),
(3, 1), (1, 3) and(4). The ribbon Schur functions(RI ) can then be defined by one of the
two equivalent relations

SI =
∑
J¹I

RI , RI =
∑
J¹I

(−1)`(I )−`(J)SJ,

where`(I ) denotes thelengthof the compositionI . One can easily show that the family
(RI ) is a homogeneous basis ofSym.

Thecommutative imageof a noncommutative symmetric functionF is the commutative
symmetric functionf obtained by applying toF the algebra morphism which mapsSn onto
hn, using here the notations of [9]. The commutative image of3n is thenen. On the other
hand,9n is mapped topn. Finally RI is sent to the ordinary ribbon Schur functionr I .

One can endowSym with a structure of Hopf algebra, its comultiplication1 being
defined by one of the following equivalent formulas

1(Sn) =
n∑

i=1

Si ⊗ Sn−i , 1(3n) =
n∑

i=1

3i ⊗3n−i ,

1(9n) = 1⊗9n +9n ⊗ 1, 1(8n) = 1⊗8n +8n ⊗ 1.

It is in fact this Hopf structure which explains in a unified way the properties of Lie
idempotents as we will see in the sequel.
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2.2. Relations with Solomon’s descent algebra

Letσ ∈ Sn be a permutation with descent setE = {d1 < · · · < dk} ⊆ [n−1]. Thedescent
composition I= C(σ ) is the compositionI = (i1, . . . , i k+1) of n defined byi s = ds− ds−1

whered0 = 0 anddk+1 = n. The sum in the group algebra of all permutations with descent
compositionI is denoted byDI . We also setI = C(E). Conversely the subset of [1, n−1]
associated with a compositionI of n will be denoted byE = E(I ). The DI with |I | = n
form a basis of a subalgebra ofZ[Sn], called thedescent algebraof Sn (cf [12]). We denote
then by6n the same algebra, with scalars extended to our ground fieldK.

There is in fact a strong connection between noncommutative symmetric functions and
the descent algebras of the symmetric group. One can indeed define an isomorphism of
graded vector spaces by setting

α : 6 =
∞⊕

n=0

6n −→ Sym=
∞⊕

n=0

Symn

DI −→ RI

for any compositionI . The existence of this isomorphism shows that an element ofSymn is
just a certain encoding of an element of the descent algebra6n. Note that the interpretation
of Sn and3n in this encoding is simple since one has{

α−1(Sn) = Dn = I dn,

α−1(3n) = D1n = ωn,

whereI dn denotes the identity permutation of ordern and whereωn denotes the maximal
permutationnn− 1 . . .1 of Sn. We will see in the next section that there is also a strong
connection between noncommutative symmetric functions and Lie idempotents that passes
through Solomon’s descent algebra.

2.3. Lie idempotents

Let A be an alphabet. ALie projectoris a projection from the free associative algebraK〈A〉
onto the free Lie algebraL(A). In other words, a Lie projector is an endomorphismπ of
K〈A〉 that satisfies the two following properties:

• π2 = π (π is aprojector);
• Im π = L(A) (π is aLie projector).

The basic property of a Lie projector is that it maps any Lie element on itself.
Recall that the symmetric groupSn acts on the homogeneous component of ordern of

Kn〈A〉 (and hence onLn(A)) by setting

a1 . . .an · σ = aσ(1) · · ·aσ(n)
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for ai ∈ A andσ ∈ Sn. Recall also that an endomorphismf of K〈A〉 is said to commute
with letter substitutions if one has

f (s(w)) = s( f (w))

for every endomorphisms of K〈A〉 which maps every lettera ∈ A onto another letter
s(a) ∈ A (such an endomorphism is called a letter substitution). Note that, according to
Schur-Weyl duality, an endomorphism commuting with letter substitutions also commutes
with the right action ofSn.

Suppose now that we work with an infinite alphabetA = {1, 2, . . .}. We shall only
consider in the sequel Lie projectors with the following properties:

1. π is finely homogeneous(π(Kλ〈A〉) ⊂ Lλ(A) for every multidegreeλ),
2. π commutes with letter substitutions.

If π is a Lie projector which satisfies these properties, it is easy to see that one can recover
π from the sequence(πn)n≥1 whereπn is defined by setting

πn = π(12. . .n) ∈ L1n(1, 2, . . . ,n)

for everyn ≥ 1 (these elements belong to the multilinear componentsL1n(1, . . . ,n) of the
free Lie algebras on the alphabets [n] = {1, . . . ,n}). Indeed,

π(a1 . . .an) = π(s(12. . .n)) = s(πn)

wheresdenotes the letter substitution ofK〈1, 2, . . . ,n〉mappingi ontoai . Sinceπ is finely
homogeneous, one can considerπn as an element of the group algebraK[Sn] (permutations
being identified with standard words) which is clearly an idempotent (i.e.π2

n = πn) of this
algebra. The study of Lie projectors that satisfy to the two conditions above can therefore
be reduced to the study ofLie idempotentsin K[Sn], i.e. of those idempotents ofK[Sn]
that can be expressed as Lie polynomials over the alphabet{1, 2, . . . ,n}.

An elementπ of the group algebraK[Sn] is a Lie elementif it can be expressed as a
Lie polynomial over the alphabet{1, 2, . . . ,n}. A Lie quasi-idempotentis a Lie element
of K[Sn] which is a quasi-idempotent (an elementx of aK-algebra is said to be quasi-
idempotent if and only ifx2 = kx with k ∈ K).

It appears that one can use noncommutative symmetric functions in order to classify
all the Lie quasi-idempotents that belong to the descent algebra of the symmetric group.
Indeed, let us denote byL(9) the free Lie algebra generated by the family(9n)n≥1 within
Sym. We can then state the following result that gives an explicit characterization of all Lie
quasi-idempotents of the descent algebra of the symmetric group.

Theorem 2.1(Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon [2])Let Fn be an element
of Symn and let fn = α−1(Fn) be the associated element of6n. The following assertions
are then equivalent:
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1. fn is a Lie quasi-idempotent,
2. Fn belongs to the free Lie algebra L(9),
3. Fn is a primitive element for the coproduct1.

It is interesting to stress the fact that the non commutative power sums of first and second
kinds correspond to some remarkable Lie idempotents. On can indeed check that the inverse
image underα of the noncommutative symmetric function9n is equal to Dynkin’s (quasi)-
idempotent, i.e.

α−1(9n) = [[ . . . [[1, 2], 3], . . .], n] = ϑn.

On the other hand, the inverse image of8n underα correspond to the so-called Solomon’s
(quasi)-idempotent,ϕn, that encodes (up to a constant) the projection onto the free Lie
algebra with respect to the classical Poincar´e-Birkhoff-Witt decomposition of the free
associative algebra (see [2], [11] and [13] for more details).

2.4. The transformation A−→ (1− q)A and the q-bracketing operator

Theq-bracketing operator (of ordern) is the linear operatorϑn(q) over the free associative
algebraK〈A〉 defined by setting

ϑn(q)(a1a2 . . .an) = [[ . . . [[a1,a2]q,a3]q, . . .],an]q

for every worda1a2 . . .an of A∗, where we set

[u, v]q = uv − qvu

for every u andv in K〈A〉. It happens that this operator can be interpreted in terms of
noncommutative symmetric functions. Let us indeed consider the noncommutative analogs
of commutative complete symmetric functions of the alphabet(1−q)A (in the generalized
λ-ring style notation introduced in [4]) which are defined as follows (the generating series
σ(t) andλ(t) are here denoted byσ(A; t) andλ(A; t) in order to put the stress on the
different alphabets that we are using (cf [4] for more details)).

Definition 2.2 The generating series of the family(Sn((1− q)A))n≥1 of complete sym-
metric functions of the alphabet(1− q)A is given by

σ((1− q)A); t) :=
∑
n≥0

Sn((1− q)A)tn = σ(A;qt)−1σ(A; t)

= λ(A;−qt)σ (A; t). (1)

One can then show (see [4] for all the details) that

Sn((1− q)A) =
{
(1− q)2n(q) if n ≥ 1

1 if n = 0
.
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where we set

2n(q) = α−1(ϑn(q)) =
n−1∑
i=0

(−q)i R1i , n−i

whereϑn(q) stands for the image of the identity by theq-bracketing operator, i.e. for the
element

ϑn(q) = [[ . . . [[1, 2]q, 3]q, . . .], n]q =
n−1∑
i=0

(−q)i D1i ,n−i

of Solomon’s descent algebra (we use here the same notation for theq-bracketing operator
and for the image of the identity by this operator). In other words, theq-bracketing operator
is essentially equal to the image through the isomorphismα of the noncommutative complete
symmetric function of the alphabet(1− q)A.

It appears that theq-bracketing operator is diagonalizable with eigenvalues

uλ = 1

1− q
ψλ(1− q) = 1

1− q

(
1− qλ1

)(
1− qλ2

) · · · (1− qλr
)

whereλ = (λ1, λ2, . . . , λr ) runs through all partitions of the integern (see [4] for all
details). The eigenspace corresponding to the eigenvalue

1

1− q
(1− qn)

is remarkable since it is exactly the free Lie algebra. In other words, we have the following
q-Dynkin criterion for a non commutative polynomialP of K〈A〉 to belong to the free Lie
algebra:

P ∈ Ln(A)⇐⇒ ϑn(q)(P) = 1− qn

1− q
P.

Let us denote byEλ(A) the eigenspace of theq-bracketing operator associated with the
eigenvalueuλ. The diagonalizability ofϑn(q) allows then us to write

K〈A〉n = Ln(A)⊕
⊕
λ`n

l (λ)≥2

Eλ(A)

since we haveEn(A) = Ln(A) as explained above. There exists therefore a Lie projector
associated with this decomposition of the homogeneous component of weightn of the free
associative algebra, i.e. a Lie projector with rangeLn(A) and kernel⊕

λ`n
l (λ)≥2

Eλ(A).
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It happens that the Lie idempotent, denoted5n(q), corresponding to this Lie projector
(in the sense of Section 2.3) belongs to the descent algebra. We can therefore define a
noncommutative symmetric function, that we shall denote byπn(q), by setting

πn(q) = α−1(5n(q))

for everyn ≥ 1. These new noncommutative symmetric functionsπn(q) can be character-
ized as follows (see [4] for all the details).

Theorem 2.3(Krob, Leclerc, Thibon [4]) The noncommutative symmetric functionπn(q)
(associated with the Lie idempotent5n(q)) is characterized by the property

πn(q)((1− q)A) = (1− qn)πn(q)(A). (2)

The aim of the present paper is to study in deep details these noncommutative symmetric
functions. We will in particular give in the sequel a solution for a conjecture, initially stated
in [4], that connects the specialization atq = 0 of these elements to the so-called Zassenhaus
Lie idempotents.

3. A new exponential/logarithm correspondence

3.1. A new analog of the exponential

Let us consider some infinite alphabetA = {ak, k ≥ 1}. Let now

X(A) =
∑
w∈A∗

xww

be a formal power series ofK(q)〈〈A〉〉. We associate then with this formal power series the
two other formal power seriesX(q A) andX((1− q)A) of K(q)〈〈A〉〉 defined by setting

X(q A) =
∑
w∈A∗

xwq‖w‖w,

X((1− q)A) =
∑
w∈A∗

xwlq(w)w,

where we have

‖w‖ =
r∑

k=1

i k and lq(w) =
r∏

k=1

(
1− qik

)
for everyw = ai1 ai2 . . .air of A∗. In other words,X(q A) (resp.X((1− q)A)) is obtained
by applying toX(A) the substitutionak → qkak (resp.ak → (1− qk)ak).

We can now state the following result that will allow us to introduce further a new analog
of the exponential.
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Proposition 3.1 Let X(A) be a formal power series ofK(q)〈〈A〉〉, i.e.

X(A) =
∑
w∈A∗

xww

where xw ∈ K denotes the coefficient of X onw. Then the conditions given below are
equivalent:
1. X satisfies the following functional equation

X(q A)X((1− q)A) = X(A), (3)

2. for every wordw ∈ A∗, one has

xw
(
1− x1

(
q‖w‖ + lq(w)

)) = ∑
uv=w
u,v 6=1

xuxvq
‖u‖lq(v). (4)

When x1 = 1, all coefficients xw are in particular uniquely defined by the identity(4) when
the coefficients xai are fixed for every ai ∈ A.

Proof: By taking the cofficients of a wordw ∈ A∗ in both sides of the functional equation,
we can obtain the following relation:

xw =
∑

uv=w
xuxvq

‖u‖lq(v). (5)

Collecting all the terms containingxw, we get

xw = x1xwlq(w)+ xwx1q
‖w‖ +

∑
uv=w
u,v 6=1

xuxvq
‖u‖lq(v),

which immediately leads to the desired identity (4).
Let us now consider a wordw = ai1 ai2 . . .air of A∗ and let us denote byDw(q) the

polynomial involved in the left hand side of identity (4), i.e.

Dw(q) = 1− x1
(
lq(w)+ q‖w‖

)
.

Whenx1 = 1, we then have

Dw(q) = 1− q‖w‖ −
r∏

k=1

(
1− qik

)
. (6)

Let us now define the two polynomials

D(1)
w (q) = 1− q‖w‖ and D(2)

w (q) =
r∏

k=1

(
1− qik

)
.
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If r ≥ 2, the multiplicities of the rootq= 1 in these two last polynomials are clearly different:
the multiplicity of the rootq= 1 in D(1)

w (q) is one when this multiplicity inD(2)
w (q) equals

r . It follows that the difference of these two polynomials, which is exactlyDw(q), can not
be zero. It is now immediate to conclude that identity (4) defines in a unique way all the
coefficientsxw when the coefficientsxai are fixed for everyai ∈ A. 2

We can now give the definition of the analog of the exponential that we will study in this
paper.

Definition 3.2 The seriesEq(A) is by definition the unique formal power series

Eq(A) =
∑
w∈A∗

xww

of K(q)〈〈A〉〉 which satisfies both to the functional Eq. (3) of Proposition (3.1) and to the
conditionsx1 = 1 andxak = 1 for everyk ≥ 1.

Note 3.3 The coefficientsxw of the seriesEq defined above satisfy therefore to the fol-
lowing induction relation

xw = 1

1− q‖w‖ − lq(w)

 ∑
uv=w
u,v 6=1

xuxvq
‖u‖lq(v)

 (7)

that holds for every wordw ∈ A∗ of length at least 2.

The seriesEq defined by the previous definition has several connections with the ordinary
exponential (see for instance Section 3.3 and Proposition 3.11). In a first approach, we can
however immediately state the following result that gives a very first relation betweenEq

and the ordinary exponential.

Proposition 3.4 Let k≥ 1 be an integer and let Eq(0, . . . ,0,ak, 0, . . .) denote the formal
power series ofK〈〈A〉〉 obtained by specializing ai to 0 for every i 6= k. Then one has

Eq(0, . . . ,0,ak, 0, . . .) = exp(ak) =
∞∑

i=0

ai
k

i !
.

Proof: The announced result is equivalent to the fact that one has

xai
k
= 1

i !

for everyi ≥ 0. This property beeing clearly true ati = 0 andi = 1, we can prove it by
induction oni . Note now that formula (7) shows that proving the corresponding induction
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step at orderi is equivalent to proving the following identity

1

i !
(1− qik − (1− qk)i ) =

i−1∑
j=1

1

j !

1

(i − j )!
q jk(1− qk)i− j ,

which is itself clearly equivalent to

i∑
j=0

(qk) j

j !

(1− qk)i− j

(i − j )!
= 1

i !
.

Note now that this last relation is obvious since it just expresses that the coefficient of order
i of the (commutative) series exp(t) is also the coefficient of orderi of the Cauchy product

exp(qkt) exp((1− qk)t)

(which is clearly equal to the series exp(t)). This ends our proof. 2

3.2. Existence of an analog of the logarithm

Let us consider again some infinite alphabetA = {ak, k ≥ 1} and let

X(A) =
∑
w∈A∗

xww

be a formal power series ofK(q)〈〈A〉〉. The coefficientx1 (over the empty word ofA∗) of
X is called the constant coefficient ofX. When a series has a constant coefficient equal to
0 (i.e. whenx1 is equal to 0), it is called a zero constant coefficient series.

Let nowY(A) be a zero constant coefficient series ofK(q)〈〈A〉〉, i.e.

Y(A) =
∑
w∈A+

yww

(whereA+ stands for the set of all non empty words overA). Then one can use the grading
δ defined by settingδ(ai ) = i in order to separateY(A) into homogeneous components, i.e.

Y(A) =
+∞∑
i=1

Yi (A)

whereYi (A) stands for the polynomial

Yi (A) =
∑
w∈A+
δ(w)=i

yww.
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We can now define thecomposition X(A) ◦ Y(A) of Y(A) with X(A) by setting

X(A) ◦ Y(A) = σY(X(A))

whereσY stands for the algebra morphism fromK(q)〈〈A〉〉 into K(q)〈〈A〉〉 which maps
every letterai of A ontoYi (A). We are now in a position to state the following result that
shows the existence of an analog of the logarithm (more exactly of the series log(1+ X))
as the reciprocal (in the sense of our series composition) of our analog of the exponential.

Theorem 3.5 There exists a unique series Lq(A) ofK(q)〈〈A〉〉 with zero constant coeffi-
cient such that the two following properties hold:

Eq(A) ◦ Lq(A) = 1+
+∞∑
i=1

ai ,

Lq(A) ◦ (Eq(A)− 1) =
+∞∑
i=1

ai .

Proof: Let us first prove that there exists a unique seriesLq(A) ofK(q)〈〈A〉〉 that satisfies
to the first property above. By definition, there exists a series

Lq(A) =
∑
w∈A+

yww =
+∞∑
i=1

 yai ai +
∑
|w|≥2
δ(w)=i

yww


of K(q)〈〈A〉〉 with zero constant coefficient such that

Eq(A) ◦ Lq(A) = 1+
+∞∑
i=1

ai (8)

if and only if one has

1+
∑

i1,...,i r≥1
r≥1

xai1 ...air

r∏
j=1

 yai j
ai j +

∑
|w|≥2
δ(w)=i j

yww

 = 1+
+∞∑
i=1

ai

where thexw ’s stand for the coefficients of our analog of the exponential. It is now easy to
see that the above identity is equivalent to the fact that one has firstyai = 1 for everyi ≥ 1
and next

|w|∑
r=1

 ∑
u1,...,ur∈A+
u1...ur=w

xaδ(u1)...aδ(ur )
yu1 . . . yur

 = 0
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for every wordw of length at least 2. Note now that this condition is equivalent to

yw = −xw −
|w|−1∑
r=2

 ∑
u1,...,ur∈A+
u1...ur=w

xaδ(u1)...aδ(ur )
yu1 . . . yur


for every wordw of length at least 2. Since these last relations together with the requirement
thatyai = 1 for everyi ≥ 1, define in a unique way the family(yw)w∈A+ , it is now immediate
to conclude to the existence of a unique seriesLq(A) of K(q)〈〈A〉〉 that satisfies Eq. (8).

It follows now immediately that one has

Lq(A) ◦ (Eq(A)− 1) ◦ Lq(A) = Lq(A) ◦ (Eq(A) ◦ Lq(A)− 1)

= Lq(A) ◦
( +∞∑

i=1

ai

)
= Lq(A).

However, using the same method as above, it is easy to prove that there exists a seriesT
with zero constant coefficient inK(q)〈〈A〉〉 such that

Lq(A) ◦ T =
+∞∑
i=1

ai .

Composing at the right this identity byT the last identity, we now get

Lq(A) ◦ (Eq(A)− 1) ◦ Lq(A) ◦ T = Lq(A) ◦ T.

This last identity is therefore equivalent to the relation

Lq(A) ◦ (Eq(A)− 1) ◦
( +∞∑

i=1

ai

)
=
+∞∑
i=1

ai

which is itself clearly equivalent to

Lq(A) ◦ (Eq(A)− 1) =
+∞∑
i=1

ai ,

i.e. to the second required identity. 2

Note 3.6 Note that the above theorem shows essentially that the pair of series(Eq(A),
Lq(A))have the same formal properties than the pair of formal power series(exp(X), log(1+
X)). In other words, the seriesLq plays exactly the role of aq-logarithm naturally associated
with the seriesEq.
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3.3. The exponential/logarithm correspondence

Before giving the main result of this subsection, let us first introduce some new notations.
Let A={ai , i ≥ 1}andB = {bi , i ≥ 1}be two noncommutative alphabets. ThenEq(A+B)
stands for the series ofK(q)〈〈A∪ B〉〉 defined by setting

Eq(A+ B) = σA,B(Eq(A))

whereσA,B stands for the algebra morphism fromK(q)〈〈A〉〉 into K(q)〈〈A ∪ B〉〉 which
maps every letterai of A ontoai + bi . For every compositionI = (i1, . . . , i n), we shall
also denote byaI the monomial defined by

aI = ai1 . . .air .

Let us finally also recall that the shuffle productis the bilinear product ofK〈A〉 which is
defined on words ofA∗ by requiring that one has

{
1 w = w 1= w,
(au) (bv) = a(u bv)+ b(au v)

for every wordsu, v, w in A∗ and every lettersa, b in A. Let us now recall that one can
define for every wordsu, v, w of A∗ the coefficient

(
w

u, v

)

(which is a generalization of the classical binomial coefficient) by setting

u v =
∑
w∈A∗

(
w

u, v

)
w.

In other words, this last coefficient is just the number of times that the wordw can be
obtained in the shuffle product ofu with v. We are now in a position to state the following
theorem.

Theorem 3.7 Let A= {ai , i ≥ 1} and B= {bi , i ≥ 1} be two noncommutative alphabets
such that ai bj = bj ai for every i, j ≥ 1. Then one has

Eq(A+ B) = Eq(A)Eq(B) = Eq(B)Eq(A).
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Proof: Let A = {ai , i ≥ 1} andB = {bi , i ≥ 1} be two alphabets such thatai bj = bj ai

for everyi, j ≥ 1. Then we can write

Eq(A+ B) =
∑

i1,...,i r≥1
r≥1

xai1 ...air

(
ai1 + bi1

)
. . .
(
air + bir

)

=
∑

i1,...,i r≥1
r≥1

xai1 ...air

 ∑
I ,J

(i1,...,i r )∈I J

(
(i1, . . . , i r )

I , J

)
aI bJ


where thexw ’s stand for the coefficients of our analog of the exponential. This leads us to
the relation

Eq(A+ B) =
∑
I ,J

aI bJ

( ∑
(i1,...,i r )∈I J

(
(i1, . . . , i r )

I , J

)
xai1 ...air

)
. (9)

Let us now give the following lemma that shows an important (and rather surprising)
property of the coefficientsxw of our analog of the exponential which means exactly that
the functionalx(w) = xw is a character of the shuffle algebra.

Lemma 3.8 For every words u andv of A∗, one has

xuxv =
∑
w∈u v

(
w

u, v

)
xw. (10)

Proof of the lemma: The proof goes by induction onL(u, v) = |u| + |v|. Note first that
there is nothing to prove whenL(u, v) = 0, i.e. whenu andv are both equal to the empty
word.

Let nowu = u1 . . .ur andv = v1 . . . vs be two words ofA∗ (whereui andvi stand for
letters of A) such that identity (10) holds for every pair(x, y) of words of A∗ such that
L(x, y) < L(u, v). Using the defining relation (7) of the coefficients of the seriesEq, we
can then write

∑
w∈u v

(
w

u, v

)
xw = 1

Du,v(q)

 ∑
w∈u v

(
w

u, v

) ∑
αβ=w
αβ 6=1

xαxβq‖α‖lq(β)


 (11)

whereDu,v(q) stands for the polynomial defined by

Du,v(q) = 1− q‖u‖+‖v‖ − lq(u)lq(v).
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Note now that identity (11) can be clearly rewritten as follows

∑
w∈u v

(
w

u, v

)
xw = 1

Du,v(q)

 ∑
w∈u v

∑
αβ=w
αβ 6=1

(
αβ

u, v

)
xαxβq‖α‖lq(β)

. (12)

However a pair(α, β) of non empty words satisfies to the relationαβ = w with w ∈ u v

if and only if there exists a pair(i, j ) ∈ [0, r ]× [0, s] with (i, j ) /∈ {(0, 0), (r, s)} such that

α ∈ u1 . . .ui v1 . . . v j and β ∈ ui+1 . . .ur v j+1 . . . vs

(with the convention that a sequence of letters is empty when its indexation is decreasing).
The right hand-side of identity (12) is therefore equal to

1

Du,v(q)


∑

(i, j )∈[0,r ]×[0,s]
(i, j )6=(0,0),(r,s)

 ∑
α∈u1...ui v1...v j

(
α

u1 . . .ui , v1 . . . v j

)
xα

q‖α‖



×
 ∑

β∈ui+1...ur v j+1...vs

(
β

ui+1 . . .ur , v j+1 . . . vs

)
xβ

 lq(β)




since it is quite immediate to see that one has(
αβ

u, v

)
=

∑
(i, j )∈[0,r ]×[0,s]
(i, j )6=(0,0),(r,s)

(
α

u1 . . .ui , v1 . . . v j

)(
β

ui+1 . . .ur , v j+1 . . . vs

)

for every non empty wordsα andβ of A∗. By using our induction hypothesis, we can now
see that our last expression is equal to

1

Du,v(q)


∑

(i, j )∈[0,r ]×[0,s]
(i, j )6=(0,0),(r,s)

(
xu1...ui xv1...v j q

‖u1...ui ‖q‖v1...v j ‖)

× (xui+1...ur xv j+1...vslq(ui+1 . . .ur )lq(v j+1 . . . vs)
)

which can be itself rewritten in the following way

1

Du,v(q)

{ (
r∑

i=0

xu1...ui xui+1...ur q
‖u1...ui ‖lq(ui+1 . . .ur )

)

×
(

s∑
j=0

xv1...v j xv j+1...vsq
‖v1...v j ‖lq(v j+1 . . . vs)

)
− xuxv

(
q‖u‖+‖v‖ + lq(u)lq(v)

)}
.
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Using now the defining relation (5) of the coefficients of the seriesEq, we can immediately
simplify the previous expression and rewrite it as follows

1

Du,v(q)

{
xuxv − xuxv

(
q‖u‖+‖v‖ + lq(u)lq(v)

)} = xuxv.

This ends therefore our induction and the proof of our lemma. 2

Using the previous lemma in connexion with Eq. (9) leads us now immediately to the
following identity

Eq(A+ B) =
∑
I ,J

xI xJaI bJ =
(∑

I

xI aI

)(∑
J

xJbJ

)
= Eq(A)Eq(B)

which was one of the relation to prove. The other identity can be immediately obtained
from this last one. 2

The following corollary is now immediate to obtain. It is important to note that this
corollary essentially shows that our analog of the exponential transforms Lie elements into
group like elements for the natural comultiplication onK(q)〈〈A〉〉 (which is clearly a basic
property of any exponential/logarithm correspondence).

Corollary 3.9 Let1 be the comultiplication ofK(q)〈〈A〉〉 defined by setting

1(ai ) = 1⊗ ai + ai ⊗ 1.

Then the series Eq(A) is a group-like element for1, i.e.

1(Eq(A)) = Eq(A)⊗ Eq(A).

3.4. Specialization properties

The first result stated below gives the specialization of the seriesEq atq = 0. We begin by
proving the following lemma.

Lemma 3.10 Let I = (i1, . . . , i r )be a composition, letw = ai1 . . .air be the word indexed
by I and let mw be the minimal part of I, i.e.

mw = min
1≤k≤r

{i k}.

Then the term of the polynomial Dw(q) (defined by relation(6)) including the lowest power
of q is exactlyαwqmw , whereαw is the number of parts of I equal to mw, i.e.

αw = ]{ j, i j = mw}.
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In other words, we can write:

Dw(q) = αwqmw +
∑

i j>mw

αi j q
i j .

Proof: It suffices to notice that one has

Dw(q) = 1− qi1+ ···+i r −
(

1−
r∑

k=1

qik +
r∑

k,l=1

qik+i l + · · · + (−1)r qi1+ ···+i r

)
.

This last expression can be clearly rewritten as follows:

Dw(q) =
r∑

k=1

qik −
r∑

k,l=1

qik+i l + · · · + (−1− (−1)r )qi1+ ···+i r .

Note now that only the first summand in the right-hand side of the above identity can give a
contribution to the coefficient of the lowest power ofq within Dw(q). The lemma follows
now immediately from this remark. 2

Proposition 3.11 Let A= {ai , i ≥ 1} be a noncommutative alphabet. Then the special-
ization E0 of the series Eq at q = 0 is given by the following formula:

E0(A) = exp(a1) exp(a2) . . . exp(an) . . . .

Proof: According to Lemma 3.10, the defining Eq. (7) of the coefficients (that we will
denote here byxw(q)) of the seriesEq reduces to

xw(q) = 1

qmw (αw + q Pw(q))

 ∑
uv=w
u, v 6=1

xu(q)xv(q)q
‖u‖lq(v)

,
wherePw(q) denotes some polynomial. This last identity can now be rewritten as follows

xw(q) = 1

αw + q Pw(q)

(
r−1∑
k=1

xai1 ···aik
(q)xaik+1 ···air

(q)qi1+ ···+i k−mw

r∏
j=k+1

(1− qi j )

)
.

Due to the fact that one has

i1+ · · · + i k −mw = i1+ · · · + i k − min
1≤ j≤r

{i j } ≥ 0,

one can immediately deduce (by induction) from the last relation thatxw(0) is well de-
fined. Puttingq = 0 in this relation, we now get the following recurrence relation for the
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specialization atq = 0 of the generic coefficientxw(q) of the seriesEq:

xw(0) = 1

αw

(
r−1∑
k=1

xai1 ··· aik
(0)xaik+1 ··· air

(0)qi1+ ··· +i k−mw

∣∣∣∣∣
q=0

)
. (13)

We can now proceed with the calculation ofxw(0). We consider separately the following
two cases: whenw is an increasing word (i.e. when one hasi1 ≤ i2 ≤ · · · ≤ i r ) and when
w is not increasing.

Let us begin with the case whenw is not an increasing word. We shall now prove by
induction on the length|w| of w that xw(0) = 0 for every non increasing wordw. The
first non increasing words are of length 2. Let us take such a word, i.e.w = ai j ai j+1 with
i j > i j+1. Using the last equation we obtain immediately

xai j ai j+1
(0) = xai j

(0)xai j+1
(0)qi j−i j+1|q=0 = 0

as required. Assume now the induction hypothesis, i.e.xw(0) = 0 for every non decreasing
wordw such that|w| ≤ m− 1. Note that ifw = ai1· · ·air is not increasing, then either
ai1· · ·ai j or ai j+1· · ·aim is not increasing. From this, it is now immediate to obtain from the
recurrence relation (13) thatxw(0) = 0. This ends therefore the first part of our reasoning.

It remains to consider the case whenw is increasing, i.e.w = aγ1
i1
· · ·aγr

i r
with i j < i j+1

for every j . In this case, the recurrence relation can be written as

xw(0) = 1

γ1

∣∣∣∣∣∣∣∣
xai1
(0)xa

γ1−1
i1
···aγrir

(0)qi1−i1
∣∣
q=0

+ xai1ai1
(0)xa

γ1−2
i1

a
γ2
i2
···aγrir

(0)qi1+i1−i1
∣∣
q=0

+ · · ·

Note that the only nonzero summand in the above relation is the first one. Thus this relation
reduces to

xa
γ1
i1
···aγrir

(0) = 1

γ1
xa

γ1−1
i1
···aγrir

(0).

By an easy induction argument, it is now immediate to get that

xw(0) = xa
γ1
i1
···aγrir

(0) = 1

γ1! . . . γr !

for every increasing wordw = aγ1
i1
. . .aγr

i r
.

We can now summarize our calculation with the following table:

xw(0) =


1

γ1! . . . γr !
if w = aγ1

i1
. . .aγr

i r
is increasing,

0 if w is not increasing.
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The reader will easily see that this last result is exactly equivalent to the identity claimed
by our proposition. 2

The second result given below gives the specialization of the seriesEq atq = 1.

Proposition 3.12 Let A= {ai , i ≥ 1} be a noncommutative alphabet. Then the special-
ization E1 of the series Eq at q = 1 is given by the following formula:

E1(A) = 1+
∑

i1,...,i r≥1
r≥1

(
r∏

k=1

i k

i1+ · · · + i k

)
ai1 . . .air .

Proof: Let us denote byQw(q) the right-hand side of Eq. (4) (considered in the case
x1 = 1 which corresponds to the seriesEq), i.e. the element ofK(q) defined byQw(q) =
xw(q)Dw(q), which is equal to

Qw(q) = (1− q)[i r ]q

(
r−1∑
k=1

xai1 ···aik
(q)xaik+1 ···air

(q)

×qi1+···+i k(1− q)r−k−1
r−1∏

j=k+1

[i j ]q

)
.

On the other hand, we have

Dw(q) = (1− q)

(
[i1+ · · · + i r ]q − (1− q)r−1

r∏
k=1

[i k]q

)
.

So we immediately obtain

xw(q) = Qw(q)

Dw(q)

= [i r ]q
(∑r−1

k=1 xai1 ···aik
(q)xaik+1 ···air

(q)qi1+ ···+i k(1− q)r−k−1∏r−1
j=k+1[i j ]q

)
[i1+ · · · + i r ]q − (1− q)r−1

(∏r
k=1[i k]q

)
from which it is immediate to deduce that

xw(1) = i r
i1+ · · · + i r

xai1 ...air−1
(1).

By induction on the length of the wordw, we then easily get

xw(1) =
r∏

k=1

i k

i1+ · · · + i k

for every wordw = ai1 · · ·air as required. 2
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4. Relations withq-bracketing

In this section, we will show the relation between our analog of the exponential and the
family (πn(q))n≥1 of q-idempotents associated with theq-bracketing (cf Section 2.4).

4.1. The main result

Before going further, we must first define some new notations. Let us consider again some
infinite alphabetA = {ak, k ≥ 1} and let

X(A) =
∑
w∈A∗

xww

be a formal power series ofK(q)〈〈A〉〉. Let now

Y =
+∞∑
i=1

yi t
i

be a series ofSym[[ t ]] with zero constant coefficient such thatyi is an homogeneous
noncommutative symmetric function of weighti . We can now define thecomposition X(A)◦
Y (or more simplyX(Y)) of Y with X by setting

X(Y) = X(A) ◦ Y = σY(X(A))

whereσY stands for the algebra morphism fromK(q)〈〈A〉〉 intoSym[[ t ]] which maps every
letterai of A onto yi .

We can now state the main result of this section (and of the paper) which gives an
expression (involving our analog of the exponential) for the generating series of the Lie
idempotents(πn(q))n≥1 associated with theq-bracketing.

Theorem 4.1 Let (πn(q))n≥1 be the family of Lie idempotents associated with the
q-bracketing operator introduced at the end of Section2.4. Then one has

Eq

(+∞∑
n=1

πn(q)t
n

)
= σ(t).

Proof: Let us define a family(Pn(A))n≥1 of homogeneous noncommutative symmetric
functions defined by setting

+∞∑
n=1

Pn(A)t
n = Lq(σ (t)− 1). (14)

Let us first prove the following lemma.
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Lemma 4.2 The elements(Pn)n≥1 defined by Eq.(14) are primitive for the natural co-
multiplication1 onSym.

Proof of the Lemma: Note that according to Theorem 3.5, we have

Eq

( +∞∑
n=1

Pn(A)t
n

)
= σ(t) (15)

from which we immediately deduce that


Eq

( +∞∑
n=1

(1⊗ Pn(A))t
n

)
= 1⊗ σ(t),

Eq

( +∞∑
n=1

(Pn(A)⊗ 1)tn

)
= σ(t)⊗ 1.

Hence we have

Eq

( +∞∑
n=1

(1⊗ Pn(A))t
n

)
Eq

( +∞∑
n=1

(Pn(A)⊗ 1)tn

)
= σ(t)⊗ σ(t) = 1(σ(t)).

Since we always have

(Pn ⊗ 1)(1⊗ Pm) = (1⊗ Pm)(Pn ⊗ 1) = Pn ⊗ Pm

for everyn,m≥ 1, we are clearly again in a position to apply Theorem 3.7 which gives us
here

Eq

( +∞∑
n=1

(1⊗ Pn + Pn ⊗ 1)tn

)
= 1(σ(t)).

On the other hand, it is easy to deduce from relation (15) that one has

1(σ(t)) = Eq

( +∞∑
n=1

1(Pn)t
n

)
.

The last two relations now lead to the identity

Eq

( +∞∑
n=1

1(Pn)t
n

)
= Eq

( +∞∑
n=1

(1⊗ Pn + Pn ⊗ 1)tn

)
.
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According to Theorem 3.5, the composition on the left byLq of both sides of this last
relation leads finally to the identity

+∞∑
n=1

1(Pn)t
n =

+∞∑
n=1

(1⊗ Pn + Pn ⊗ 1)tn,

which shows that every elementPn is primitive for1 as required. 2

We are now in a position to prove that the elementsPn are in fact encoding Lie idempo-
tents.

Lemma 4.3 For every n≥ 1, α−1(Pn) is a Lie idempotent.

Proof of the Lemma: According to the previous lemma and to Theorem 2.1,pn =
α−1(Pn) is a Lie quasi-idempotent. Showing thatpn is a Lie idempotent amounts to show
that

Pn = 9n

n
+ L(9)

(see [4]), i.e. to show that the coefficient ofPn on9n in the basis ofSym associated with
the power sums of first kind is exactly equal to 1/n. Note now that it is easy to deduce from
Eq. (15) that this coefficient is the coefficient ofSn on9n with respect to the same basis,
i.e. to 1/n (see [2]) as required. This ends therefore the proof of our lemma. 2

We can now prove our last lemma.

Lemma 4.4 For every n≥ 1, one has Pn = πn(q).

Proof of the Lemma: According to the previous lemma, the noncommutative symmetric
function Pn encodes a Lie idempotent. Hence it suffices to show that

Pn((1− q)A) = (1− qn)Pn

for everyn ≥ 1 in order to prove thatPn is equal toπn(q) since this last property is a
characterization of this Lie idempotent according to Theorem 2.3.

According to Eq. (15), we can write

σ((1− q)A; t) = Eq

( +∞∑
n=1

Pn((1− q)A)tn

)

using here the notations of Definition 2.2. But we also have

σ((1− q)A; t) = σ(A;qt)−1σ(A; t)
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by definition. Using again Eq. (15), we can easily see that we have

σ(A;qt) = Eq

( +∞∑
n=1

Pnqntn

)
.

Hence we immediately get that

σ((1− q)A; t) = Eq

( +∞∑
n=1

Pnqntn

)−1

Eq

( +∞∑
n=1

Pntn

)

using again Eq. (15). By using now the characteristic property of the seriesEq, i.e. Eq. (3),
we now get

σ((1− q)A; t) = Eq

( +∞∑
n=1

(1− qn)Pntn

)
.

Comparing now this equality with the very first one obtained at the beginning of our proof,
we can now write

Eq

( +∞∑
n=1

Pn((1− q)A)tn

)
= Eq

( +∞∑
n=1

(1− qn)Pntn

)
.

Applying Lq at the left of the two sides of this equality brings us now immediately to the
following relation

+∞∑
n=1

Pn((1− q)A)tn =
+∞∑
n=1

(1− qn)Pntn

according to Theorem 3.5. Hence we have proved thatPn((1− q)A) = (1− qn)Pn for
everyn ≥ 1 as required. 2

It is now immediate to conclude our proof. 2

4.2. Zassenhaus Lie idempotents

Before going further, let us recall the definition of Zassenhaus noncommutative symmetric
functions (also called power sums of the third type) that were introduced in [4]. This last
family is the family(Zn)n≥1 of homogeneous noncommutative symmetric functions (with
Zn ∈ Symn for everyn ≥ 1) defined by setting

σ(t) := exp(Z1t) exp

(
Z2

2
t2

)
. . . exp

(
Zn

n
tn

)
. . . (16)
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The Fer-Zassenhaus formula (cf [15]) shows that these new noncommutative symmetric
functions are primitive elements for the natural comultiplication onSym and thus encode
Lie quasi-idempotents.

Example 4.5 The first values ofZn are listed below

Z1 = 91, Z2 = 92, Z3 = 93+ [92, 91],

Z4 = 94+ 1

3
[93, 91] + 1

6
[[92, 91], 91],

Z5 = 95+ 1

4
[94, 91] + 1

3
[93, 92] + 1

12
[[93, 91], 91] − 7

24
[92, [92, 91]]

+ 1

24
[[[92, 91], 91], 91].

Note 4.6 It is also interesting to note that Goldberg’s explicit formula for the Hausdorff
series (see [11]) gives the decomposition of8n over the basis(ZI ).

We can now give the following immediate consequence of the last theorem, which solves
a conjecture of Krob, Leclerc and Thibon (see [4]).

Corollary 4.7 The specialization at q= 0 of the Lie idempotentπn(q) is the Zassenhaus
idempotent Zn/n, i.e. one has

πn(0) = Zn

n

for every integer n≥ 0.

Proof: The result is an immediate consequence of Theorem 4.1 and Proposition 3.11.
2

5. Conclusion

The main result of this paper is clearly Theorem 4.1 in which we obtained the identity

Eq

( +∞∑
n=1

πn(q)t
n

)
= σ(t)

which related the generating series of the family(πn(q))n≥1 with the generating series of
the complete functions. Taking now into account the fact thatπn(1) = 9n/n for every
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n ≥ 1 (as shown in [4]), it is interesting to write down the following relations

σ(t) =



exp

( +∞∑
n=1

8n

n
tn

)
,

E1

( +∞∑
n=1

9n

n
tn

)
,

E0

( +∞∑
n=1

Zn

n
tn

)
,

that hold between the generating series of all kinds of noncommutative power sums that
we introduced up to now. All these relations have in common that the generating series of
noncommutative complete symmetric functions is equal to some exponential-like operator
applied to the generating series of the corresponding noncommutative power sums.

On the other hand, let us recall that it was shown in [5] that an homogeneous noncom-
mutative symmetric functionPn of weightn is the encoding of a Lie idempotent if and only
if there exists a totally ordered commutative alphabetX such that

Pn = 5n(X A)

where5n is an arbitrary fixed Lie idempotent of weightn. It seems therefore likely to
conjecture that there exists some general quasi-symmetric analogEX of the exponential
such that the identity

EX

( +∞∑
n=1

πn

n
tn

)
= σ(t)

holds if and only if and only if the sequence(πn/n)n≥1 of homogeneous noncommutative
symmetric functions consists only in Lie idempotents. Note also that this conjecture is clearly
supported by the fact that one can associate a Lie projector with the operatorSn(X A) (see
[4]) in the same line than the Lie idempotentπn(q) was associated with theq-bracketing
operator (that corresponds to the situationX = 1− q in the sense of [4]).
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