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Abstract. The subgroups of GL3(k) which are completions of the GoldschmidtG4-amalgam are determined.
We also draw attention to five related graphs which are remarkable in that they have large girth and few vertices.
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1. Introduction

In [4] Goldschmidt determined all amalgams of finite groupsA(P1, P2, B) which satisfy

(i) P1 ∩ P2 = B;
(ii) [ Pi : B] = 3 for i = 1, 2; and
(iii) no non-trivial subgroup ofB is normal in bothP1 andP2.

This remarkable paper marked the birth of the so-called amalgam method. The types of
amalgams he found are indexed by a collection of perfect amalgams, amalgams with perfect
universal completion [4]. These perfect amalgams fall into five isomorphism types, the
most interesting ones being typesG3, G4 andG5. Among the Goldschmidt amalgams these
have the most complex structure and also haveP1 and P2 both 2-constrained. In [6] the
authors addressed the problem of which classical groups in dimension 3 are quotients of
the GoldschmidtG3-amalgam, and in [5, 7] more exotic quotients of this amalgam were
determined. In this note we isolate the completions of the GoldschmidtG4-amalgam which
can be found in linear groups of dimension 3. We recall from [4] thatA(P1, P2, B) is a
G4-amalgam provided that

P1
∼= 42 : Sym(3),

P2 ∼ 4Sym(4) ∼ (4 ∗Q8)
.Sym(3)
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andB = P1∩ P2 has order 25. We letG∗ be the universal completion of this amalgam. The
objective then is to study the representation theory ofG∗ in dimension 3 or, equivalently,
to determine which quotients ofG∗ can be embedded in the linear groups GL3(k) where
k is a field. We call the non-trivial quotients ofG∗ completionsof the amalgam. TheG4-
amalgam is best known through its connection with the generalized hexagon on 126 points
in which caseG∗ maps into G2(2) and the images ofP1 andP2 are, respectively, point and
line stabilizers and the image ofB stabilizes an incident point line pair. Of course in this
case the completion of the amalgam is G2(2)′ which, by chance, is isomorphic to SU3(3).
We shall prove

Theorem 1.1 Suppose that G is a completion of the Goldschmidt G4-amalgam and assume
that k is a field of characteristic p. If G is isomorphic to a subgroup ofGL3(k), then p is
odd, G ∼= SL3(p) when p≡ 1 mod 4,and G∼= SU3(p) when p≡ 3 mod 4.

Notice that the GoldschmidtG5-amalgam has no completions in linear groups of dimen-
sion 3. This follows because the subgroup corresponding toB has∗ a subgroup which is
extraspecial of order 32 and as such has no matrix representations of dimension less than 4
in non-even characteristic.

We recall that given an amalgamA(P1, P2, B) we may form a graph which has vertices
the left cosets ofP1 andP2 in G two of which form an edge if and only if they intersect non-
trivially. This graph is called thecoset graphof A(P1, P2, B). We finish this introduction
with a remark about the coset graphs associated with two of the amalgams appearing in
Theorem 1.1.

Remark 1.2 The coset graph of theG4-type amalgam in SU3(3) is the generalized hexagon
of girth 12 and the coset graph of theG4-amalgam in SL3(5) is a cubic graph of girth 20
having 7750 vertices. These graphs are respectively the smallest cubic graph of girth 12
and the smallest known cubic graph of girth 20 (at the time of writing). See [3] for more
graphs of large girth.

In a similar vein we also mention

Remark 1.3 The coset graph of theG5-type amalgam in Mat12 has girth 16 and the coset
graph of theG5-amalgam in G2(3) is a cubic graph of girth 24 having 44226 vertices. These
graphs are the smallest known cubic graphs with the given girth (at the time of writing).

We also note that after excision, [1], the G2(3) graph gives the smallest known cubic
graph of girth 23 with 44226− 126= 44100 vertices.

2. Proof of Theorem 1.1

Let G be a completion of theG4-amalgam, and assume thatG ≤ GL(V) whereV is a
3-dimensional vector space defined over an algebraically closed fieldk of characteristicp.
We identify P1, P2 and B with their images inG. We also note that, asG∗ is perfect, we
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may assume thatG ≤ SL(V). If p = 2, the Sylow 2-subgroups of SL(V) are nilpotent of
class 2, whereas,B has nilpotence class 3. Hencep is odd. We first focus onP1. Define
Q1 = O2(P1) andZ1 = Ä1(Q1). ThenZ1 is elementary abelian of order 22. So, asP1 acts
transitively on the non-identity elements ofZ1, V is decomposed into the three eigenspaces
of Z1, V1, V2 andV3. For j = 1, 2, 3 selectv j ∈ Vj \{O}. Then{v1, v2, v3} is a basis ofV .
With respect to this basis we have that the three non-trivial elements ofZ1 are

z1 =

−1 0 0

0 −1 0

0 0 1

 , z2 =

1 0 0

0 −1 0

0 0 −1


and

z3 = z2z1 =

−1 0 0

0 1 0

0 0 −1

 .
SinceP1 normalizesZ1, it operates monomially with respect to the basis{v1, v2, v3}. Now
the monomial groupM is isomorphic to(k∗)3 : Sym(3) and the subgroup isomorphic
to Q1 is the unique normal homocyclic group of order 16 inM ∩ SL(V). Moreover, the
normalizer inM ∩SL(V) of a cyclic group of order 3 which permutes the basis transitively
is isomorphic to Sym(3) or 3×Sym(3), and thusP1 is determined uniquely up to conjugacy
in GL(V). Therefore, if we leti denote a square root of−1 in k, we can assume thatP1 is
generated by the matrices

q1 =

i 0 0

0 −i 0

0 0 1

 , q2 =

1 0 0

0 i 0

0 0 −i


and

q3 =

i 0 0

0 1 0

0 0 −i


which square toz1, z2, z3 respectively and generateQ1 when taken together with the
monomial matrices

p1 =

 0 1 0

−1 0 0

0 0 1
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and

p2 =

1 0 0

0 0 1

0 −1 0

 .
We selectB = 〈q1,q2, p1〉 and thenZ = Ä1(Z(B)) = 〈z1〉. SinceP2 centralizesZ, P2

preserves the 2-space〈v1, v2〉which is inverted byz1 and the 1-spaceV3 which is centralized
by z1. Thus the matrices representingP1 have shapea b 0

c d 0

0 0 e


wherea, b, c, d, e,∈ k and, of course, they have determinant 1. Now we locate a subgroup
W2
∼= Q8, the quaternion group of order 8, which will be the subgroup [P2,O2(P2)]. Since

P2 preserves the decomposition〈v1, v2〉⊕V3 andW2 is in the derived subgroup ofP2, we
see thatW2 must centralizeV3 and have determinant 1 on〈v1, v2〉. Therefore,W2 = 〈q1, p1〉
is uniquely determined inB. We now proceed to find a further elementα of P2 which is
not in B. To do this we consider all elements of SL(V) which conjugateq1 to p1 and have
order 3. (We know then thatB and the additional element will generate a group which
together withP1 will be a G4-amalgam.) So as we are seeking elements ofP2, we know
that it must have ‘P2 shape’. Therefore, we have an additional element

α =

a b 0

c d 0

0 0 e

 .
We first ensure that

q1α = αp1

and this results in the conditions

ia = −b

ic = d.

Soα must have the form

α =

a −ia 0

c ic 0

0 0 e

 .
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In particular, we note thata 6= 0 6= c. Notice that the elements of order 3 inP2 are inverted
and so(

a −ia

c ic

)

has determinant 1. Hence

2iac = 1 (1)

and therefore we also find that

e= 1.

Now since we requireα to have order 3 we get

a3− ia2c− ia2c+ ac2 = 1 (2)

a2c+ iac2− iac2− c3 = 0. (3)

Eq. (3) simplifies to

(a− c)(a+ c)c = 0.

Sincec 6= 0, we conclude that eithera = c or a = −c. Suppose first thata = c. Then
Eq. (2) becomes

2a3− 2ia3 = 1

which when combined with Eq. (1) delivers

a = −1

1+ i
.

Thus in this case we have

α =


−1
1+i

i
1+i 0

−1
1+i

−i
1+i 0

0 0 1

 .
Next assume thata = −c. Then we substitute this into Eq. (2) to get

a3+ 2ia3 = 1
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and this gives

a = −1

1− i
.

Since both equations result in a unique solution and since the proposed subgroupP2 pos-
sesses two such elements, we conclude thatP2 = 〈B, α〉 is uniquely determined. In parti-
cular, G is unique up to conjugacy in GL(V) andG ≤ SL3(k1) wherek1 = GF(p)[i ].
So if p ≡ 1 mod 4, thenG ≤ SL3(p), and if p ≡ 3 mod 4, thenG ≤ SL3(p2). If
G ≤ SL3(p), then referring to the maximal subgroups of SL3(p) [2] (or see [6] for a list)
and using the fact thatG operates irreducibly and is perfect yields thatG = SL3(p) or
G ≤ SO3(p). The latter case fails, however, as SO3(p) has dihedral Sylow 2-subgroups.
Thus Theorem 1.1 holds in this case. Now suppose thatG ≤ SL3(p2) and p ≡ 3 mod 4.
ThenG ≤ {A ∈ GL3(p2) | AĀT = I3} = SU3(p) (whereĀ is the matrix aduced fromA
by replacing each entrya+ ib by its conjugatea− ib). Thus this time we appeal to the list
of maximal subgroups of SU3(p) (see [6]) to prove Theorem 1.1 in this case.
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