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Abstract. In A.S. Buch and W. Fulton [Invent. Math. 135 (1999), 665–687] a formula for the cohomology
class of a quiver variety is proved. This formula writes the cohomology class of a quiver variety as a linear
combination of products of Schur polynomials. In the same paper it is conjectured that all of the coefficients in
this linear combination are non-negative, and given by a generalized Littlewood-Richardson rule, which states that
the coefficients count certain sequences of tableaux called factor sequences. In this paper I prove some special
cases of this conjecture. I also prove that the general conjecture follows from a stronger but simpler statement,
for which substantial computer evidence has been obtained. Finally I will prove a useful criterion for recognizing
factor sequences.
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1. Introduction

The goal of this paper is to prove some combinatorial results about a formula for quiver
varieties given in [4].

Let X be a non-singular complex variety andE0→ E1→ E2→ · · · → En a sequence
of vector bundles and bundle maps overX. A set ofrank conditionsfor this sequence is
a collection of non-negative integersr = (r ij ) for 0 ≤ i < j ≤ n. This data defines a
degeneracy locus inX,

Är (E•) = {x ∈ X | rank(Ei (x)→ Ej (x)) ≤ r ij ∀i < j }.

Let r ii denote the rank of the bundleEi . We will demand that the rank conditions can
occur, i.e. that there exists a sequence of vector spaces and linear mapsV0→ V1→ · · · →
Vn so that dim(Vi ) = r ii and rank(Vi → Vj ) = r ij . This is equivalent to the conditions
r ij ≤ min(ri, j−1, ri+1, j ) for i < j , andr ij − ri, j−1− ri+1, j + ri+1, j−1 ≥ 0 for j − i ≥ 2.

Given two vector bundlesE andF on X and a partitionλ, we letsλ(F − E) denote the
super-symmetric Schur polynomial in the Chern roots of these bundles. By definition this
is the determinant of the matrix whose(i, j )th entry is the coefficient of the term of degree
λi + j − i in the formal power series expansion of the quotient of total Chern polynomials
ct (E∨)/ct (F∨).



152 BUCH

The expected (and maximal) codimension for the locusÄr (E•) in X is

d(r ) =
∑
i< j

(ri, j−1− r ij ) · (ri+1, j − r ij ).

The main result of [4] gives a formula for the cohomology class ofÄr (E•) when it has this
codimension:

[Är (E•)] =
∑
µ

cµ(r ) sµ1(E1− E0) · · · sµn(En − En−1).

Here the sum is over sequences of partitionsµ = (µ1, . . . , µn); the coefficientscµ(r ) are
certain integers given by an explicit combinatorial algorithm which is described in Section
2. These coefficients are known to generalize Littlewood-Richardson coefficients as well
as the coefficients appearing in Stanley symmetric functions [3, 4]. The formula specializes
to give new expressions for all known types of Schubert polynomials related to type A
geometry [7].

There is no immediate geometric reason for the products of Schur polynomials appearing
in the formula. However, it is even more surprising that the coefficientscµ(r ) all seem to be
non-negative. Attempts to prove this has led to a conjecture saying that these coefficients
count the number of different sequences of tableaux satisfying certain conditions [4]. These
sequences are calledfactor sequencesand are defined in Section 2.

The main result in this paper is a proof of this conjecture in some special cases which
include all situations where the sequenceE• has up to four bundles. We will also show
that the conjecture follows from a stronger but simpler conjecture, for which substantial
computational verification has been obtained. For both of these results, a sign-reversing
involution on pairs of tableaux constructed by S. Fomin plays a fundamental role.

In Section 2 we will explain the algorithm for computing the coefficientscµ(r ), as well as
the conjectured formula for these coefficients. In Section 3 we will prove a useful criterion
for recognizing factor sequences. Section 4 gives an account of Fomin’s involution, which
in Section 5 is used to formulate the stronger conjecture mentioned above. Finally, Section
6 contains a proof of this stronger conjecture in special cases.

The work described in this paper, some of which was announced in [1], can be viewed
as a continuation of a joint geometric project with W. Fulton, which resulted in the quiver
formula described in [4]. We would like to thank him for introducing us to the subject of
degeneracy loci during this very pleasant collaboration, and also for numerous suggestions,
ideas, comments, etc. during the work on this paper. We are also extremely grateful to S.
Fomin who provided the vital involution mentioned above, and who also collaborated with
us in the attempts to prove the conjecture. Finally we thank Frank Sottile for many useful
suggestions for improving our exposition.

2. Description of the algorithm

This section explains the algorithm for computing the coefficientscµ(r ) as well as the
conjecture for these coefficients. We will first explain this in the ordinary case described
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in the introduction. Then we will extend the notions to a more general situation, which for
many purposes is easier to work with.

We will need some notation. Let3 = Z[h1, h2, . . .] be the ring of symmetric functions.
The variablehi may be identified with the complete symmetric function of degreei . If
I = (a1,a2, . . . ,ap) is a sequence of integers, define the Schur functionsI ∈ 3 to be the
determinant of thep× p matrix whose(i, j )th entry ishai+ j−i :

sI = det(hai+ j−i )1≤i, j≤p.

(Here one setsh0 = 1 andh−q = 0 for q > 0.) A Schur function is always equal to either
zero or plus or minus a Schur functionsλ for a partitionλ. This follows from interchanging
the rows of the matrix definingsI . Furthermore, the Schur functions given by partitions
form a basis for the ring of symmetric functions [6, 10].

We will give the algorithm for computing the coefficientscµ(r )by constructing an element
Pr in thenth tensor power of the ring of symmetric functions3⊗n, such that

Pr =
∑
µ

cµ(r )sµ1 ⊗ · · · ⊗ sµn .

It is convenient to arrange the rank conditions in arank diagram:

E0 → E1 → E2 → · · · → En

r00 r11 r22 · · · rnn

r01 r12 · · · rn−1,n

r02 · · · rn−2,n

. . . . .
.

r0n

In this diagram we replace each small triangle of numbers

ri, j−1 ri+1, j

r ij

by a rectangleRij with ri+1, j − r ij rows andri, j−1− r ij columns.

These rectangles are then arranged in arectangle diagram:
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It turns out that the information carried by the rank conditions is very well represented
in this diagram. First, the expected codimensiond(r ) for the locusÄr (E•) is equal to
the total number of boxes in the rectangle diagram. Furthermore, the condition that the
rank conditions can occur is equivalent to saying that the rectangles get narrower when one
travels south-west, while they get shorter when one travels south-east. Finally, the element
Pr depends only on the rectangle diagram.

We will definePr ∈ 3⊗n by induction onn. Whenn = 1 (corresponding to a sequence
of two vector bundles), the rectangle diagram has only one rectangleR= R01. In this case
we set

Pr = sR ∈ 3⊗1

whereR is identified with the partition for which it is the Young diagram. This case recovers
the Giambelli-Thom-Porteous formula.

If n ≥ 2 we letr̄ denote the bottomn rows of the rank diagram. Then̄r is a valid set of
rank conditions, so by induction we can assume that

Pr̄ =
∑
µ

cµ(r̄ )sµ1 ⊗ · · · ⊗ sµn−1 (1)

is a well defined element of3⊗n−1. Now Pr is obtained fromPr̄ by replacing each basis
elementsµ1 ⊗ · · · ⊗ sµn−1 in (1) with the sum

This sum is over all partitionsσ1, . . . , σn−1 andτ1, . . . , τn−1 such thatσi has fewer rows than
Ri−1,i and each Littlewood-Richardson coefficientcµi

σi τi
is non-zero. A diagram consisting

of a rectangleRi−1,i with (the Young diagram of) a partitionσi attached to its right side, and
τi−1 attached beneath should be interpreted as the sequence of integers giving the number
of boxes in each row of this diagram.

It can happen that the rectangleRi−1,i is empty, since the number of rows or columns can
be zero. If the number of rows is zero, thenσi is required to be empty, and the diagram is
the Young diagram ofτi−1. If the number of columns is zero, then the algorithm requires
that the length ofσi is at most equal to the number of rowsr ii − ri−1,i of Ri−1,i , and the
diagram consists ofσi in the topr ii − ri−1,i rows andτi−1 below this, possibly with some
zero-length rows in between.

Next we will describe the conjectured formula for the coefficientscµ(r ). We will need
the notions of (semistandard) Young tableaux and multiplication of tableaux. In particular
we shall make use of the row and column bumping algorithms for Schensted insertion. See
for example [11, 13], or [6].

A tableau diagramfor a set of rank conditions is a filling of all the boxes in the corre-
sponding rectangle diagram with integers, such that each rectangleRij becomes a tableau
Tij . Furthermore, it is required that the entries of each tableauTij are strictly larger than the
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entries in tableaux aboveTij in the diagram, within 45 degree angles. These are the tableaux
Tkl with i ≤ k < l ≤ j and(k, l ) 6= (i, j ).

A factor sequencefor a tableau diagram withn rows is a sequence of tableaux
(W1, . . . ,Wn), which is obtained as follows: Ifn= 1 then the only factor sequence is
the sequence(T01) containing the only tableau in the diagram. Whenn≥ 2, a factor se-
quence is obtained by first constructing a factor sequence(U1, . . . ,Un−1) for the bottom
n− 1 rows of the tableau diagram, and choosing arbitrary factorizations of the tableaux in
this sequence:

Ui = Pi · Qi .

In other words we must choose tableauxPi andQi such thatUi is their product in the plactic
monoid [6, 9]. Then the sequence

(W1, . . . ,Wn) = (T01 · P1, Q1 · T12 · P2, . . . , Qn−1 · Tn−1,n)

is the factor sequence for the whole tableau diagram. The conjecture from [4], which is the
theme of this paper, can now be stated as follows:

Conjecture 1 The coefficientcµ(r ) is equal to the number of different factor sequences
(W1, . . . ,Wn) for any fixed tableau diagram for the rank conditionsr, such thatWi has
shapeµi for eachi .

This conjecture first of all implies that the coefficientscµ(r ) are non-negative and that
they are independent of the side lengths of empty rectangles in the rectangle diagram.
In addition it implies that the number of factor sequences only depends on the rectangle
diagram and not on the choice of a filling of its boxes with integers.

Example 1 Suppose we are given a sequence of four vector bundles and the following
rank conditions:

These rank conditions then give the following rectangle diagram:

From the bottom row of this diagram we get

P¯̄r = s¤.
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Then using the algorithm we obtain

Pr̄ = s¤ ⊗ s¤ + 1⊗ s¤¤

and

Thus the formula for the cohomology class ofÄr (E•) has six terms. Now, one possible
tableau diagram for the given rank conditions is the following:

This diagram has the following six factor sequences:

Since only the rectangle diagram matters for the formula, we will often depict a rank
diagram simply as a triangle of dots in place of a triangle of numbers. This is especially
convenient when working with paths through the rank diagram, which we shall do shortly.
Such a diagram will often be decorated with the rectangles from the rectangle diagram, or
by the tableaux from a tableau diagram. When this is done, each rectangle or tableau is put
in the middle of the triangle of dots representing the numbers that produced the rectangle.
In this way the rank conditions used in the above example would be represented by the
diagram:

We will now introduce a generalization of the formula forPr . Define apaththrough the
rank diagram to be a union of line segments between neighboring rank conditions, which
form a continuous path fromr00 to rnn such that any vertical line intersects this path at most
once.
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The length of a path is the number of line segments it contains (which is betweenn and 2n).
Given a pathγ of length`, we will define an elementPγ ∈ 3⊗`. It is convenient to identify
the basis elements of3⊗` with labelings of the line segments ofγ by partitions. More
generally, if I1, . . . , I` are sequences of integers, then we will identify the labeling of the
line segments inγ by these sequences, left to right, with the elementsI1 ⊗ · · ·⊗ sI` ∈ 3⊗`.
All basis elements occurring inPγ with non-zero coefficient will assign the empty partition
to line segments on the left and right sides of the rank diagram. Ifγ is the highest path,
going horizontally fromr00 to rnn, thenPγ is equal toPr .

We definePγ inductively as follows. Ifγ is the lowest possible path, going fromr00 to
r0n to rnn, then we setPγ = 1⊗ 1⊗ · · · ⊗ 1 ∈ 3⊗2n. In other wordsPγ is equal to the
single basis element which assigns the empty partition to each line segment. Ifγ is any
other path, then we can find a pathγ ′ which is equal toγ , except it goes lower at one place,
in one of the following ways:

By induction we may assume thatPγ ′ is well defined.
If we are in Case 1 we now obtainPγ from Pγ ′ by replacing each basis element

occurring inPγ ′ with the sum
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For Case 2, letR be the rectangle associated to the triangle whereγ andγ ′ differ. ThenPγ
is obtained fromPγ ′ by replacing each basis element

occurring inPγ ′ with zero ifσ has more rows thanR, and otherwise with the element:

An easy induction shows that this definition is independent of the choice of the pathγ ′.
The elementPγ has geometric meaning similar to that ofPr . It describes the cohomology
class of a degeneracy locusÄr (γ ) defined in [4].

If we are given a tableau diagram, the notion of a factor sequence can also be extended
to paths. Any factor sequence for a pathγ will contain one tableau for each line segment
in γ . As with elements of3⊗`, we will often regard such a sequence as a labeling of the
line segments inγ with tableaux.

If γ is the lowest path fromr00 to r0n to rnn then the only factor sequence is the sequence
(∅, . . . ,∅) which assigns the empty tableau to each line segment. Otherwise we can find a
lower pathγ ′ as in Case 1 or Case 2 above. In order to obtain a factor sequence forγ we
must first construct one forγ ′.

If we are in Case 1, let(. . . ,W, . . .) be a factor sequence forγ ′ such thatW is the label
of the displayed line segment, and letW = P · Q be an arbitrary factorization ofW. Then
the sequence(. . . , P, Q, . . .) is a factor sequence forγ . For Case 2, letT be the tableau
corresponding to the rectangleR. If (. . . , Q, P, . . .) is a factor sequence forγ ′ with Q and
P the tableaux assigned to the displayed line segments, then(. . . , Q · T · P, . . .) is a factor
sequence forγ .

Finally we define coefficientscµ(γ ) ∈ Z by the expression

Pγ =
∑
µ

cµ(γ )sµ1 ⊗ · · · ⊗ sµ` ∈ 3⊗`

where` is the length ofγ . Conjecture 1 then has the following generalization:

Conjecture 1A The coefficientcµ(γ ) is equal to the number of different factor sequences
(W1, . . . ,W`) for the pathγ , such thatWi has shapeµi for eachi .

3. A criterion for factor sequences

In this section we will prove a simple criterion for recognizing factor sequences. As in the
previous section we will start by discussing ordinary factor sequences.
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Let {Tij } be a tableau diagram and let(W1, . . . ,Wn) be a sequence of tableaux. At first
glance it would appear that to check if this sequence is a factor sequence, we would have to
find all factor sequences(U1, . . . ,Un−1) for the bottomn− 1 rows of the tableau diagram,
as well as all factorizationsUi = Pi · Qi , to see if our sequence(W1, . . . ,Wn) is obtained
from any of these, i.e.Wi = Qi−1 · Ti−1,i · Pi for all i . Equivalently we could find all
factorizations of eachWi into three factorsWi = Qi−1 · Ti−1,i · Pi (with Q0 = Pn = ∅),
and check if(P1 · Q1, . . . , Pn−1 · Qn−1) is a factor sequence for any of these choices. The
criterion for factor sequences allows us to check this for just one factorization of eachWi .

Notice that if the sequence(W1, . . . ,Wn) is a factor sequence, obtained from an inductive
factor sequence(U1, . . . ,Un−1) as above, then the conditions on the filling of a tableau
diagram imply that the entries of each tableauTi−1,i are strictly smaller than the entries of
Qi−1 and Pi . This implies thatWi = Qi−1 · Ti−1,i · Pi contains the rectangular tableau
Ti−1,i in its upper-left corner.

We shall therefore investigate ways to factor a tableau into three pieces, one of which is a
contained rectangular tableau.

A trivial way to factor any tableau is by cutting it along a horizontal or vertical line. Let
T be a tableau anda ≥ 0 an integer. LetU the topa rows ofT , andD the rest ofT . Then
T = D · U . We will call this factorization thehorizontal cutthroughT after theath row.
Vertical cuts are defined similarly.

Lemma 1 Let T = P · Q be any factorization of T and let a be the number of rows in Q.
The following are equivalent:

(i) T = P · Q is a horizontal cut.
(ii) The ith row of T has the same number of boxes as the ith row of Q for1≤ i ≤ a.
(iii) Whenever the top row of P has a box in column j≥ 1, the ath row of Q has a strictly

smaller box in this column (unless a= 0).

Similarly, if P has b columns, then T = P · Q is a vertical cut iff the first b columns of
T and P have the same heights, iff the boxes in the last column of P are smaller than or
equal to the boxes in similar positions in the first column of Q.

Proof: It is clear that (i) implies (ii) and (iii). If (iii) is true thenP andQ fit together to
form a tableau withQ in the topa rows andP below. By taking a horizontal cut through
this tableau, we see that it must be the product ofP andQ. But then it is equal toT and
(i) follows. Finally, suppose (ii) is true. When the boxes ofP are column bumped intoQ
to form the productT , all of these boxes must then stay below theath row. This process
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therefore reconstructsP below Q and (i) follows. The statements about vertical cuts are
proved similarly. 2

Now let W be any tableau whose shape contains a rectangle(b)a with a rows andb
columns. We define thecanonical factorizationof W with respect to the rectangle(b)a to
be the one obtained by first taking a horizontal cut throughW after theath row, and then a
vertical cut through the top part ofW after thebth column.

Note that this definition depends ona, even whenb is zero and the rectangle(b)a is empty.
When the product of three tableauQ, T , andP looks like in this picture, we shall say that
the pair of tableaux(Q, P) fits aroundthe rectangular tableauT .

More generally, letQ0 be the part ofW belowT , P0 the part ofW to the right ofT , and
let Z be the remaining part betweenQ0 andP0.

We define asimple factorizationof W with respect to the rectangle(b)a to be any factor-
ization W = Q · T · P, such thatQ = Q0 · Q̃ and P = P̃ · P0 for some factorization
Z = Q̃ · P̃.

Note that ifZ = Q̃ · P̃ is any factorization ofZ and if we putQ = Q0 · Q̃ andP = P̃ ·P0,
thenQ · T · P = W. This follows becauseP = P̃ · P0 must be a horizontal cut throughP,
and thereforeT · P = P̃ · T · P0. In fact, given arbitrary tableaux̃Q and P̃ one can show
that Q̃ · P̃ = Z if and only if Q0 · Q̃ · T · P̃ · P0 = W , but we shall not need this here.

We are now ready to formulate the criterion for factor sequences. Let{Rij } be the set of
rectangles corresponding to the tableau diagram{Tij }. If (W1, . . . ,Wn) is a factor sequence,
a simple factorization of anyWi will always be with respect to the relevant rectangleRi−1,i

from the rectangle diagram.

Theorem 1 Let(W1, . . . ,Wn) be a sequence of tableaux such that each Wi contains Ti−1,i

in its upper-left corner. Let Wi = Qi−1 · Ti−1,i · Pi be any simple factorization of Wi with
respect to the rectangle Ri−1,i . Then(W1, . . . ,Wn) is a factor sequence if and only if Q0
and Pn are empty tableaux and(P1 · Q1, . . . , Pn−1 · Qn−1) is a factor sequence for the
bottom n− 1 rows of the tableau diagram{Tij }.

We shall derive this result from Proposition 1 below. Since this criterion can be ap-
plied recursively to the sequence(P1 · Q1, . . . , Pn−1 · Qn−1), it gives an easy algorithm to
determine if a sequence(W1, . . . ,Wn) is a factor sequence. An easy way to produce the
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simple factorizations required by the theorem is to take the canonical factorization of each
Wi . When this choice is made, the work required in the algorithm essentially consists of
n(n− 1)/2 tableau multiplications. Note also that this method makes use of the height of
any empty rectangles in the rectangle diagram.

To prove this criterion we need some definitions. LetT be a tableau whose shape is
the rectangle(b)a with a rows andb columns. We will consider pairs of tableaux(X,Y)
such that all entries inX andY are strictly larger than the entries ofT . For such a pair, let
X = X0 · X̃ be the vertical cut throughX after thebth column, and letY = Ỹ · Y0 be the
horizontal cut after rowa.

If (X′,Y′) is another pair of tableaux, we will write(X,Y) |= (X′,Y′) if either

1. for some factorizatioñX = M · N we haveX′ = X0 · M andY′ = N · Y, or
2. for some factorizatioñY = M · N we haveX′ = X · M andY′ = N · Y0.

Note that this implies thatX′ · T · Y′ = X · T · Y. In the first case this follows because
X · T = X0 · T · X̃ andX′ · T = X0 · T · M , and the second case is similar. We will let→
denote the transitive closure of the relation|=. This notation depends on the choice ofT ,
as well as the numbersa andb if T is empty.

Lemma 2 Let W be a tableau containing T in its upper-left corner. Suppose that the
entries of T are smaller than all other entries in W. If W= Q · T ·P is a simple factorization
of W with respect to the rectangle(b)a, and W = X · T · Y is any factorization, then
(X,Y)→ (Q, P).

Proof: Let X = X0 · X̃ be the vertical cut throughX after columnb, and putY′ = X̃ ·Y.
Then letY′ = Ỹ′ · Y′0 be the horizontal cut throughY′ after rowa, and putX′′ = X0 · Ỹ′.

We claim that the pair(X′′,Y′0) fits aroundT . Using Lemma 1 and that the entries ofT
are smaller than all other entries, it is enough to prove that theb+ j th entry in the top row
of X′′ is strictly larger than thej th entry in the bottom row ofY′0. This will follow if the
b+ j th entry in the top row ofX′′ is larger than or equal to thej th entry in the top row of
Ỹ′. SinceX′′ = X0 · Ỹ′ andX0 has at mostb columns, this follows from an easy induction
on the number of rows of̃Y′.

It follows from the claim thatW = X′′ · T · Y′0 is the canonical factorization ofW, and
therefore we have(X,Y) |= (X0,Y′) |= (X′′,Y′0) |= (Q, P) as required. 2
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Notice that if W = X · T · Y is a simple factorization and(X,Y) |= (X′,Y′), then
W = X′ · T · Y′ must also be a simple factorization. It follows that Lemma 2 would be
false without the requirement thatW = Q · T · P is simple.

Lemma 3 Let a≥ 0 be an integer, and let Y and S be tableaux with product A= Y · S.
Let A= Ã · A0 and Y= Ỹ · Y0 be the horizontal cuts through A and Y after row a, and
let Ỹ = M · N be any factorization. Then N· Y0 · S= Ã′ · A0 for some tableauÃ′, and
M · Ã′ = Ã.

Proof: The first statement follows from the observation that the bottom rows ofY can’t
influence the top part ofY·S, which is a consequence of the row bumping algorithm. Lemma
1 then shows that the factorizationA = (M · Ã′) · A0 is a horizontal cut, soM · Ã′ = Ã as
required. 2

Lemma 4 Let γ be a path through the rank diagram, and let(. . . , A, B · C, . . .) be a
factor sequence forγ such that the product B·C is the label of a down-going line segment.
Then(. . . , A · B,C, . . .) is also a factor sequence forγ .

Proof: We will first consider the case where the line segment corresponding toA goes
up. Letγ ′ be the path underγ that cuts short this line segment and its successor.

Then by definition(. . . , A · B · C, . . .) is a factor sequence forγ ′, which means that
(. . . , A · B,C, . . .) is a factor sequence forγ . In generalγ lies over a path like the one
above, and the general case follows from this. 2

Similarly one can prove that if(. . . , A · B,C, . . .) is a factor sequence for a path, such
that A · B is the label of an up-going line segment, then(. . . , A, B ·C, . . .) is also a factor
sequence for this path.

Proposition 1 Letγ andγ ′ be paths related as in Case2of Section2,and let(. . . ,W, . . .)
be a factor sequence forγ such that W is the label of the displayed horizontal line
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segment.

If W = Q ·T · P is any simple factorization of W, then(. . . , Q, P, . . .) is a factor sequence
for γ ′.

Proof: Since(. . . ,W, . . .) is a factor sequence forγ , there exists a factorizationW =
X·T ·Y such that(. . . , X,Y, . . .) is a factor sequence forγ ′. By Lemma 2 we have(X,Y)→
(Q, P). It is therefore enough to show that if(X,Y) |= (X′,Y′) then(. . . , X′,Y′, . . .) is a
factor sequence forγ ′.

Let a be the number of rows in (the rectangle corresponding to)T , and letY = Ỹ · Y0

be the horizontal cut throughY after theath row. We will do the case where a factor of
Ỹ is moved toX, the other case is proved using a symmetric argument. We then have a
factorizationỸ=M · N such thatX′ = X · M andY′ = N · Y0. We can assume that the
pathsγ andγ ′ go down after they meet, and that the original factor sequence forγ is
(. . . ,W, S, . . .).

Put A = Y · S. Then(. . . , X, A, . . .) is a factor sequence for the path with these labels
in the picture. Now letT ′ be the rectangular tableau associated to the lower triangle, and
let A = U · T ′ · V be the canonical factorization ofA. Since this is a simple factorization
we may assume by induction that(. . . , X,U,V, . . .) is a factor sequence. Using Lemma
3 we deduce thatN · Y0 · S = U ′ · T ′ · V for some tableauU ′, such thatM · U ′ =
U . Since(. . . , X,M · U ′,V, . . .) is a factor sequence, so is(. . . , X · M,U ′,V, . . .) by
Lemma 4. This means that(. . . , X · M,U ′ · T ′ · V, . . .) = (. . . , X′,Y′ · S, . . .) is a factor
sequence, which in turn implies that(. . . , X′,Y′, S, . . .) is a factor sequence forγ ′ as
required. 2

The proof of Proposition 1 also gives the following:

Corollary 1 Let (. . . , X,Y, . . .) be a factor sequence for the pathγ ′ in the proposition.
If (X,Y)→ (X′,Y′) then(. . . , X′,Y′, . . .) is also a factor sequence forγ ′.

Proof of Theorem 1: The “if” implication follows from the definition. If the sequence
(W1, . . . ,Wn) is a factor sequence, thenn applications of Proposition 1 shows that
(Q0, P1, Q1, P2, . . . , Qn−1, Pn) is a factor sequence for the path with these labels.
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It follows that Q0 and Pn are empty, and(P1 · Q1, . . . , Pn−1 · Qn−1) is a factor sequence
for the bottomn− 1 rows. This proves “only if”. 2

4. An involution of Fomin

In this section we will describe a sign-reversing involution on pairs of tableaux constructed
by Sergey Fomin. The purpose of this involution is to cancel out the difference be-
tween the coefficientscµ(r ) produced by the algorithm in Section 2, and their conjectured
values.

Fix an integera > 0. If P and Q are tableaux of shapesσ andτ such thatP has at
mosta rows, we letS( P

Q ) denote the symmetric functionsI ∈ 3 whereI is the sequence
of integersI = (σ1, . . . , σa, τ1, τ2, . . .). Let Pa be the set of all pairs(Q, P) such that
S( P

Q ) 6= 0 and such thatP andQ do not fit together as a tableau withP in the topa rows
andQ below. This means that theath row of P must be shorter than the top row ofQ, or
some box in the top row ofQ must be smaller than or equal to the box in the same position
of theath row of P. For example, ifa = 2 the following pairs are inPa:

Lemma 5 (Fomin’s involution) There exists an involution ofPa with the property that if
(Q, P) is mapped to(Q′, P′) then

(i) Q′ · P′ = Q · P,
(ii) S( P′

Q′ ) = −S( P
Q ), and

(iii) the first column of Q′ is equal to the first column of Q.

Fomin supplied the proof of this lemma in the form of the beautiful algorithm described
below. While Fomin’s original description uses path representations of tableaux, we have
translated the algorithm into notation that is closer to the rest of this paper.

We will work with diagrams with weakly increasing rows. These will be “Young dia-
grams” for finite sequences of non-negative integers, where all boxes are filled with inte-
gers so that the rows are weakly increasing. Empty rows are allowed as in the following
example:
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A violation for such a diagram to be a tableau is a box in the second row or below, such
that there is no box directly above it, or the box directly above it is not strictly smaller. The
above diagram has 4 violations in its second row and 2 in row four.

If D is a diagram with weakly increasing rows, and ifI is the sequence of row lengths,
we putS(D)= sI ∈3. Let rect(D) denote the tableau obtained by multiplying the rows of
D together, from bottom to top. We will identify a pair(Q, P) ∈ Pa with the diagramD
consisting ofP in the topa rows andQ below. For this diagram we then haveQ · P =
rect(D) andS( P

Q ) = S(D).
We will start by taking care of the special case wherea = 1 and bothP and Q have

at most one row. In this case Lemma 5 without property (iii) is equivalent to the identity
s̀ ,k = h`hk−h`+1hk−1 in the plactic monoid, which is a special case of a result by Lascoux
and Sch¨utzenberger [9, 12]. The simple proof of this result given in [5] develops techniques
which Fomin used to establish Lemma 5 in full generality.

Lemma 6 Let D be a diagram with two rows and at least one violation in the second row.
Then there exists a unique diagram D′ such thatrect(D′) = rect(D) and S(D′) = −S(D).
Furthermore, D′ also has two rows and at least one violation in the second row. The
leftmost violations of D and D′ appear in the same column and contain the same number.
The parts of D and D′ to the left of this column agree.

Proof: Let p andq be the lengths of the top and bottom rows ofD. The requirement
S(D′) = −S(D) then implies thatD′ must have two rows withq− 1 boxes in the top row
and p+ 1 in the bottom row. Now it follows from the Pieri formula [6, section 2.2] that
the product rect(D) of the rows inD has at most two rows. Furthermore, sinceD contains
a violation, the second row of rect(D) has at mostq − 1 boxes. Using the Pieri formula
again, this implies that there is exactly one way to factor rect(D) into a row of lengthp+1
times another of lengthq − 1. This establishes the existence and uniqueness ofD′.

Explicitly, one may use the inverse row bumping algorithm to obtain this factorization
of rect(D). This is done by bumping out a horizontal strip ofq − 1 boxes which includes
all boxes in the second row, working from right to left.

Let x be the leftmost violation ofD, whereD has the form:

Suppose the partsA andB each containt boxes. Now form the productF · E and letcj

anddj be the boxes of this product as in the picture:

Sincex is a violation inD, it must be smaller than all boxes inE andF . Therefore we have
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Now since eachdj > cj it follows that if a horizontal strip of lengthq− t−1 is bumped off
this tableau,x will remain where it is. In other words we can factorx · F · E into x · F ′ · E′
such thatx · F ′ andE′ are rows of lengthsp− t + 1 andq− t − 1 respectively. Since the
entries ofA andB are no larger thanx, the productsB · x · F ′ andA · E′ are rows of lengths
p+ 1 andq − 1. But the product of these rows is rect(D), so they must be the rows ofD′

by the uniqueness. This proves thatD′ has the stated properties. 2

Notice that the uniqueness also implies that the transformation of diagrams described in
the lemma is inverse to itself, i.e. an involution.

Now supposeD is any diagram with weakly increasing rows. Then Lemma 6 can be
applied to any subdiagram of two consecutive rows, such that the second of these rows
contains a violation. If this subdiagram is replaced by the new two-row diagram given by
the lemma, we arrive at a diagramD′ satisfyingS(D′) = −S(D) and rect(D′) = rect(D).
We will call this anexchange operationbetween the two rows ofD.

We shall need an ordering on the violations in a diagram. Here the smallest of two
violations is the south-west most one. If the two violations are equally far south-west, then
the north-west most one is smaller. In other words, a violation in rowi and columnj is
smaller than another in rowi ′ and columnj ′ iff j − i < j ′ − i ′, or j − i = j ′ − i ′ and
i < i ′.

Notice that when an exchange operation between two rows is carried out, violations may
appear or disappear in these two rows as well as in the row below them. However, the
properties given in Lemma 6 imply that all of the changed violations will be larger than
the left-most violation in the second of the rows exchanged. It follows that the minimal
violation in a diagram will remain constant if any (sequence of) exchange operations is
carried out. Similarly, all boxes south-west of the minimal violation will remain fixed.

Proof of Lemma 5: Given a pair(Q, P) ∈ Pa, letDQ,P be the finite set of all non-tableau
diagramsD with weakly increasing rows, such that rect(D) = Q · P andS(D) = ±S( P

Q ),
and so that the minimal violation inD is in row a+ 1. The pair(Q, P) is then identified
with one of the diagrams in this set. We will describe an involution of the setDQ,P and
another of the complement ofPa ∩DQ,P inDQ,P. The restriction of Fomin’s involution to
Pa ∩DQ,P is then obtained by applying the involution principle of Garsia and Milne [8] to
these involutions.

The involution ofDQ,P simply consists of doing an exchange operation between the
rowsa anda+ 1 of a diagram. This is possible because all diagrams are required to have
a violation in rowa+ 1.

Now note that a diagramD ∈ DQ,P is in the complement ofPa ∩ DQ,P if and only if
D has a violation outside thea + 1st row. We take the involution ofDQ,P\Pa to be an
exchange operation between the row of the minimal violation outside rowa + 1, and the
row above this violation. This is indeed an involution since the minimal violation outside
row a+ 1 stays the same.

These involutions now combine to give an involution ofPa ∩ DQ,P by the involution
principle. To carry it out, start by forming the diagram withP in the topa rows andQ below
it. Then do an exchange operation between rowa and rowa + 1. If all violations in the
resulting diagram are in rowa+1 we are done.P′ is then the topa rows of this diagram and
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Q′ is the rest. Otherwise we continue by doing an exchange operation between the row of
the minimal violation outside rowa+1 and the row above it, followed by another exchange
operation between rowa and rowa+ 1. We continue in this way until all violations are in
row a+ 1.

Finally, the properties ofP′ andQ′ follow from the properties of exchange operations.
In particular, the requirementS( P′

Q′ ) = −S( P
Q ) follows because we always carry out an odd

number of exchange operations. 2

Example 2 The pair(P, Q) = ( ) in P2 gives the following sequence of
exchange operations:

This pair therefore corresponds to(P′, Q′) = ( ) by Fomin’s involution.

There are examples of pairs(Q, P) for which the setPa ∩ DQ,P has more than two
diagrams, all with the same first column. This means that the involution constructed above
is not the only one that satisfies the conditions of Lemma 5. One way to produce different
involutions is to use another ordering among violations. The only property of the order
that we have used is that when an exchange operation is carried out, any violations that are
created or removed by this operation must be larger than the leftmost violation in the second
of the rows being exchanged. For example, given any irrational parameterξ ∈ (0, 1), we
obtain a new order by letting a violation in position(i, j ) be smaller than another in position
(i ′, j ′) if and only if j − ξ i < j ′ − ξ i ′.

5. The stronger conjecture

In this section we present a simple conjecture which implies Conjecture 1A. Letγ be a path
through the rank diagram which at some triangle has an angle pointing down:

LetT be the rectangular tableau associated to this triangle, and suppose the corresponding
rectangle hasa rows andb columns.

If X andY are tableaux whose entries are strictly larger than the entries ofT , and if Y
has at mosta rows, we will let
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denote the diagram consisting ofT ·Y in the topa rows andX below. The sequence of row
lengths of this diagram then gives an elementS( T |Y

X ) in the ring of symmetric functions3.
Note that(X,Y) fits aroundT if and only if the diagramT |Y

X is a tableau.
Suppose that(X,Y) does not fit aroundT andS( T |Y

X ) is non-zero. LetX = X0 · X̃ be the
vertical cut throughX after thebth column. Then(X̃,Y) is an element of the setPa defined
in the previous section. Let(X̃′,Y′) be the result of applying Fomin’s involution to this pair,
and setX′ = X0 · X̃′. Since the first columns of̃X andX̃′ agree,X′ consists ofX0 with X̃′

attached to its right side by Lemma 1. It follows thatS( T |Y′
X′ ) = −S( T |Y

X ). (Note that one
could also get from(X,Y) to (X′,Y′) by applying Fomin’s involution to the pair(X, T ·Y).)

Conjecture 2 Let (. . . , X,Y, . . .) be a factor sequence forγ with X andY the labels of
the displayed line segments, such thatY has at mosta rows. Suppose(X,Y) does not fit
aroundT andS( T |Y

X ) 6= 0. If X′ andY′ are obtained fromX andY by applying Fomin’s
involution as described above, then(. . . , X′,Y′, . . .) is also a factor sequence forγ .

If we fix the location of the down-pointing angle ofγ (i.e. the location ofT in the
tableau diagram), then the strongest case of this conjecture is when the rest ofγ goes as
low as possible. If Conjecture 2 is true for all locations of the down-pointing angle, then
the conjectured formula for the coefficientscµ(γ ) is correct.

Theorem 2 Conjecture 1A follows from Conjecture2.

Proof: If W1, . . . ,W` are diagrams with weakly increasing rows, e.g. tableaux, we will
write S(W1, . . . ,W`) = S(W1) ⊗ · · · ⊗ S(W`) ∈ 3⊗`. With this notation we must prove
that if γ is a path of length̀ , then

Pγ =
∑
(Wi )

S(W1, . . . ,W`) (2)

where the sum is over all factor sequences(Wi ) for γ.
Letγ ′ be a path underγ as in Case 1 or Case 2 of Section 2. By induction we can assume

that Conjecture 1A is true forγ ′, i.e.

Pγ ′ =
∑
(Ui )

S(U1, . . . ,U`′) (3)

where this sum is over the factor sequences forγ ′. We must prove that the right hand side of
(2) is obtained by replacing each basis element of (3) in the way prescribed by the definition
of Pγ . If we are in Case 1 then this follows from the Littlewood-Richardson rule [6, section
5.1]: If U is a tableau of shapeµ andσ andτ are partitions, then there arecµστ ways to
factorU into a productU = P · Q such thatP has shapeσ andQ has shapeτ .

Assume we are in Case 2. By induction we then know thatPγ ′ =
∑

S(. . . , X,Y, . . .)
where the sum is over all factor sequences(. . . , X,Y, . . .) for γ ′; X andY are the labels
of the two line segments whereγ ′ is lower thanγ . Let T be the rectangular tableau of the
corresponding triangle, and leta be the number of rows in its rectangle. Then by definition
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we get

Pγ =
∑

(...,X,Y,...)

S

(
. . . ,

T | Y
X

, . . .

)
(4)

where the sum is over all factor sequences(. . . , X,Y, . . .) for γ ′ such thatY has at mosta
rows.

Now suppose we have a factor sequence(. . . , X,Y, . . .) such that the diagramT |YX is a
tableau. Then this tableau must be the productX · T · Y, and so(. . . , T |Y

X , . . .) is a factor
sequence forγ . Thus the termS(. . . , T |Y

X , . . .) matches one of the terms of (2). On the
other hand it follows from Proposition 1 that every term of (2) is matched in this way.

We conclude from this that the terms in (2) is the subset of the terms in (4) which
come from factor sequences such that(X,Y) fits aroundT . We claim that the sum of the
remaining terms in (4) is zero. In fact, if(. . . , X,Y, . . .) is a factor sequence forγ ′ such that
(X,Y) doesn’t fit aroundT andS( T |Y

X ) 6= 0, then we may apply Fomin’s involution in the
way described above to get tableauxX′ andY′. If Conjecture 2 is true, then the sequence
(. . . , X′,Y′, . . .) is also a factor sequence, and sinceS( T |Y′

X′ ) = −S( T |Y
X ), the terms of (4)

given by these two factor sequences cancel each other out. 2

The number of factor sequences for a tableau diagram can be extremely large. For this
reason it is almost impossible to verify Conjecture 1 or Conjecture 1A directly by counting
factor sequences. In contrast, instances of Conjecture 2 can be tested easily even on large
examples. Given a tableau diagram and a path, one can generate a factor sequence for
this path by choosing factorizations of tableaux by random. Then one can apply Fomin’s
involution to the sequence, and use the criterion of Proposition 1 to check that the result is
still a factor sequence. Such checks have been carried out repeatedly for each of 500,000
randomly chosen tableau diagrams with up to 10 rows of tableaux, without finding any
violations of Conjecture 2. Together with the results in the next section, we consider this
to be convincing evidence for the conjectures.

6. Proof in a special case

In this final section we will show that Conjecture 2 is true in certain special cases. These
cases will be sufficient to prove the conjectured formula forcµ(r ) when all rectangles in
and below the fourth row of the rectangle diagram are empty, and when no two non-empty
rectangles in the third row are neighbors. This covers all situations with at most four vector
bundles.

Let γ be a path through the rank diagram with a down-pointing angle as in the previous
section. LetR be the rectangle of the corresponding triangle.



170 BUCH

We will describe two cases where Conjecture 2 can be proved. Both cases require a
special configuration of the rectangles surroundingR. SupposeR is the rectangleRi j

in the rectangle diagram. We will say that a different rectangleR′ = Rkl is below Rif
k ≤ i < j ≤ l . R′ is strictly below Rif k < i < j < l .

Proposition 2 Conjecture2 is true forγ if all rectangles strictly below R are empty.

Note that this covers all rectangles on the left and right sides of the rectangle diagram.

Proof: Let T be the tableau corresponding toR, and let(. . . , X,Y, . . .) be a factor se-
quence forγ . Since all tableau on the line going south-west fromT in the tableau diagram
are narrower thanT , it follows that alsoX has fewer columns thanT . SimilarlyY has fewer
rows thanT . But this means that(X,Y) fits aroundT and the statement of Conjecture 2 is
trivially true. 2

In the other situation we shall describe, we allow three non-empty tableaux belowT as
shown in the picture.

All other tableaux belowT are required to be empty. Letγ be the higher andγ ′ the
lower of the two paths in the diagram.

Lemma 7 Let (. . . , X,Y, . . .) be a labeling of the line segments ofγ ′ with tableaux. The
following are equivalent:

(1) (. . . , X,Y, . . .) is a factor sequence forγ ′.
(2) (. . . , X · T · Y, . . .) is a factor sequence forγ and the part of X that is wider than T

and the part of Y that is taller than T have entries only from C.

Proof: It is clear that (1) implies (2). For the other implication, putW = X · T · Y and
let W = X′ · T · Y′ be the canonical factorization ofW. Then it follows from Proposition
1 that(. . . , X′,Y′, . . .) is a factor sequence forγ ′. Since(X,Y)→ (X′,Y′) by Lemma 2,
we may assume that(X,Y) |= (X′,Y′).
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We will handle the case where a factor of the bottom part ofY is moved toX, the other
case being symmetric. This means that for some tableauM we haveX′ = X · M and
Y = M · Y′. Since the bottom part ofY has entries only fromC, this is also true forM .

We may assume thatγ andγ ′ go down outside the displayed angle and that our factor
sequence is(. . . ,U, X′,Y′,V, . . .).

Then by definition there exists a factorizationC = C′1 · C′2 such thatA · C′1 = U · X′ and
C′2 · B = Y′ · V . SinceU · X ·M consists ofA with C′1 attached on its right side, and since
all entries ofM are strictly larger than the entries ofA, it follows thatU · X consists ofA
with some tableauC1 attached on the right side. FurthermoreC1 · M = C′1 by Lemma 1.

PutC2 = M · C′2. Then we haveC1 · C2 = C, A · C1 = U · X, andC2 · B = Y · V . It
follows that(. . . ,U, X,Y,V, . . .) is a factor sequence as required. 2

Proposition 3 Conjecture2 is true for the pathγ ′ in Lemma7.

Proof: Let (. . . , X,Y, . . .) be a factor sequence forγ ′ which satisfies the conditions in
Conjecture 2, and letX′ andY′ be the tableaux obtained fromX andY using Fomin’s invo-
lution. Since the part ofX that is wider thanT has entries only fromC, the same will be true
for X′ by Lemma 5 (iii). SinceY′ has fewer rows thanT and since(. . . , X′ · T ·Y′, . . .) =
(. . . , X · T ·Y, . . .) is a factor sequence forγ , it follows from Lemma 7 that(. . . , X′,Y′, . . .)
is a factor sequence forγ ′. 2

Corollary 2 Conjecture1 is true if all rectangles in and below the fourth row of the
rectangle diagram are empty, and if no two non-empty rectangles in the third row are
neighbors.

Proof: When the rectangle diagram satisfies these properties, then all instances of Con-
jecture 2 follow from either Proposition 2 or Proposition 3. The corollary therefore follows
from Theorem 2. 2

In Section 2 we defined a rectangle diagram to be something you get by replacing the
small triangles of numbers in a rank diagram with rectangles. However, everything we have
done is still true if one defines a rectangle diagram to be any diagram of rectangles, each
given by a number of rows and columns, such that the number of rows decreases when one
moves south-east while the number of columns decreases when one moves south-west. This
definition is slightly more general because the side lengths of the rectangles in a rectangle
diagram obtained from rank conditions satisfy certain relations. Although we don’t know
any geometric interpretation of these more general rectangle diagrams, they seem to be the
natural definition for combinatorial purposes.
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