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Abstract. The goal of this paper is twofold. First, we give an elementary introduction to the usage of spectral
sequences in the combinatorial setting. Second we list a number of applications.

In the first group of applications the simplicial complex is the nerve of a poset; we consider general posets
and lattices, as well as partition-type posets. Our last application is of a different nature: the Sn-quotient of the
complex of directed forests is a simplicial complex whose cell structure is defined combinatorially.
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1. Introduction

In this paper we use spectral sequences to compute homology groups of combinatorially
given simplicial complexes, whether they come as nerves of posets or with an explicit
combinatorial description of the cell structure.

This idea is not new, in fact spectral sequences have been used for that purpose in a quite
general setting, already in, e.g. [1–3, 16]. Recently, these methods have started to take more
concrete forms, for example Phil Hanlon used them in [9] to compute the homology groups
of the so-called generalized Dowling lattices. In the joint paper [8], Eva Maria Feichtner
and the author used spectral sequences to attack an especially difficult case of subspace
arrangements, namely the so-called Dn,k-arrangements.

In Section 2 we define some basic notions. Then, in Section 3, we give a thorough and
elementary, from scratch, description of one possible way to use spectral sequences for
poset homology computations.

In Section 4 we derive several corollaries of the properties of the spectral sequences,
which can be applied to a wide class of posets. These results include both Möbius function
computations and finding the Betti numbers of a poset. We take a look at the Whitney
homology of a poset and the intriguing questions coming up in this context. In Theorem 4.1
we prove two inequalities for the Betti numbers of an arbitrary lattice.

In Section 5 we apply these methods to different partition-type posets. In Subsection 5.1
we consider the intersection lattices of orbit arrangements, �λ1,...,λp,2,1m . Furthermore, we
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compute completely the homology groups of the particular lattice �3,2,2,1. This example
shows that the homology groups of orbit arrangements Aλ can have very irregular structure
in general, which was not known before. We remind the reader that it was shown in [11,
Theorem 4.1] that when a partition λ has no primitive partition identities then �λ is shellable,
in particular it is homotopy equivalent to a wedge of spheres. In Subsection 5.2 we take a
look at the subspace arrangements associated with certain partitions with restricted block
sizes.

In Section 6 we use spectral sequences to study homology groups of the Sn-quotient of
the complex of directed forests �(Gn)/Sn . In [12] it was shown that �(Gn) is shellable.
Here we derive a formula for the rational Betti numbers of �(Gn)/Sn and also detect torsion
in its integer homology groups.

2. Basic notions and definitions

In this section we introduce the basic notions which we use throughout the text.

Definition 2.1 Let P be a finite poset. The nerve of P, �(P), (also known as the order
complex of P), is the abstract simplicial complex whose vertices are the elements of P and
whose faces of dimension k are the chains x0 < · · · < xk of length k + 1 in P . See [15] for
a more general definition.

If P is explicitly given with adjoint elements 0̂ and 1̂, then we consider the simplicial
complex �(P̄), where P̄ = P \{0̂, 1̂}. Where it causes no confusion we often write �(P)

instead of �(P̄).
We also use the convention that unless the bar ( ¯ ) is explicitly written, the concerned

poset always has adjoint elements 0̂ and 1̂.
For an arbitrary simplicial complex C , H̃k(C) will denote the kth reduced homology

group of C (see [17] for a definition). For the sake of brevity we will often write H̃k(P)

instead of H̃k(�(P)).
Furthermore we let µP(x, y) denote the value of the Möbius function on the interval

(x, y) of the poset P . The definition and many properties of the Möbius function can be
found for example in [18]. We use the convention µ(P̄) = µP(0̂, 1̂).

Definition 2.2 A poset P is called Cohen-Macaulay (or just CM) if for every interval
(x, y) of the poset P we have H̃i ((x, y)) = 0 for i = rk(y) − rk(x) − 2.

Recall that a chain complex C of vector spaces (resp. abelian groups) is a sequence
· · · d→ Cn

d→ Cn−1
d→ · · · of vector spaces (abelian groups) and maps between them, such

that d2 = 0.
A filtration on C , 0 = F−1 ⊆ F0 ⊆ · · · ⊆ Ft = C is a collection of filtrations on each

Ci : 0 = F−1Ci ⊆ F0Ci ⊆ · · · ⊆ Ft Ci = Ci satisfying d(Fj Ci ) ⊆ Fj Ci−1 for all i , j ; here
we denote Fi = (· · · d→ Fi Cn

d→ Fi Cn−1
d→ · · ·).
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3. Spectral sequences for the nerves of posets

Spectral sequences constitute a convenient tool for computing the homology groups of a
simplicial complex. Here we give a short description of one possible way to apply spectral
sequences to compute homology groups of the nerve of a poset. A special case of this
particular approach has been previously used by Phil Hanlon, in the work cited above.

Of course, the filtrations considered here are very special, but we hope that this may be a
good starting point for a combinatorialist. A few good sources for the material on spectral
sequences are [13, 14, 17].

3.1. The definition and some properties of spectral sequences

A spectral sequence associated with a chain complex C and a filtration F on C is a sequence
of 2-dimensional tableaux (Er

∗,∗)
∞
r=0, where every component Er

k,i is a vector space (for
simplicity we start with considering field coefficients), Er

k,i = 0 unless k ≥ −1 and i ≥ 0,
and a sequence of differential maps (dr )∞r=0 such that

(0) E0
k,i = Fi Ck/Fi−1Ck ;

(1) dr : Er
k,i −→ Er

k−1,i−r , ∀k, i ∈ Z;
(2) Er+1

∗,∗ = H∗(Er
∗,∗, dr ), in other words

Er+1
k,i = ker

(
Er

k,i
dr→ Er

k−1,i−r

)/
im

(
Er

k+1,i+r
dr→ Er

k,i

); (3.1)

(3) for all k ∈ Z,

Hk(C) =
⊕
i∈Z

E∞
k,i . (3.2)

Comments.
0. It follows from (0) and (2) that E1

k,i = Hk(Fi , Fi−1).
1. In the general case E∞

k,i is defined using the notion of convergence of the spectral
sequence. We will not explain this notion in general, since for the spectral sequence that we
consider only a finite number of components in every tableau Er

∗,∗ are different from zero,
so there exists N ∈ N, such that dr = 0 for r ≥ N . Then, one sets E∞

∗,∗ = E N
∗,∗, and so

Hk(C) = ⊕
i∈Z E N

k,i .
2. For the case of integer coefficients, (3.2) becomes more involved: rather than just

summing the entries of E∞
∗,∗ one needs to solve extension problems to get H∗(C). This

difficulty will not arise in our applications, so we refer the interested reader to [14] for the
detailed explanation of this phenomena. When considering integer coefficients, Er

∗,∗ are not
vector spaces, but just abelian groups.

3. We would like to warn the reader that our indexing is different from the standard
(but more convenient for our purposes). The standard indexing is more convenient for the
spectral sequences associated to fibrations, an instance we do not discuss in this paper.
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For a finitely generated abelian group G, let rkG denote the dimension of the free part
of G. When specializing to a spectral sequence for the homology of the nerve of a finite
bounded poset, we immediately observe that its Möbius function can be read off from the
Er

∗,∗-tableau, for any non-negative integer r .

Proposition 3.1 Let P be a finite poset and (Er
∗,∗)

∞
r=0 an associated spectral sequence,

then

µP(0̂, 1̂) =
∑
k,i∈Z

(−1)krkEr
k,i − 1. (3.3)

Proof: It is a well known fact that

χ(Er
∗,∗) = χ(�(P)), for all r ≥ 1, (3.4)

where χ(Er
∗,∗) = ∑

k,i∈Z(−1)k rk Er
k,i , see for example [14, Example 6, pp. 15–16].

Furthermore the theorem of Ph. Hall says that

µP(0̂, 1̂) = χ̃(�(P)). (3.5)

Formula (3.3) follows from (3.4) and (3.5). ✷

As we will see later, formula (3.3) specializes to several well-known formulae for Möbius
function computations, once the spectral sequence is specified.

Proposition 3.2 Let P be any poset and (Er
∗,∗)

∞
r=0 a spectral sequence for H∗(�(P)).

Then we have

(
for some r : Er

k,i = 0, ∀i ∈ Z
) ⇒ Hk(P) = 0, (3.6)

and, for any k,

βk(P) ≤
∑
i∈Z

rk E1
k,i , (3.7)

βk(P) − βk−1(P) − βk+1(P) ≥
∑
i∈Z

rk E1
n,i −

∑
i∈Z

rk E1
n−1,i −

∑
i∈Z

rk E1
n+1,i .

(3.8)

Proof: From (3.1) we have rk Er+1
k,i ≤ rk Er

k,i , hence (Er
k,i = 0 ⇒ Er+1

k,i = 0), and (3.6)
follows. It also follows that

βk(P) = rk Hk(P) =
∑
i∈Z

rk E∞
k,i ≤

∑
i∈Z

rk E1
k,i .
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We shall now prove (3.8). Let us denote d0 = dr |Er
n−1,i−r

, d1 = dr |Er
n,i

, d2 = dr |Er
n+1,i+r

,
d3 = dr |Er

n+2,i+2r
, then we have the following diagram

· · · ← Er
n−2,i−2r

d0← Er
n−1,i−r

d1← Er
n,i

d2← En+1,i+r d3← Er
n+2,i+2r ← · · ·

From the definition of the spectral sequence we know that

Er+1
n,i = ker d1/Im d2, Er+1

n+1,i+r = ker d2/Im d3, Er+1
n−1,i−r = ker d0/Im d1,

hence

rkEr+1
n,i − rkEr+1

n−1,i−r − rkEr+1
n+1,i+r

= (rk ker d1 + rkIm d1) + rkIm d3 − (rk ker d2 + rkIm d2) − rk ker d0

≥ rkEr
n,i − rkEr

n−1,i−r − rkEr
n+1,i+r . (3.9)

Comment. We use here the fact that if G is an abelian group and H is a subgroup of G
then rk(G) = rk(H) + rk(G/H), see e.q. [10, exercise 7.2.2.].

Summing over all i ∈ Z in (3.9) we obtain∑
i∈Z

rkEr
n,i −

∑
i∈Z

rkEr
n−1,i −

∑
i∈Z

rkEr
n+1,i

≤
∑
i∈Z

rkEr+1
n,i −

∑
i∈Z

rkEr+1
n−1,i −

∑
i∈Z

rkEr+1
n+1,i , (3.10)

hence using formula (3.2) we obtain

βk(P) − βk−1(P) − βk+1(P) =
∑
i∈Z

rkE∞
n,i −

∑
i∈Z

rkE∞
n−1,i −

∑
i∈Z

rkE∞
n+1,i

≥
∑
i∈Z

rkE1
n,i −

∑
i∈Z

rkE1
n−1,i −

∑
i∈Z

rkE1
n+1,i . (3.11)

✷

3.2. A class of filtrations

In this subsection we consider all homology groups with coefficients in F, where F is either
a field or the ring of integers. In fact, everything prior to (3.13) is valid for F being an
arbitrary ring.

Let us describe a special class of filtrations on the chain complex for �(P). This class is
somewhat more general than the one considered in [9]. First of all one chooses the following
data: J a subposet of P̄ and a function f : J ∪ {0̂} → N, such that f (0̂) = 0, and x < y
implies f (x) = f (y), in other words the preimage of each element in N forms an antichain
in J . The most frequent choices of the function f are the rank function on J (when it exists)
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and an arbitrary linear extension of the partial order on J . The choice of J is more subtle
and usually depends heavily on the structure of the poset P . For example in [8] the case
P = Dn,k , where Dn,k is the intersection lattice of the k-equal arrangement of type D, has
been considered. In this situation it turned out to be appropriate to take J to be the set of all
the elements without unbalanced component. Phil Hanlon, in [9], considers the case when
J is a lower order ideal and f is the rank function (he considers pure posets only).

Having chosen f and J , we will define an increasing filtration on the chain complex for
�(P). Let � = 0̂ < x0 < · · · < xk < 1̂ be a chain (not necessarily maximal) in P . Define
the pivot of �, piv(�), to be the element of � ∩ J with the highest value of the function
f . Since the preimages under f of each natural number form an antichain, we know that
f takes different values on different elements in � ∩ J and hence the notion of pivot is
well defined. Furthermore, let the weight of �, ω(�), be the value of f on the pivot, i.e.,
ω(�) = f (piv(�)). If � ∩ J = ∅, we take 0̂ as a pivot and say that the chain � has weight
0. This assignment of weights gives us the filtration of the chain complex C∗(P):

Fi (Ck(P)) = 〈{� = 0̂ < x0 < · · · < xk < 1̂ | ω(�) ≤ i}〉F, for k ≥ 0, i ≥ 0,

F−1(Ck(P)) = {0}, for k ≥ 0,

with 〈·〉F denoting the linear span of the given chains with coefficients in F.
Recall that by the definition of the nerve of a poset,

∂(0̂ < x0 < · · · < xk < 1̂) =
k∑

i=0

(−1)i (0̂ < x0 < · · · < x̂i < · · · < xk < 1̂).

Omitting an element other than the pivot does not alter the weight of the chain, omitting
piv(�) turns another element into the pivot, on which f takes a lower value than on the former
pivot, so the resulting chain has a strictly lower weight. Hence ∂(Fi (C∗)) ⊆ Fi (C∗), i.e.,
the differential operator ∂ respects the filtration. By construction, the filtration is bounded
from below.

By definition

E0
k,i = Fi (Ck(P))/Fi−1(Ck(P))

= 〈{� : 0̂ < x0 < · · · < xk < 1̂ | ω(�) = i}〉F, for k ≥ 0, i ≥ 0.

The differential d0 : E0
k,i → E0

k−1,i is induced by the simplicial boundary operator. Let
� = 0̂ < x0 < · · · < x j−1 < piv(�) < x j+1 < · · · < xk < 1̂ be a generator of E0

k,i , then

d0(�) = [∂(�)] =
[

k∑
p=0,p = j

(−1)p(0̂ < x0 < · · · < x̂ p < · · · < xk < 1̂)

]
,

since the weight of a chain is lowered by the omission of an element if and only if it is the
pivot which is removed.
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Now we shall replace the chain complexes (E0
∗,i , d0) (bidegree d0 = (−1, 0)!) by chain

isomorphic complexes. The latter allow us to give an explicit description of the tableau E1
∗,∗

in terms of the homology groups of certain subposets of P . First we need some notations:
for a ∈ J , let Sa = (P̄ \ J ) ∪ {b ∈ J | f (b) < f (a)}.

There is an obvious isomorphism between the following chain complexes “dividing”
each chain � in P with pivot a > 0̂ into two chains, namely its subchains below and above
the pivot:

ϕ : E0
k,i −→

⊕
a∈ f −1(i)

(C̃∗((0̂, a) ∩ Sa) ⊗ C̃∗((a, 1̂) ∩ Sa))k−2

(0̂ < · · · < x j−1 < a < x j+1 < · · · < 1̂)

 −→ (0̂ < · · · < x j−1 < a) ⊗ (a < x j+1 < · · · < 1̂),

with C̃∗ denoting the augmented simplicial chain complex of the respective intervals. We
need to use augmented complexes including the empty chain in order to get proper coun-
terparts for chains which have the pivot as maximal element below 1̂ or as minimal element
above 0̂.

Let

∂̃⊗ = ∂̃(0̂,a)∩Sa
⊗ id + id ⊗ ∂̃(a,1̂)∩Sa

,

with the usual sign conventions, namely ∂̃⊗(cp ⊗ cq) = ∂̃cp ⊗ cq + (−1)pcp ⊗ ∂̃cq , for
cp ∈ C̃ p((0̂, a) ∩ Sa), cq ∈ C̃q((a, 1̂) ∩ Sa). One can see that the isomorphism commutes
with the boundary operators d0 and ∂̃⊗, respectively. Hence ϕ is actually a bijective chain
map and we get

E1
k,i = Hk(E0

∗,i , d0)

∼=
⊕

a∈ f −1(i)

Hk−2(C̃∗((0̂, a) ∩ Sa) ⊗ C̃∗((a, 1̂) ∩ Sa), ∂̃⊗).

For i = 0 we simply have

E1
k,0 = Hk(P \ J ). (3.12)

In case F is a field, or F = Z and at least one of the subposets (0̂, a) ∩ Sa and (a, 1̂) ∩ Sa

has free homology groups, we can apply the algebraic Künneth theorem and deduce

E1
k,i

∼=
⊕

a∈ f −1(i)

(H̃∗((0̂, a) ∩ Sa) ⊗ H̃∗((a, 1̂) ∩ Sa))k−2. (3.13)

In this setting, Proposition 3.1 specializes to

µP(0̂, 1̂) = µ(P̄ \ J ) +
∑
a∈J

µ((0̂, a) ∩ Sa) · µ((a, 1̂) ∩ Sa). (3.14)
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Special cases of formula (3.14) can be found in for example [18]. Observe that when P is
a lattice and J = P̄\ P̄≥x , for some x ∈ P̄ , and f is an arbitrary order preserving function
on J ∪ {0̂}, then (3.14) gives Weisner’s theorem:

µP(0̂, 1̂) = −
∑

a∨x=1̂

µP(0̂, a).

For the explicit derivation of the E1
∗,∗-tableau in this case see Theorem 4.1. For more

information on Weisner’s theorem itself the reader may want to consult [18, Corollary
3.9.3].

When J is a lower ideal and f is an order-preserving function, i.e. if x > y then
f (x) > f (y), the formula (3.13) specializes to

E1
k,i

∼=
⊕

a∈ f −1(i)

(H̃∗(0̂, a) ⊗ H̃∗((a, 1̂) ∩ (P \ J )))k−2. (3.15)

4. Applications for general posets

Let P be a pure poset. Form a spectral sequence by choosing J = P̄ and f (x) = rk(x), then,
according to (3.15) and (3.12),

E1
k,i =

⊕
rk (a)=i

H̃k−1(0̂, a),

E1
−1,0 = Z, E1

k,0 = 0, for k ≥ 0.

We can read off the so-called Whitney homology groups of P (first introduced and studied
by Baclawski in [1]) from the E1

∗,∗-tableau:

Wk(P):=
∞⊕

i=0

E1
k,i =

⊕
a∈P

H̃k−1(0̂, a), k ∈ Z.

Let now P be a CM poset, then E1
k,i = 0 for i = k + 1, hence Wk(P) = E1

k,k+1, k ∈ Z.
Moreover dr = 0 for r ≥ 2, and E2

k,i = 0 for k = rk (P) − 2. It means that under the first
differential d1 all of the groups Wk(P), except for the highest one, cancel in some intriguing
way. It would be of a great interest to clarify the combinatorial nature of these cancellations.

Theorem 4.1 Let P be a finite lattice, x an atom in P. Then the following inequalities
hold:

βk(0̂, 1̂) ≤
∑

y∨x=1̂

βk−1(0̂, y), (4.1)
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∑
y∨x=1̂

(βk−1(0̂, y) − βk−2(0̂, y) − βk(0̂, y)) ≤ βk(0̂, 1̂) − βk−1(0̂, 1̂) − βk+1(0̂, 1̂).

(4.2)

In particular, if βk−2(0̂, y) = βk(0̂, y) = 0, for all y ∈ P, such that y ∨ x = 1̂, then

βk(0̂, 1̂) =
∑

y∨x=1̂

βk−1(0̂, y).

Proof: Let J = P̄ \ P̄≥x and let x1, . . . , xk be any linear extension of J . Consider the
spectral sequence E which is associated to the ideal J , where we filtrate using the given
linear extension of J . Observe first that P̄ \ J = P̄≥x is contractible. Also, for any a ∈ J ,
we have (a, 1̂) ∩ (P̄ \ J ) = (a, 1̂) ∩ P̄≥x = P̄≥x∨a .

This means that (a, 1̂) ∩ (P̄ \ J ) is contractible (actually a cone with apex x ∨ a) unless
x ∨ a = 1̂. When x ∨ a = 1̂ we get (a, 1̂) ∩ (P̄ \ J ) = ∅. So, using formulae (3.12) and
(3.15), we obtain E1

n,0 = 0, for all n, and

E1
n,i =

{
H̃n−1(0̂, xi ), if xi ∨ x = 1̂;
0, otherwise.

The inequalities (4.1) and (4.2) follow from inequalities (3.7), resp. (3.8). ✷

Applications of Theorem 4.1 will be given in the next section. The following theorem
may be occasionally useful.

Theorem 4.2 Let P be a pure poset of rank r . Suppose that there exists a subposet J of
P such that
(1) P \ J is CM and rk(P \ J ) = r ;
(2) for any a ∈ J, both [0̂, a] and [a, 1̂]J are CM and rk[a, 1̂]J = rk[a, 1̂], where [a, 1̂]J =

[a, 1̂] ∩ (P \ J ).
Then H̃i (P) = 0, for i = r − 2, and

Hr−2(P) =
( ⊕

a∈J

H̃rk(a)−2(0̂, a) ⊗ H̃rk[a,1̂]−2(a, 1̂)

)
⊕ Hr−2(P \ J ). (4.3)

Proof: Construct the spectral sequence (Er
∗,∗)

∞
r=0 with the subposet J as in the proof of

the Theorem 4.1 and with f (x) = rk(x). Then it follows from the formulae (3.13) and (3.12)
that E1

k,0 = Hk(P \ J ), and

E1
k,i

∼=
⊕

rk(a)=i,a∈J

(H̃∗(0̂, a) ⊗ H̃∗(a, 1̂)J )k−2, for i ≥ 1.
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Using the fact that P \ J , [0̂, a] and [a, 1̂]J are CM and that rk(P \ J ) = rk(P) = r ,
rk[a, 1̂]J = rk[a, 1̂], we obtain E1

k,i = 0, for k = r − 2. The spectral sequence collapses
here, hence (4.3) and H̃i (P) = 0, for i = r − 2, follow from (3.2). ✷

Let us recall a theorem proved in [6].

Theorem 4.3 (Complementation Theorem) If L is a bounded lattice, s ∈ L̄, and the com-
plements of s form an antichain, then L̄ $ wedge

x ⊥ s
susp ((0̂, x) ∗ (x, 1̂)).

Remark 4.4 In the special case, when the complements of an atom x ∈ P form an an-
tichain, the spectral sequence above allows us to derive the homology counterpart of the
Complementation Theorem 4.3.

Reason. If the complements of x form an antichain one can choose the function f so
that it takes the same value v on all of the complements of x . Then there will be only one
non-zero row in E1

∗,∗, namely

E1
n,v =

⊕
y∨x=1̂

H̃n−1(0̂, y), E1
n,i = 0 for i = v.

All the differentials dr will be zero maps for r ≥ 1, so we obtain

Hk(P) =
∑
i∈Z

E1
k,i =

⊕
y∨x=1̂

H̃k−1(0̂, y).

5. Applications to partition-type posets

5.1. Orbit arrangements

A subspace arrangement A is a finite collection of affine subspaces {K1, . . . , Kt } in
the Euclidean space Rn . Let A be a central subspace arrangement (all the subspaces pass
through the origin) and take all possible non-empty intersections Ki1 ∩ · · · ∩ Ki p , 1 ≤ i1 <

· · · < i p ≤ t , ordered by reverse inclusion, that is x ≤ y ⇔ y ⊆ x . This is a partially
ordered set, which is actually a lattice. The bottom element is 0̂ = Rn and the top element
is 1̂ = ∩A = K1 ∩ · · · ∩ Kt . This lattice is called the intersection lattice and is often
denoted by LA.

We use the notation λ = (λ1, . . . , λp) for the partition of the number n = ∑p
i=1 λi into

blocks of sizes λ1, . . . , λp and we always have these blocks ordered in non-increasing order,
i.e., λ1 ≥ λ2 ≥ · · · ≥ λp. By �n we denote the partition lattice of the set [n]. It is the
poset with elements all different partitions of [n] ordered under refinement.

The following class of subspace arrangements was first introduced in [4, subsection 3.3].
If π = (B1, . . . , Bp) is a nontrivial partition of the set [n], let

Kπ = {x ∈ Rn | i, j ∈ Bk ⇒ xi = x j , for all 1 ≤ i, j, ≤ n, 1 ≤ k ≤ p}.
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The type of π is the number partition of n given by the block sizes |Bi |. Given a non-trivial
number partition λ ' n, let

Aλ = {Kπ | π ∈ �n and type (π) = λ}.

Aλ is called an orbit arrangement, expressing the fact that Aλ is the orbit of any single
subspace Kπ under the natural action of Sn on Rn . Let �λ = LAλ

. Note that �n = �(2,1,...,1).

Theorem 5.1 Consider a partition λ = (λ1, . . . , λp, 2, 1m), p ≥ 0, m ≥ 1, (this notation
means that we have m blocks of size 1). Let

t = min
1≤i≤p+1

⌈
m + λi + · · · + λp + 1

λi − 1

⌉
,

where λp+1 = 2. Then �λ is (t − 3)-acyclic.

Remark For this bound to be useful, we should have much larger m than λi ’s. For example,
for λ = (3, 2, 1m) we get that �λ is ((m/2) − 1)-acyclic.

Proof: Take a coatom x = (1, . . . , n−1)(n) and consider the spectral sequence associated
with the ideal J = �λ \(�λ)≤x and f (x) = rk(�λ) − rk(x). We have E1

n,0 = 0, and, for
i > 0,

E1
n,i =

⊕
y∈ f −1(1̂),y∧x=0̂

H̃n−1(y, 1̂).

Let d be the number of blocks in y, then [y, 1̂] $ �d (here we use that 2 occurs as a
block size in λ). We shall show that d ≥ t . Let y have blocks of sizes s1, . . . , sd . The
set {s1, . . . , sd} gives a number partition of n, y ∈ �λ means that λ is a refinement of
{s1, . . . , sd}. The condition x ∧ y = 0̂ means that there exists a block of y, without loss of
generality we can assume it is sd , such that λ is not a refinement of {s1, s2, . . . , sd − 1, 1}. It
means it is impossible to pack disjointly blocks of sizes λ1, . . . , λp, λp+1, where λp+1 = 2,
into blocks of sizes s1, s2, . . . , sd − 1.

We will attempt to perform such a packing with a version of a greedy algorithm. Let
us start with packing λ1 into some of the blocks s1, . . . , sd − 1. If it is possible continue
with λ2 and so on. At some point we will have to stop. Say we stopped at λi , i.e., it is
impossible to pack λi into the rest (after packing λ1, . . . , λi−1) of the blocks s1, . . . , sd − 1.
Then the rests of the blocks s1, . . . , sd − 1 have at most λi − 1 elements each, it gives
us an inequality

d · (λi − 1) + λ1 + · · · + λi−1 + 1 ≥ n = λ1 + · · · + λp + 2 + m

or

d · (λi − 1) ≥ λi + · · · + λp + 1 + m,
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Figure 1.

which implies

d ≥ m + λi + · · · + λp + 1

λi − 1
, (5.1)

hence d ≥ t .
The lattice �d has nonzero homology group only in dimension d − 3, so E1

k,i = 0 if k ≤
t − 3 and hence, using (3.6), we can conclude that �λ is (t − 3)-acyclic. ✷

Often spectral sequences can be used for a direct computation of the poset homology
groups. We will give here an informative example.

Let λ = (3, 2, 2, 1). We shall compute the homology groups of �3,2,2,1. The poset �3,2,2,1

is pure and ranked by the function rk(x) = 5−(the number of blocks in x). Let J = �̄3,2,2,1,
f (x) = rk(x), and construct the corresponding spectral sequence.

As was described in Section 4 we obtain Whitney homology groups. It is easy to see that
(0̂, a) is CM for all a ∈ �̄3,2,2,1 except for the case when a has partition type (4, 4). These
intervals are schematically shown in figure 1.

The Betti numbers of intervals (0̂, a) are given in the Table 1.
Observe that we can use formulae (3.15) and (3.12), since the intervals (0̂, a) have torsion

free homology groups for a ∈ P̄ . Hence, the E1
∗,∗-tableau for J = �3,2,2,1, f (x) = rk(x),

can be easily computed. The only non-zero entries are

E1
−1,0 = Z, E1

0,1 = Z840, E1
1,2 = Z4102, E1

1,3 = Z35, E1
2,3 = Z6588.

First, it is straightforward that d1 : E1
0,1 → E1

−1,0 is surjective, hence E∞
−1,0 = 0. Further-

more, it is easy to check that the first two rank levels of �3,2,2,1 form a connected poset,
hence d1 is exact in E1

0,1. It means that E2
0,1 = 0 and so E∞

1,3 = E1
1,3 = Z35. Already this

shows that H1(�3,2,2,1) = 0.
It is not difficult to show that d1 is exact in E1

1,2 too (this will be done later). Hence the
associated spectral sequence collapses at its second term, and the non-zero entries of the
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Table 1.

Type of a Number β̃−1 β̃0 β̃1

3221 840 1 0 0

332 280 0 5 0

431 280 0 2 0

422 210 0 3 0

521 168 0 9 0

71 8 0 0 155

62 28 0 0 90

53 56 0 0 43

44 35 0 1 12

tableau E2
∗,∗ are:

E2
1,3 = Z35, E2

2,3 = Z3325.

Hence,

β̃0(�3,2,2,1) = 0, β̃1(�3,2,2,1) = 35, β̃2(�3,2,2,1) = 3325.

In [11 Theorem 4.1] it has been proved that �λ is shellable if λ has no primitive partition
identities. This of course does not apply to �3,2,2,1, since λ = (3, 2, 2, 1) has the identity
2+2 = 3+1. It is however not difficult to adapt the proof of [11, Theorem 4.1] to show that
P = �3,2,2,1\{elements of type 4, 4} is shellable. This adaptation is technical and requires
to go into the details of the 4-pages proof of the mentioned theorem, so we shall omit this
argument. Alternatively, one could show that P is shellable by a direct argument.

Now, associate a spectral sequence (Ẽr
∗,∗)

∞
r=1 to P in the same way as above. The Whitney

homology groups of P are subgroups of the Whitney homology groups of �3,2,2,1. On the
other hand, since P is shellable, d1 must be exact in Ẽ1

1,2. Then, of course, d1 is also exact
in E1

1,2.

5.2. Partitions with restricted block sizes

Let �n,1,...,k denote the poset consisting of partitions with block sizes from the set {1, . . . ,

k, n}, (�n,1,...,k = �n , if k = n). These lattices were considered in [21] in connection with
certain relative subspace arrangements. It is believed that �n,1,...,k is torsion-free. We can
obtain some information on the homology groups of these lattices from the following
proposition.

Proposition 5.2 �n,1,...,k is (k − 3)-acyclic for k < n.
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Proof: �n,1,...,k is a lower ideal of the partition lattice �n . �n is a CM poset and �n,1,...,k

contains the first k − 1 rank levels of �n . Let J be a subposet of �n,1,...,k consisting of the
complement of the first k − 1 rank levels of �n , f (x) = rk(x) − k + 1. Then the formulae
(3.13) specialize to

E1
t,i $

⊕
rk(a)=i+k−1

H̃t−1(0̂, a),

since (a, 1̂) ∩ Sa = ∅ for all a ∈ J .
Every interval (0̂, a) is a CM poset of rank rk(a) ≥ k, also P\ J is CM of rank k, hence

E1
t,i = 0, for t ≤ k − 3, i ∈ Z.

Using (3.2) we conclude that H̃t (�n,1,...,k) = 0 for t ≤ k − 3 and so �n,1,...,k is (k − 3)-
acyclic. ✷

Remark 5.3 It was communicated to the author by the referee that this and more general
results can be found in the preprint [20]. The author was unaware of that work and is grateful
to the referee for this comment.

6. Sn-Quotient of the complex of directed forests

In this section we shall assume the following notions to be known: directed graph, a
subgraph of a directed graph, directed tree, directed forest. If needed the reader may consult
any textbook on graph theory for the definitions. We shall use V (G), resp. E(G), to denote
the sets of vertices, resp. edges, of a directed graph G. We think of E(G) as a subset of
(V (G) × V (G))\{(x, x) | x ∈ V (G)}. Since all the graphs considered in this section are
directed, we will often omit this word.

Following a hint of Stanley [19], the following simplicial complexes were considered in
[12].

Definition 6.1 Let G be an arbitrary directed graph. Construct a simplicial complex �(G)

as follows: the vertices of �(G) are given by the edges of G and k-simplices are all directed
forests with k + 1 edges which are subgraphs of G.

Let Gn be the complete directed graph on n vertices, i.e., a graph having exactly one edge
in each direction between any pair of vertices, all together n(n − 1) edges. It was shown in
[12] that �(Gn) is shellable, thus all its homology groups are 0 except for the top one, and
one can show that βn−2(�(Gn)) = (n − 1)(n−1).

Furthermore, there is an action of Sn on �(Gn) induced by the permutation action of Sn

on [n], thus one can form the topological quotient Xn = �(Gn)/Sn , see figure 2 for the case
n = 3. It was asked in [12, Section 6, Question 2] what H∗(Xn, Z) is. The answer to that
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turned out to be more complex than we thought. In this section we show that the groups
H∗(Xn, Z) are, in general, not free, and also give a formula for βn−2(Xn, Q).

A combinatorial description for the cell structure of Xn. Clearly, the action of Sn on
�(Gn) is not free. What is worse, the elements ofSn may fix the simplices of �(Gn) without
fixing them pointwise: for example for n = 3 the permutation (23) “flips” the 1-simplex
given by the directed tree 2 ← 1 → 3. Therefore, one does not have a bijection between
the orbits of simplices of �(Gn) and simplices of Xn . To rectify the situation, consider the
barycentric subdivision Bn = Bsd(�(Gn)). We have a simplicial Sn-action on Bn induced
from the Sn-action on �(Gn) and, clearly, Bn/Sn is homeomorphic to Xn . Furthermore, if
an element of Sn fixes a simplex of Bn then it fixes it pointwise. In this situation, it is well-
known, e.g. see [7], that the quotient projection Bn → Xn induces a simplicial structure on
Xn , in which simplices of Xn correspond toSn-orbits of the simplices of Bn with appropriate
boundary relation.

Figure 2.

Let us now give a combinatorial description of the Sn-orbits of the simplices of Bn . Let σ

be a simplex of Bn , then σ is a chain (T1, T2, . . . , Tdim(σ )+1) of forests on n labeled vertices,
such that Ti is a subgraph of Ti+1, for i = 1, . . . , dim(σ ). One can view this data in a slightly
different way: it is a forest with dim(σ ) + 1 integer labels on edges (labels on different
edges may coincide). Indeed, given a chain of forests as above, take the forest Tdim(σ )+1 and
put label 1 an all edges of the forest T1, label 2 on all edges of T2, which are not labeled yet,
etc. Vice versa, given a forest T with a labeling, let T1 be the forest consisting of all edges
of T with the smallest label, let T2 be the forest consisting of all edges of T with one of
the two smallest labels, etc. To make the described correspondence a bijection, one should
identify all labeled forests on which labelings produce the same order on edges.

Formally: the p-simplices of Bn are in bijection with the set of all pairs (T, φT ), where T
is a directed forest on n labeled vertices and φT : E(T ) → Z, such that |Im φT | = p + 1,
modulo the following equivalence relation: (T1, φ

T1) ∼ (T2, φ
T2) if T1 = T2 and there exists

an order-preserving injection ψ : Z → Z, such that φT1 ◦ ψ = φT2 .
The boundary operator is given by: for a p-simplex (T, φT ), p ≥ 1, we have ∂(T, φT ) =∑p+1
i=1 (−1)p+i+1(Ti , φ

Ti ). Here, for i = 1, . . . , p, we have Ti = T and φTi takes the same
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values as φT except for the edges on which φT takes i th and (i+1)st largest values (say a and
b), on these edges φTi takes value a. Furthermore, Tp+1 is obtained from T be removing the
edges with the highest value of φT , φTp+1 is the restriction of φT . Of course, this description
of the boundary map is just a rephrasing of the deletion of the i th forest from the chain of
forests in the original description. However, we will find it more convenient to work with
the labeled forests rather than the chains of forests.

The orbits of the action of Sn can be obtained by forgetting the numbering of the vertices.
Thus, using the fact that simplices of Xn and Sn-orbits of simplices of Bn are the same
thing, we get the following description.

The p-simplices of Xn are in bijection with pairs (T, φT ), where T is a directed forest on
n unlabeled vertices and φT is an edge labeling of T with p + 1 labels, modulo a certain
equivalence relation. This equivalence relation and the boundary operator are exactly as
in the description of simplices of Bn .

On figure 2 we show the case n = 3. On the left hand side we have �(G3), on the right
hand side is X3 = �(G3)/S3. The labeled forests next to the edges indicate the bijection
described above, labeling on the forests corresponding to the vertices in X3 is omitted. S3

acts on �(G3) as follows: 3-cycles act as rotations around the line which goes through
the middles of the triangles, each transposition acts as a central symmetry on one of the
quadrangles, and as a “flip” on the edge which is parallel to that quadrangle.

Filtration. There is a natural filtration on the chain complex associated to the simplicial
structure on Xn described above. Let Fi be the union of all simplices (T, φT ) where T has
at most i edges. Clearly, ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 = Xn .

The description of the E1 tableau. Recall that E1
p,k = Hp(Fk, Fk−1), here we use

the indexing from Section 3. In other words, the homology is computed with “truncated”
boundary operator: the last term, where some edges are deleted from the forest, is omitted.
Clearly,

E1
p,k =

⊕
T

Hp(ET ), (6.1)

where the sum is over all forests with k edges and ET is a chain complex generated by
the simplices (T, φT ), for various labelings φT , with the truncated boundary operator as
above.

Let us now describe a simplicial complex whose reduced homology groups, after a shift
in the index by 1, are equal to the nonreduced homology groups of ET . The arrangement
of k(k − 1)/2 hyperplanes xi = x j in Rk cuts the space Sk−1 ∩ H into simplices, where
H is the hyperplane given by the equation x1 + x2 + · · · + xk = 0. Denote this simplicial
complex Ak . The permutation action of Sk on [k] induces an Sk-action on Ak . It is easy to
see that if an element of Sk fixes a simplex of Ak , then it fixes it pointwise. Hence, for any
subgroup � ⊆ Sk , the �-orbits of the simplices of Ak are in a natural bijection with the
simplices of Ak/�.

Let T be an arbitrary forest with n vertices and k edges. Assume that vertices, resp. edges,
are labeled with numbers 1, . . . , n, resp. 1, . . . , k.Sn acts on [n] by permutation, let Stab(T )

be stabilizer of T under this action, that is the maximal subgroup of Sn which fixes T . Then
Stab (T ) acts on E(T ), i.e., we have a homomorphism χ : Stab(T ) →Sk . LetS(T ) = Imχ .
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Clearly S(T ) does not depend on the choice of the labeling of vertices. However, relabeling
the edges changes S(T ) to a conjugate subgroup. Therefore, for a forest T without labeling
on vertices and edges, S(T ) can be defined, but only up to a conjugation.

Proposition 6.2 The chain complex of Ak/S(T ) and ET (with a shift by 1 in the indexing)
are isomorphic. In particular, H̃p(Ak/S(T )) = Hp+1(ET ).

Proof: Label the k edges of T with numbers 1, . . . , k. As mentioned above, the p-
simplices of ET are in bijection with labelings of the edges of T with numbers 1, . . . , p +1
(using each number at least once). Taking in account the chosen labeling of the edges, this
is the same as to divide the set [k] into an ordered tuple of p + 1 non-empty sets, modulo
the symmetries of [k] induced by the symmetries of T . Clearly, these symmetries of [k] are
precisely the elements of S(T ).

The (p − 1)-simplices of Ak are in bijection with dividing [k] into an ordered tuple of
p + 1 non-empty sets: by the values of the coordinates. Therefore we conclude that the
p-simplices of ET are in a natural bijection with the (p − 1)-simplices of Ak/S(T ). Here
the unique 0-simplex of ET , (T, 1), (1 is the constant function taking value 1), corresponds
in Ak/S(T ) to the empty set, which is a (−1)-simplex. One verifies immediately that the
boundary operators of ET and Ak/S(T ) commute with the described bijection. Therefore
ET and Ak/S(T ) are isomorphic as chain complexes (after a shift in the indexing). In
particular, H̃p(Ak/S(T )) = Hp+1(ET ). ✷

Q coefficients. Proposition 6.2 allows us to give a description of E1
∗,∗-entries in the case

when the homology groups are computed with rational coefficients. Indeed, it is well known
that, when a finite group � acts on a finite simplicial complex X , one has H̃i (X/�, Q) =
H̃�

i (X, Q), where H̃�
i (X, Q) is the maximal vector subspace of H̃i (X, Q) on which � acts

trivially (more generally Q can be replaced with a field whose characteristic does not divide
|�|). Since Ak is homeomorphic to Sk−2 we have H̃k−2(Ak, Q) = Q and H̃i (Ak, Q) = 0 for
i = k − 2. It is easy to compute H̃S(T )

k−2 (Ak, Q). In fact, for π ∈ Sk , α ∈ H̃k−2(Ak, Q), one
has π(α) = (−1)sgn πα, where sgn denotes the sign homomorphism sgn : Sk → {−1, 1}.
Therefore

H̃k−2(Ak/S(T ), Q) = H̃S(T )
k−2 (Ak, Q) =

{
Q, if S(T ) ⊆ Ak,

0, otherwise,

where Ak is the alternating group, Ak = sgn−1(1).
Combined with the Proposition 6.2 this gives Hi (ET , Q) = Q, if i = |E(T )| − 1 and

S(T ) ⊆A|E(T )|, and Hi (ET , Q) = 0 in all other cases. Therefore it follows from (6.1) that
rkE1

k−1,k = fk,n , where fk,n is equal to the number of forests T with k edges and n vertices,
such that S(T ) ⊆ Ak . rkE1

p,k = 0 for p = k − 1. Note that βi (Xn, Q) = 0, for i =
n − 2, because βi (�(Gn), Q) = 0, for i = n − 2 (shown in [12]), and βi (Xn, Q) =
β
Sn
i (�(Gn), Q). In particular, by computing the Euler characteristic of Xn in two different

ways, we obtain
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Theorem 6.3 For n ≥ 3, βn−2(Xn, Q) = ∑n−1
k=2(−1)n+k+1 fk,n.

The first values of fk,n are given in the table below. Note that there are zeroes on and
below the main diagonal and that the rows stabilize at the entry (k, 2k − 1) (for k ≥ 2).

k\n 1 2 3 4 5 6

1 0 1 1 1 1 1

2 0 0 1 1 1 1

3 0 0 0 2 3 3

4 0 0 0 0 4 7

5 0 0 0 0 0 8

Z coefficients. The case of integer coefficients is more complicated. In general, we do
not even know the entries of the first tableau. However, we do know that it is different from
the rational case, i.e., torsion may occur.

For example, let T be the forest with 8 vertices and 6 edges depicted on figure 3. Clearly,
S(T ) = {id, (12)(34)(56)}. It is easy to see that A6/S(T ) is a double suspension (by which
we mean suspension of suspension) of RP2, thus the only nonzero homology group is
H̃3(A6/S(T ), Z) = Z2. In particular, E1

4,6 is not free.
On the positive side, we can describe the values which d1 takes on the “rational” generators

of E1
∗,∗. Let us call a forest admissible if S(T ) ⊆ A|E(T )|. For every admissible forest T with

k edges we fix some order on the edges, i.e., a bijection ψT : E(T ) → [k]. This determines
uniquely an integer generator eT of Hk−1(ET , Z) by

eT =
∑
S(T )g

sgn(g)(T, g ◦ ψT ), (6.2)

where we sum over all right cosets of S(T ), (we choose one representative for each coset).
Observe that the sign of g, resp. the simplex (T, g ◦ ψT ), are the same for different rep-
resentatives of the same right coset class, because S(T ) ⊆ Ak , resp. by the definition of
S(T ).

Proposition 6.4 For an admissible forest T, we have

d1(eT ) =
∑

α

sgn
(
ψ̃T,α ◦ ψ−1

T

)
λT,αeT \α, (6.3)

Figure 3.
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where the sum is over S(T )-orbits of E(T ), for which there exists a representative α,

such that T \ α is admissible, we choose one representative for each orbit; note that
the admissibility of T \α depends only on the S(T )-orbit of α, not on the choice of the
representative. Notation in the formula: T \α denotes the forest obtained from T by re-
moving the edge α; ψ̃T,α : E(T ) → [k] is defined by ψ̃T,α|T \α = ψT \α and ψ̃T,α(α) = k;
λT,α = [S(T \α) : S̃(T )], where S̃(T ) consists of those permutations of edges of T \α

which can be extended to T by fixing the additional edge.

Proof: For an admissible forest T with k edges and a bijection φ : E(T ) → [k], let
(T̃ , φ̃) denote a face simplex of (T, φ), where T̃ is obtained from T by removing the
edge with the highest label, φ̃ is the restriction of φ to T̃ . In our notations (T̃ , φ̃) =
(T \φ−1(k), φ | E(T \φ−1(k))). However, for convenience, we use the notation “tilde” in the
rest of the proof.

According to the general theory for spectral sequences, d1(eT ) = ∂(eT ), where ∂ denotes
the usual boundary operator, and we view ∂(eT ) as embedded into the relative homology
group Hk−2(Fk−1, Fk−2). ∂(eT ) is a linear combination of simplices which are obtained
from the simplices (T, g ◦ ψT ) by either merging two labels, or omitting the edge with
the top label. eT ∈ Hk−1(Fk, Fk−1) means that the application of the “truncated” boundary
operator to eT gives 0, therefore all the simplices obtained by merging two labels will
cancel out. Furthermore, since ∂(eT ) ∈ Hk−2(Fk−1, Fk−2), dim Fk−1 = k − 2, and the group
Hk−2(Fk−1, Fk−2) is freely generated by eU , where U is an admissible forest with k − 1
edges, we can conclude that also the contributions (T̃ , φ̃), where T̃ is not admissible, will
cancel out. Combining these arguments with (6.2) we obtain:

d1(eT ) =
∑
S(T )g

sgn (g)(T̃ , g̃ ◦ ψT ), (6.4)

where we have only those terms left in the sum, for which T̃ is admissible. After regrouping
we get

∑
S(T )g

sgn(g)(T̃ ,g̃ ◦ ψT ) =
∑

α

∑
S(T )g

sgn(g)(T̃ ,g̃ ◦ ψT ), (6.5)

where in the second term the first sum is taken over all S(T )-orbits of [k], for which T̃
is admissible, while the second sum is taken over all right cosets S(T )g which have a
representative g such that g ◦ ψT (α) = k, we take one representative per coset. To verify
(6.5) we just need to observe that the S(T )-orbit of (g ◦ ψT )−1(k) does not depend on the
choice of the representative of S(T )g; this follows from the definition of S(T ).

Finally, one can see that, for α being an edge of T , such that T \α is admissible,

∑
S(T )g

sgn(g)(T̃ ,g̃ ◦ ψT ) = sgn
(
ψ̃T,α ◦ ψ−1

T

)
λT,α

∑
S(T\α)h

sgn (h)(T \α, h ◦ ψT\α),

(6.6)
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where the sum in the first term is again taken over all right cosets S(T )g which have a
representative g such that g ◦ ψT (α) = k, and the sum in the second term is simply over all
right cosets of S(T \α).

Indeed, on the left hand side we have a sum over all labelings of E(T ) with numbers
1, . . . , k, such that α gets a label k, and we consider these labelings up to a symmetry of T ;
each labeling comes in with a sign of the permutation g, which is obtained by reading off this
labeling in the order prescribed by ψT . On the right hand side the same sum is regrouped,
using the observation that to label E(T ) with [k], so that α gets a label k, is the same as to
label E(T\α) with [k −1]. The only details which need attention are the multiplicity and the
sign.

Every S(T )-orbit of labelings of E(T ) with [k] so that α gets a label k corresponds to
[S(T \α) : S̃(T )] of S(T \α)-orbits of labelings of E(T \α) with [k − 1], since we identify
labelings by the actions of different groups: S(T \α) ⊇ S̃(T ). Each of this S(T \α)-orbits
comes with the same sign, because S(T\α) ⊆ Ak−1. The sign sgn(ψ̃T,α ◦ψ−1

T ) corresponds
to the change of the order in which we read off the edges: instead of reading them off
according to ψT , we first read off along ψT \α and then read off the edge α last. Formally:
g ◦ ψT = h̃ ◦ ψ̃T,α , and sgnh̃ = sgnh, hence sgn g = sgn h sgn (ψ̃T,α ◦ ψ−1

T ), where h̃ is
defined by h̃|[k−1] = h, h̃(k) = k.

Combining (6.4), (6.5) and (6.6) we obtain (6.3). ✷

Homology groups of Xn for n = 2, 3, 4, 5, 6. X2 is just a point. As shown in figure 2,
X3 $ S1, where $ denotes homotopy equivalence. With a bit of labour, one can manually
verify that X4 $ S2. Furthermore, one can see that H3(X5, Z) = Z2 and H̃i (X5, Z) = 0
for i = 3. We leave this to the reader, while confining ourselves to the case n = 6. On
figure 4 we have all forests on 6 vertices. We denote some of the forests by two digits.
The numbers over the edges denote the order in which we read the labels, i.e., the bijection
ψT .

It is easy to see that Ak/S(T ) is homeomorphic to Sk−2 for all admissible T , and is
contractible otherwise. The only nontrivial cases are 41, 47, 48, 51, 55, and 59, all of which
can be verified directly. Therefore, the only nontrivial entries of E1

∗,∗ (Z coefficients) will
lie on the (k − 1, k)-diagonal. Thus H∗(X6, Z) can be computed from the chain complex

0 ← E1
0,1

d1← E1
1,2

d1← E1
2,3

d1← E1
3,4

d1← E1
4,5 ← 0.

From Proposition 6.4 we have

d1(11) = 0, d1(21) = 0,

d1(31) = 2 · 21, d1(32) = 21, d1(33) = 21,

d1(41) = 32 − 33, d1(42) = 31 − 32 − 33, d1(43) = 31 − 2 · 33,

d1(44) = 0, d1(45) = 31 − 32 − 33, d1(46) = 32 − 33,

d1(47) = 0,

d1(51) = 41 − 46, d1(52) = −42 + 43 + 44 − 46,

d1(53) = −42 + 45, d1(54) = 2 · 41 + 42 − 43 − 46 + 2 · 47,

d1(55) = 41 − 43 + 45, d1(56) = 42 + 44 − 45 − 2 · 47,

d1(57) = −43 + 44 + 45 + 46, d1(58) = 2 · 44 + 2 · 47,
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Figure 4.

here the two-digit strings denote the corresponding forests on figure 4. Thus H̃3(X6, Z) =
Z2, H̃4(X6, Z) = Z3 and H̃i (X6, Z) = 0 for i = 3, 4.

Therefore 6 is the smallest value of n, for which the homology groups H∗(Xn, Z) are not
free.
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