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Abstract. Let �n,k,k and �n,k,h , h < k, denote the intersection lattices of the k-equal subspace arrangement
of type Dn and the k, h-equal subspace arrangement of type Bn respectively. Denote by SB

n the group of signed
permutations. We show that �(�n,k,k )/SB

n is collapsible. For �(�n,k,h )/SB
n , h < k, we show the following. If

n ≡ 0 (mod k), then it is homotopy equivalent to a sphere of dimension 2n
k − 2. If n ≡ h (mod k), then it is

homotopy equivalent to a sphere of dimension 2 n−h
k − 1. Otherwise, it is contractible. Immediate consequences

for the multiplicity of the trivial characters in the representations of SB
n on the homology groups of �(�n,k,k ) and

�(�n,k,h ) are stated.
The collapsibility of �(�n,k,k )/SB

n is established using a discrete Morse function. The same method is used
to show that �(�n,k,h )/SB

n , h < k, is homotopy equivalent to a certain subcomplex. The homotopy type of
this subcomplex is calculated by showing that it is shellable. To do this, we are led to introduce a lexicographic
shelling condition for balanced cell complexes of boolean type. This extends to the non-pure case work of P. Hersh
(Preprint, 2001) and specializes to the CL-shellability of A. Björner and M. Wachs (Trans. Amer. Math. Soc. 4
(1996), 1299–1327) when the cell complex is an order complex of a poset.

Keywords: quotient complex, cell complex of boolean type, lexicographic shellability, coxeter subspace
arrangement, homotopy

1. Introduction

Kozlov [17] studied the complex �(�n)/Sn , i.e. the order complex of the partition lattice
modulo the symmetric group, and showed that it is collapsible. The partition lattice occurs
in a variety of combinatorial subjects. Of interest here is that it is (isomorphic to) the
intersection lattice L(An) of the braid arrangement. This is the arrangement of reflecting
hyperplanes of a Coxeter group of type An−1 (for Coxeter group terminology, see Humphreys
[15]). In fact, Kozlov used a larger collection of subspace arrangements, including the k-
equal braid arrangementAn,k . It seems natural to consider complexes originating from other
Coxeter groups.

The aim of this paper is to determine the homotopy type of two families of quotient
complexes �(L(H))/G, namely whenH = Dn,k , the k-equal subspace arrangement of type
Dn , and when H = Bn,k,h , the k, h-equal subspace arrangement of type Bn . In particular,
the arrangements of reflecting hyperplanes of Coxeter groups of type Bn and Dn are special
cases (Bn,2,1 andDn,2 respectively). In our case, G will be the group of signed permutations,
SB

n , which has a natural action on these arrangements.
To establish our results we proceed in two steps. First, we apply discrete Morse theory to

show that there is a sequence of elementary collapses leading from our original complexes
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to certain subcomplexes. In the type D case, these subcomplexes are just simplices, and the
collapsibility result follows. This is very similar to what Kozlov did in [17]. In the type B
case, however, the remaining subcomplexes are more difficult to understand. We determine
their homotopy type by proving that they are shellable. To facilitate this, we introduce
a lexicographic shellability condition for balanced (pure or non-pure) cell complexes of
boolean type. This technique generalizes to the non-pure case a method which recently was
introduced by Hersh [14].

It should be pointed out that it is an open question whether or not the original complexes
are themselves shellable. Thus, we provide a model (in the type B case) for how one can use
discrete Morse theory in conjunction with lexicographic shellability where it is not clear
how to proceed solely by either method.

The material is organized as follows. After reviewing some necessary notation and tools
in Section 2, we introduce the aforementioned lexicographic shelling condition in Section
3. In Section 4, we define the complexes we wish to study, and they are described using
a combinatorial model in terms of trees in Section 5. This model is then used to establish
the main results in Section 6; we determine the homotopy type of �(L(Dn,k))/SB

n and
�(L(Bn,k,h))/SB

n . Following the beaten track and work of e.g. Babson and Kozlov [1], Hersh
[14] and Kozlov [17], we use these results to draw conclusions concerning representations
of SB

n .

2. Basic definitions and notation

In this section we collect basic definitions and agree on notation. For anything not explained
here, we refer to the standard textbooks by Stanley [22] (combinatorics) and Munkres [19]
(topology).

2.1. Shelling cell complexes of boolean type

A cell complex of boolean type, or boolean cell complex for short, is a regular cell complex
whose face poset is a simplicial poset, i.e. a poset, equipped with a minimal element, in which
every interval is a boolean algebra. Hence, a boolean cell complex is almost a simplicial
complex, except that several simplices may share the same vertex set. Cell complexes of
boolean type were introduced by Björner [3] and by Garsia and Stanton [13]. Boolean
cell complexes and simplicial posets have since received considerable attention e.g. from
Stanley [21], Reiner [20], Duval [11] and Hersh [14].

A cell complex is pure if all its facets, i.e. inclusion-maximal cells, are equidimensional.
Björner [3] defined shellability for pure regular cell complexes. The natural translation
to non-pure complexes was given by Björner and Wachs [8]. Specializing to boolean cell
complexes gives the following definition.

Definition 2.1 An ordering F1, . . . , Ft of the facets of a boolean cell complex � is a
shelling order of � if Fj ∩ (

⋃
α< j Fα) is pure of codimension 1 in Fj for all 2 ≤ j ≤ t . If

there exists a shelling order of �, then � is shellable.
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We think of a shelling order as a way of putting together � facet by facet. Therefore we
say that Fj attaches over Fj ∩ (

⋃
α< j Fα). If � is shellable, then it has the homotopy type of

a wedge of spheres, the spheres of dimension i being indexed by the i-dimensional facets
that attach over their entire boundary. In the pure case, this was proven by Björner [3], and
the proof can easily be modified to the non-pure case.

2.2. Discrete Morse theory

Let � be a regular cell complex. A matching on the face poset P(�) is a partition of P(�)
into three sets X , Y and Z , such that there exists a bijection φ : Y → X with the property
that y is covered by φ(y) for all y ∈ Y . The remaining set Z is called the critical set of
the matching. The matching is acyclic if there exists no sequence y1, . . . , yq ∈ Y such that
yq = y1, yi 	= yi+1 and φ(yi ) covers yi+1 for all i ∈ [q − 1].

From Forman’s work [12], the next result follows. See also Kozlov [17] for a direct
combinatorial proof. We formulate the result in terms of matchings rather than discrete
Morse functions. The connection between the two points of view is given by Chari [10].

Theorem 2.2 Suppose we have an acyclic matching on P(�) with critical set Z. If Z is a
subcomplex of �, then Z can be obtained from � by a sequence of elementary collapses.
In particular, Z and � are homotopy equivalent.

Remark We wish to emphasize the requirement of Theorem 2.2 that Z be a subcomplex
of �. This ensures that the incidences between the simplices in Z are left unchanged during
the collapsing, and this is vital for our applications.

2.3. Quotient complexes

Throughout we will assume that all posets we consider are finite. We will not make any
notational distinctions between a simplicial complex and its geometric realization. Given
a poset P equipped with a maximal element 1̂ and a minimal element 0̂, we let P̄ denote
the proper part P\{0̂, 1̂}. The order complex �(P) is the simplicial complex having the
chains of P̄ as simplices. If G is a group acting on P in an order-preserving way, we may
define �(P)/G as the boolean cell complex whose simplices are the G-orbits of simplices
of �(P). In general, �(P)/G is not a simplicial complex, since there may be more than one
simplex on the same set of vertices. Babson and Kozlov [1] give conditions under which
�(P)/G ∼= �(P/G). Earlier, Welker [23] had given specific examples of posets and groups
with this property.

3. Lexicographic shellings of balanced boolean cell complexes

A d-dimensional boolean cell complex� is balanced if there exists a coloring f : vert(�) →
[d + 1] of the vertices of � whose restrictions to all simplices are injective. An order com-
plex �(P) of a poset P is balanced (define f (v) to be the maximal cardinality of a P-chain
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with v as maximal element). Furthermore, if a group G acts on P order-preservingly, then
this balancing is inherited by �(P)/G.

In [14], Hersh gave a lexicographic shelling condition for pure balanced boolean cell
complexes. In this section we extend her work to the non-pure case.

Consider a simplex c in a balanced boolean cell complex with coloring f . Suppose that
f (vert(c)) = { f0 < · · · < fr }. To shorten notation, we let ci→ j , −1 ≤ i < j ≤ r + 1,
denote the unique simplex contained in c with colors { f0, . . . , fi , f j , . . . , fr }. We also let
ci→ := ci→r+1, ci := ci−1→i+1 and ci1→ j1,...,im→ jm := (. . . (cim→ jm ) . . .)i1→ j1 .

For a d-dimensional boolean cell complex �, let �̂ denote the complex whose facets are
{F ∪ {0̂, 1̂} | F is a facet in �}. This is the join of � and the one-dimensional simplex on
{0̂, 1̂} (see e.g. Björner [5, Section 9]). If � is balanced by f : vert(�) → [d + 1], we
extend the balancing to �̂ by defining f (0̂) = 0 and f (1̂) = d + 2.

Suppose that {F1, . . . , Ft } is the set of facets in �̂. A root simplex of �̂ is a simplex of
the form Fi→

α for some α, i ≥ 1. (In particular, all facets are root simplices.) Furthermore, a
rooted interval is determined by a simplex of the form c = Fi→ j, j→

α , i + 2 ≤ j . It consists
of all minimal root simplices that contain c.

Let R(�̂) be the set of root simplices of �̂. A chain labelling of � is a map λ : R(�̂) → �,
where � is some poset of labels.

Pick a root simplex c = Fr→
α ∈ R(�̂). Given a chain labelling λ, we define the descent

set of c to be D(c) := {i ∈ [r − 1] | λ(ci→) 	≤ λ(ci+1→)}. Consider the rooted interval
given by ci→ j, j→ for some i + 2 ≤ j < r . We say that c is falling on this interval if
D(c) ⊇ {i + 1, . . . , j − 1}. If, instead, D(c) ∩ {i + 1, . . . , j − 1} = ∅, then c is rising on
the interval.

If two distinct root simplices, b1 and b2 contain ci→ j, j→, then we compare them on
the rooted interval of ci→ j, j→ using the lexicographical order, i.e. b1 <lex b2 iff λ(bt→

1 ) <

λ(bt→
2 ), where t is the smallest index such that i < t ≤ j and λ(bt→

1 ) 	= λ(bt→
2 ). If no such

t exists, then b1 and b2 are incomparable on the interval.
Note that the the notions of rising and falling, as well as the lexicographical order, are

defined in the context of a rooted interval. When we apply them to facets of �̂ without
referring to a specific interval, we have the interval determined by {0̂, 1̂} in mind.

We now give a lexicographic shelling condition for balanced boolean cell complexes.
Although stated differently, the most significant difference being in the formulation of
Condition 4 below, implies the CL-version of [14, Definition 2.4] in the pure case.

Definition 3.1 A balanced boolean cell complex � is CL-shellable if there exists a chain
labelling of � such that the following four conditions are fulfilled:

1. Every rooted interval contains a unique simplex which is rising on the interval.
2. In every rooted interval, the rising simplex is lexicographically smaller than all other

simplices.

In 3 and 4, let F1, . . . , Ft be an ordering of the facets of �̂ which is a linear extension of
the lexicographical order.

3. Let c be a maximal simplex in Fp ∩ Fr , where p < r . Write c = Fs1→t1,...,sm→tm
r , where

si ≤ ti − 2 and ti−1 ≤ si for all i . (There is a unique way to do this.) Let j ∈ [m] be
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maximal such that Fr is rising on all rooted intervals given by Fsi →ti ,ti →
r , i < j . Then,

for some q < r and i ≤ j , we have Fsi →ti
r ⊆ Fq ∩ Fr .

4. Let c be a maximal simplex in Fq ∩ (
⋃

α<q Fα). Suppose c = Fs→t
q and that Fq is rising

on the rooted interval given by Fs→t,t→
q . Then codimFq (c) = 1.

Remark If � is the (simplicial) order complex of a poset P , then a chain labelling of �

is just a chain-edge labelling of P̂ := P ∪ {0̂, 1̂} in the sense of Björner and Wachs [7].
In this case, Conditions 3 and 4 are trivially satisfied and Definition 3.1 defines ordinary
CL-shellability (see [7, Definition 5.2]) for P̂ . Condition 3 is satisfied since if two maximal
P-chains c1 <lex c2 differ on several intervals, then one can find a chain d <lex c2 which
only differs from c2 on the first of those intervals (simply by letting the first part of d imitate
c1 and the second part c2). Condition 4 follows since no such c can exist without Condition
1 to be violated.

Theorem 3.2 If a balanced boolean cell complex � is CL-shellable, then it is shellable.

Proof: Adjusted to fit our formulation of Definition 3.1, the proof of [14, Theorem 2.1]
goes through in the non-pure case, too. We sketch it using our notation. Let the ordering
F1, . . . , Ft be as in Definition 3.1. Condition 3 of Definition 3.1 ensures that a maximal
simplex c in Fj ∩ (

⋃
α< j Fα) can be written c = Fl→m

j . If Fj is rising on the rooted interval
of Fl→m,m→

j , then codimFj (c) = 1 by Condition 4. Otherwise, by Conditions 1 and 2, there
is a facet preceding Fj which contains F p,p+1→

j but not F p+1→
j for some l < p < m. By

Condition 3, F p
j ⊂ Fi , for some i < j . Hence c = F p

j , and we are done.

The following result is reminiscent of [14, Proposition 2.1]. It will be of use to us later.

Proposition 3.3 Let G be a group acting on the poset P in an order preserving way. Then
� = �(P)/G is CL-shellable if and only if it has a chain labelling satisfying Conditions
1 and 2 of Definition 3.1 together with the following condition:
3′. Let F1, . . . , Ft be an ordering of the facets of �̂ which is a linear extension of the

lexicographical order. Let c be a simplex in Fr ∩ (
⋃

α<r Fα). Write c = Fs1→t1,...,sm→tm
r ,

where si ≤ ti −2 and ti−1 ≤ si for all i . (Again, there is a unique way to do this.) Suppose
Fr is rising on all rooted intervals given by Fsi →ti ,ti →

r . Then c ⊆ b ⊆ Fr ∩ (
⋃

α<r Fα)
for some simplex b with codimFr (b) = 1.

Proof: The only if direction follows immediately from Theorem 3.2 and the definition of
shellability.

Now suppose that we have a chain labelling of � satisfying Conditions 1, 2 and 3′. Then
Condition 4 is immediate. Let c and Fr be as in Condition 3. If Fr is rising on all rooted
intervals given by Fsi →ti ,ti →

r , then Condition 3 follows since c is contained in a codimension
1 simplex in Fr ∩ (

⋃
α<r Fα). Otherwise, Condition 3 follows via an argument similar to

Hersh’s proof of [14, Proposition 2.1].

As with simplicial complexes, if a boolean cell complex � is shellable, then it is homotopy
equivalent to a wedge of spheres. Just as in lexicographic shellings of posets, the falling
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facets correspond to simplices attached over their entire boundaries. However, unlike the
ordinary case, there may exist other simplices that attach over their entire boundaries.
Consider, e.g., two facets, F and G, on the same vertex set. Even if, say, 1 /∈ D(F)∪ D(G),
we may still have F1 = G1. Hence, the last attached of F and G will be attached over the
boundary simplex F1 = G1 even though 1 is not a descent. For an example, see the proof
of Theorem 6.5 and the illustration in figure 2. This motivates the following definition:

Definition 3.4 Let F1, . . . , Ft be an ordering of the facets of � which is a linear extension
of the lexicographical order. We say that Fj has a topological descent at i if Fi

j ⊂ ⋃
α< j Fα .

Otherwise, i is a topological ascent.

The concepts topologically falling and topologically rising facets are defined in the
obvious way. Our definitions are tailor-made for the following proposition to hold:

Proposition 3.5 If a balanced boolean cell complex � is CL-shellable, then it is homotopy
equivalent to a wedge of spheres. For all i, its (reduced) Betti numbers satisfy

β̃i (�) = #topologically falling facets on i + 1 vertices.

Remark If “rising” is replaced by “topologically rising” in Definition 3.1 and Theorem 3.2
(and Proposition 3.3), one obtains a more general shellability called CC-shellability. In the
pure case, this was done by Hersh [14], and the reason for the name is that it is modelled after
the CC-shellability for posets that was introduced by Kozlov [16]. Apart from being more
general, it has the advantage of making Proposition 3.5 less artificial. For our applications,
though, CL-shellability is sufficient.

4. The objects of study

Throughout the rest of the paper we will frequently encounter the triple (n, k, h). Whenever
these integers appear, it will be assumed that 1 ≤ h ≤ k ≤ n and that k ≥ 2 if nothing else
is explicitly stated.

Definition 4.1 The k-equal subspace arrangement of type Dn, Dn,k, is the collection of
all linear subspaces of the form

{
(x1, . . . , xn) ∈ R

n
∣∣ τ1xi1 = · · · = τk xik

}

for 1 ≤ i1 < · · · < ik ≤ n and τi ∈ {−1, 1} for all i .

Definition 4.2 For h < k, we define Bn,k,h, the k, h-equal subspace arrangement of type
Bn, to be the union of Dn,k and the collection of linear subspaces of the form

{
(x1, . . . , xn) ∈ R

n
∣∣ xi1 = · · · = xih = 0

}

for 1 ≤ i1 < · · · < ih ≤ n.



QUOTIENT COMPLEXES AND LEXICOGRAPHIC SHELLABILITY 89

These arrangements were introduced by Björner and Sagan [6]. The special cases Bn =
Bn,2,1 and Dn =Dn,2 are the ordinary hyperplane arrangements of types Bn and Dn respec-
tively.

Zaslavsky’s work [24] provides a nice description of the intersection lattices L(Bn,k,h)
and L(Dn,k) in terms of lattices of signed graphs. We will, however, only briefly consider
the structure of these lattices, so we settle for a more naive description of L(Bn,k,h) and
L(Dn,k). For more on subspace arrangements and intersection lattices we refer to Björner
[4].

Definition 4.3 Let �n,k,h be the lattice of set partitions of the set {−1, 1,−2, 2, . . . ,−n, n}
such that the following conditions hold:

1. The partitions are sign-symmetric, i.e. if all plus and minus signs are interchanged, then
the partition is unchanged.

2. There is at most one self-symmetric block, i.e. block containing both −a and a for some
a ∈ [n].

3. The non-singleton non-self-symmetric blocks have size at least k.
4. The self-symmetric block has size at least 2h, if it exists.

With the obvious interpretation τs xs = τt xt iff τss and τt t are in the same block (in
particular, xs = 0 iff ±s belong to the self-symmetric block), we see that �n,k,h , h < k, is
isomorphic to L(Bn,k,h) and that �n,k,k is isomorphic to L(Dn,k).

Note that “most” of the lattices �n,k,h are not graded. It is straightforward to check that
when k > 2, �n,k,h is graded if and only if n < k + h and k ∈ {h, h + 1}. In the hyperplane
case k = 2, �n,k,h is always graded.

To shorten notation, we introduce �n,k,h := �(�n,k,h)/SB
n . These are the objects we

will study. Here, SB
n is the group of signed permutations, which acts in a natural way on

�n,k,h . It is a Coxeter group of type Bn . For our purposes, it suffices to view SB
n as the group

of permutations π of the set {−1, 1, −2, 2, . . . ,−n, n} such that π (a) = −π (−a) for all
a ∈ [n].

A more thorough analysis of the simplex structure of �n,k,h takes place in Section 5. Here
we will only describe the vertices, vert(�n,k,h), of �n,k,h . Given two partitions π, τ ∈ �n,k,h ,
it is clear that there exists a g ∈ SB

n such that gτ = π if and only if there is a bijection
between the blocks of τ and the blocks of π which respects block size and commutes with
the operation of interchanging all plus and minus signs.

To avoid confusion, the elements of an integer partition will be denoted parts, as opposed
to the blocks of a set partition. Let Nn denote the set of integer partitions of n in which we
allow at most one part, the null part, to be distinguished. Define the nullity, null(λ), of λ to
be the size of the null part of λ, or zero, if λ has no null part. Order Nn by the rule: λ ≤ κ

if λ refines κ as an integer partition and null(λ) ≤ null(κ).

Definition 4.4 We let Nn,k,h denote the subposet of Nn induced by the elements λ with
null(λ) 	∈ [h − 1] in which all non-null parts are either singletons or have size at least k.
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Consider the map type : vert(�n,k,h) → Nn,k,h defined as follows. Pick v ∈ vert(�n,k,h)
and τv ∈ �n,k,h such that orb(τv) = v, where orb( ) denotes SB

n -orbit. A size 2s self-
symmetric block in τv gives rise to a size s null part in type(v). The other blocks in τv occur
in sign-reflected pairs. Each such pair of blocks of size s gives rise to a size s (non-null) part
in type(v). For example, with (n, k, h) = (4, 2, 1), we have type(orb({{−1, 1}, {−2, 3}, {4},
{2, −3}, {−4}})) = {1̄, 2, 1}, where the bar indicates null part. Obviously, in the light of the
discussion above, type is well-defined and bijective. Hereafter, we will consider the vertices
of �n,k,h to be elements of Nn,k,h .

5. Describing ∆n,k,h using trees

In this section we give a description of the simplices of �n,k,h in terms of a certain kind
of trees. With modifications, we follow Kozlov’s [18, Section 4] description of some
complexes related to the order complex of the partition lattice modulo the symmetric
group.

5.1. The trees

In the following, we will suppose that all trees are finite. Given a tree T , let V (T ) denote
the vertex set of T . For a rooted tree T , let li (T ) be the number of vertices at distance i from
the root. A rooted tree T is called a graded tree of rank r if the distance from an arbitrary
leaf to the root is r + 1 and 1 = l0(T ) < l1(T ) < · · · < lr+1(T ). In such a tree, the depth
of a vertex v is the distance from the root to v.

Let 〈n̄〉 denote the set {0̄, 1̄, . . . , n̄}. Define ī + j := i + j for integers i and j , and
extend the definition by associativity and commutativity. (Sums of the type ī + j̄ are not
defined.)

Definition 5.1 An (n, k, h)-tree of rank r is a pair (T, η), where T is a graded tree of rank
r and η : V (T ) → {0̄, h̄, h + 1, . . . , n̄} ∪ {1, k, k + 1, . . . , n} is a labelling of the vertices
of T such that

1. η(ρ) = n̄, where ρ is the root of T .
2. For all non-leaf vertices v ∈ V (T ), we have η(v) = ∑

η(w) (sum over all children w

of v).
3. On every depth, there is at least one non-trivial vertex v, i.e. η(v) 	∈ {0̄, 1}.

We often abuse notation and write T for (T, η).

Remark In particular, the second condition implies that if η(v) ∈ 〈n̄〉 for a non-leaf v,
then η(w) ∈ 〈n̄〉 for exactly one child w of v (figure 1).

Let T r
n,k,h denote the set of (n, k, h)-trees of rank r (we will not distinguish between

isomorphic trees), and let Tn,k,h be the set of all (n, k, h)-trees so that, in particular, Tn,k,h =⋃
r T r

n,k,h .
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Figure 1. All maximal (5, 3, 2)-trees. The upper ones are of rank 2 and the lower of rank 1.

5.2. The deletion operator

For an integer i , 0 < i ≤ r + 1, we define the deletion operator δi : T r
n,k,h → T r−1

n,k,h

by δi ((T, η)) := (T i , ηi ), where T i is the tree obtained from T by deleting all vertices
of depth i and letting the grandchildren of the depth i − 1 vertices be their new children.
The labelling ηi is the restriction of η to V (T i ). For convenience, we introduce δi→ j :=
δi+1 ◦ δi+2 ◦ · · · ◦ δ j−1 for i < j+1. We will also use the notation δi→ := δi+1 ◦ δi+2 ◦ · · · ◦
δr+1.

5.3. A description of �n,k,h

Recall from Section 4 the description of the vertices of �n,k,h in terms of the elements of
Nn,k,h . Note that each level, i.e. set of vertices of some fixed depth, of T ∈ Tn,k,h can be
viewed as an element λ ∈ Nn,k,h . The (labelled) vertices of T correspond to parts in λ.
A vertex v such that η(v) ∈ 〈n̄〉 corresponds to a null part. (We interpret η(v) = 0̄ as the
non-existence of a null part.)

Let �r
n,k,h be the set of r -dimensional simplices in �n,k,h . We describe a mapping ψ :

�r
n,k,h → T r

n,k,h as follows:
Take a simplex c ∈ �r

n,k,h and let the chain π = {πr+1 < πr . . . < π1} ⊆ �n,k,h be a
representative of c. We construct ψ(c) level by level. The (labelled) vertices at depth i of
ψ(c) are the parts in orb(πi ) ∈ Nn,k,h . We put an edge between two vertices a and b, of
depths i and i + 1 respectively, if the block of πi corresponding to a is refined in π by the
block of πi+1 corresponding to b. Finally, we add the root n̄ and put edges from it to all
vertices of depth 1. It follows immediately from the construction that ψ is well-defined, i.e.
ψ(c) does not depend on the choice of representative of c.

The following result is analogous to [18, Theorem 4.4], and the same straightforward
proof applies with obvious modifications. It allows us to use Tn,k,h as a model of �n,k,h .

Proposition 5.2 The mapping ψ : �r
n,k,h → T r

n,k,h is bijective. Furthermore, under ψ,

inclusion in �n,k,h corresponds to deletion in Tn,k,h. In other words, for two simplices
c1, c2 ∈ �n,k,h we have c1 ⊆ c2 iff ψ(c1) = δi1 ◦ · · · ◦ δit (ψ(c2)) for some i1, . . . , it .
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6. The homotopy type of ∆n,k,h

In the following we will need two projection maps µ, ν : Nn,k,h → Nn,k,h .

Definition 6.1 Let λ ∈ Nn,k,h be given. Recall that null(λ) is the size of the null part of λ.

1. Define µ(λ) to be the maximal element µ ≤ λ such that null(µ) = 0 and all non-singleton
parts of µ have size k.

2. Define ν(λ) to be the maximal element ν ≤ λ such that null(ν) = null(λ) and all
non-singleton non-null parts of ν have size k.

3. We say that λ is µ-like (ν-like) if λ is fixed by µ (ν).

For example, with n = 7 and k = 2, µ({3̄, 3, 1}) = {2, 2, 1, 1, 1}, which is a µ-like
partition, and ν({3̄, 3, 1}) = {3̄, 2, 1, 1}, which is ν-like.

Note that λ ∈ Nn,k,h is µ-like iff null(λ) = 0 and all non-singleton parts of λ have size
k. Similarly, λ is ν-like iff all non-singleton non-null parts of λ have size k.

6.1. The Dn,k case

Theorem 6.2 The complex �n,k,k is collapsible.

Proof: The idea is the same as in Kozlov’s proof of [17, Theorem 4.1]. We will give an
acyclic matching on the face poset P(�n,k,k). In view of Proposition 5.2, we will consider
the elements of P(�n,k,k) to be (n, k, k)-trees. Recall from Section 5.3 that the levels of a
tree T ∈ P(�n,k,k) are viewed as elements of Nn,k,k . Let λi (T ) ∈ Nn,k,k denote the element
obtained from depth i in T .

P(�n,k,k) is partitioned into the sets X , Y and Z in the following way. Pick a tree
T ∈ P(�n,k,k). If λi (T ) is µ-like for all i , then T belongs to Z . Otherwise, let i be the
largest index such that λi (T ) is not µ-like. If µ(λi (T )) = λi+1(T ), then T belongs to X . If,
on the other hand, µ(λi (T )) 	= λi+1(T ), then T belongs to Y .

Let T ∈ Y be given, and let i be the largest index such that λi (T ) is not µ-like. It
is easily seen that there is a unique way (up to tree-isomorphisms) to insert a new level
corresponding to µ(λi (T )) directly beneath level i in T . The tree T̃ thus obtained covers
T (since δi+1(T̃ ) = T ) and belongs to X . Conversely, given T̃ ∈ X , we construct T ∈ Y
uniquely by deleting the level below the deepest not µ-like level in T̃ . Hence we have a
bijectioñ :Y → X such that T̃ covers T .

It remains to show that our matching is acyclic. To this end, suppose T1, T2 ∈ Y , T1 	= T2

and that T̃1 covers T2. Since T2 	= T1, T2 must be obtained from T̃1 by deleting some other
level than the one below the deepest not µ-like level. This other level must in fact be the
deepest not µ-like level; otherwise we would have T2 ∈ X . Hence the number of µ-like
levels in T2 is one larger than in T1. Repeating this argument shows the non-existence of a
sequence T1, . . . , Tt ∈ Y such that T1 = Tt , Ti 	= Ti+1 and T̃i covers Ti+1 for i ∈ [t − 1].
Hence the matching is acyclic.

Since the property that all levels are µ-like is preserved under deletion of levels, Z is a
subcomplex of �n,k,k . Theorem 2.2 shows that there is a sequence of elementary collapses
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transforming �n,k,k to Z . This subcomplex consists of the (n, k, k)-trees in which every
level is µ-like. There is obviously exactly one maximal such tree. Hence, the subcomplex
given by Z is a simplicial complex generated by one simplex and thus collapsible.

6.2. The Bn,k,h case

When h < k, the proof of Theorem 6.2 fails. The reason is that for h ≤ i < k, we have
µ({ī, 1, 1, . . . , 1}) = {1, 1, . . . , 1} which is not in the proper part of Nn,k,h . To overcome
this, we will use ν instead of µ. As before, we will use simplices of �n,k,h and their tree
representations interchangeably.

Definition 6.3 Let Un,k,h be the subcomplex of �n,k,h consisting of the (n, k, h)-trees in
which every level is ν-like.

Lemma 6.4 The complexes �n,k,h and Un,k,h are homotopy equivalent.

Proof: Except for the last two sentences, the proof of Theorem 6.2 goes through with
obvious modifications if we replace µ with ν.

Theorem 6.5 Let h < k. If n ≡ 0 (mod k), then �n,k,h is homotopy equivalent to a sphere
of dimension 2n

k − 2. If n ≡ h (mod k), then �n,k,h is homotopy equivalent to a sphere of
dimension 2 n−h

k − 1. Otherwise, �n,k,h is contractible.

Proof: In the light of Lemma 6.4, we restrict our attention to Un,k,h . We let P be the
set of ν-like elements in Nn,k,h and we choose to order them in reverse fashion to Nn,k,h .
That is, κ ≤P λ if λ refines κ as number partitions and null(λ) ≤ null(κ). The map
f : vert(Un,k,h) → [dim(Un,k,h) + 1], where f (v) is the maximal cardinality of a P-chain
with v as largest element clearly balances Un,k,h . We identify 0̂ = {n̄} and 1̂ = {1, 1, . . . , 1}
in Û n,k,h .

We give a chain-labelling of Un,k,h which induces a CL-shelling. Our poset of labels is
� = {A < B < C1 < · · · < Cn−1 < D}. The label of a root simplex c of Û n,k,h is
determined by the refinement taking place between level r = rank(Tc) and the leaves of its
corresponding tree Tc = ψ(c\{0̂}). (If c contains 1̂, and hence is a facet, we let Tc be the
tree ψ(c\{0̂, 1̂}) to which we have attached a leaf-level corresponding to 1̂ in the obvious
way.) Let x = λr (Tc) and y = λr+1(Tc) (notation as in the proof of Theorem 6.2). Define
the labelling ω : R(Û n,k,h) → � by:

◦ ω(c) = A, if null(x) = null(y) + 1, i.e. if y is obtained from x by cutting a singleton off
the null part.

◦ ω(c) = B, if h > 1, null(x) = h and null(y) = 0, i.e. if the null part in x is of size h and
is split into singletons in y.

◦ ω(c) = Ci , if a non-null k-part in x is split into singletons in y and the k-part first appeared
at depth i in Tc. By this we mean that the k-part was cut off the null part in the refinement
process between depth i − 1 and depth i in Tc.
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◦ ω(c) = D, if null(x) = null(y) + k, i.e. if y is obtained from x by cutting a k-part off the
null part.

Remark If h = 1, then label B is never used. However, A plays its role in this case.

The simplices determining root intervals in Û n,k,h correspond to trees which are sat-
urated except between some level r and the leaves. It is not hard to see, that in every
rooted interval there is a unique rising simplex and that this simplex is lexicographi-
cally least on the interval. Hence, the first and second conditions of Definition 3.1 are
fulfilled.

In the following, we will not make distinctions between simplices and their corresponding
trees. Let F1, . . . , Ft be the lexicographical ordering of the facets of Û n,k,h . To verify
Condition 3′ of Proposition 3.3, pick c in Fj ∩(

⋃
α< j Fα). Write c = δa1→b1 ◦· · ·◦δam→bm (Fj )

for some appropriate ax , bx with ax + 2 ≤ bx and bx−1 ≤ ax . Choose Fi , i < j , such that
c = δa′

1→b′
1 ◦ · · · ◦ δa′

m→b′
m (Fi ) for some a′

x , b′
x such that a′

x + 2 ≤ b′
x and b′

x−1 ≤ a′
x . (Since

Û n,k,h possibly is nonpure, we do not a priori have ax = a′
x and bx = b′

x .) Suppose that
Fj is rising on every rooted interval given by δax →bx ◦ δbx →(Fj ). We must show that c is
contained in some simplex b ⊆ Fj ∩ (

⋃
α< j Fα) with codimFj (b) = 1.

Let a be minimal such that ω(δa→(Fj )) 	= ω(δa→(Fi )). We cannot have ax < a < bx

for any x , because this would imply δax →(Fj ) = δax →(Fi ) and δbx →(Fj ) 	= δb′
x →(Fi ),

which is impossible since i < j and Fj is rising on the rooted interval of δax →bx ◦
δbx →(Fj ) = δax →b′

x ◦ δb′
x →(Fi ). Thus, the refinement process which determines ω(δa→(Fj ))

occurs within c ⊆ Fi ∩ Fj . By the definition of ω, this implies ω(δa→(Fj )) = Cx j and
ω(δa→(Fi )) = Cxi for some xi < x j . Moreover, we know that ax < xi < x j < bx for some
x and that ω(δxi →(Fj )) = ω(δxi +1→(Fj )) = · · · = ω(δx j →(Fj )) = D; otherwise Cxi and
Cx j would correspond to different refinement processes within c. The label Cx j precedes
Cxi in the sequence of labels of Fj , so there is some xs such that xi ≤ xs < xs + 1 ≤ x j

and Cxs+1 precedes Cxs in this sequence. Now create the facet Fs which has every ω-
label in common with Fj except that Cxs and Cxs+1 are interchanged. Then s < j and
δxs (Fs) = δxs (Fj ) ⊇ c. Thus c is contained in a simplex of codimension 1. Hence Un,k,h is
CL-shellable.

In order to determine the homotopy type of Un,k,h , we will identify the topologically
falling facets in the described shelling. The homotopy type is then given by Proposition 3.5.
To this end, consider a facet F and its boundary simplex δi (F). Let ωi and ωi+1 denote
the labels of the root simplices δi→(F) and δi+1→(F) respectively. If i is a descent, i.e.
ωi > ωi+1 (since � is a total ordering), then it is also a topological descent. Now suppose
ωi ≤ ωi+1. If ωi 	= D, then no facet preceding F contains δi (F). This is because all labels
below depth i depend only on refinement processes within δi (F) in this case. The only case
left to check is thus ωi = ωi+1 = D. As above, it is seen that δi (F) is contained in some
facet preceding F if and only if the label Ci+1 precedes the label Ci , or, in other words, if
the (unique) root simplex contained in F with label Ci+1 is contained in the one labelled
Ci . Hence, the only possible facets attaching over δi (F) for all i must be labelled either
DD . . . DCt Ct−1 . . . C1 or DD . . . DCt Ct−1 . . . C1 B (B is replaced by A if h = 1), where
t is equal to the number of D:s in the sequence. For an example, see figure 2. Clearly, such a
facet exists (and is unique) if and only if n ≡ 0 (mod k) (the first kind) or n ≡ h (mod k)
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Figure 2. A subcomplex of U4,2,1 containing three of the ten facets (bottom) and the corresponding facets of
Û 4,2,1 seen as trees (top). The labelling ω on the successive rooted subsimplices is indicated. Note that the third
facet attaches over its entire boundary (hence is topologically falling) even though it is not falling.

(the second kind). When it exists, it contains 2n
k − 1 vertices in the former case and 2 n−h

k
vertices in the latter. Hence the theorem.

Remark The hypothesis h < k is necessary (hence Theorem 6.5 does not contradict
Theorem 6.2). To see this, note that to get rid of a null part in the h = k case, one must at
some place let a D-label precede a Cx -label, thereby violating Condition 1 of Definition 3.1.

We now state some immediate consequences of Theorems 6.2 and 6.5 concerning SB
n -

representations. The key is the following well-known fact, which follows, e.g., from Bredon
[9, Theorem 2.4, p. 120].

Lemma 6.6 Let K be a field. If � is a finite simplicial complex acted upon by a finite
group G, where char(K ) does not divide |G|, then the multiplicity of the trivial character
of the induced representation of G on H̃ i (�, K ) equals β̃ i (�/G, K ).

Corollary 6.7 Let K be a field with char (K ) 	∈ [n]. Then
1. The trivial character of the induced representation of SB

n on the vector space
H̃ i (�(�n,k,k)), K ) has multiplicity zero for all i .

2. Let h < k. The trivial character of the induced representation of SB
n on the vector space

H̃ i (�(�n,k,h), K ) has multiplicity one if n ≡ 0 (mod k) and i = 2n
k − 2 or if n ≡ h

(mod k) and i = 2 n−h
k − 1. Otherwise it has multiplicity zero.

Proof: Note that |SB
n | = 2nn!. The corollary now follows from Theorem 6.2, Theorem

6.5 and Lemma 6.6.
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