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Abstract. Kasteleyn counted the number of domino tilings of a rectangle by considering a mutation of the
adjacency matrix: a Kasteleyn matrix K. In this paper we present a generalization of Kasteleyn matrices and a
combinatorial interpretation for the coefficients of the characteristic polynomial of KK∗ (which we call the singular
polynomial), where K is a generalized Kasteleyn matrix for a planar bipartite graph. We also present a q-version
of these ideas and a few results concerning tilings of special regions such as rectangles.
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Introduction

Kasteleyn [2] counted the number of domino tilings of a rectangle by considering a mu-
tation of the adjacency matrix, since then known as a Kasteleyn matrix [3,5]. Given a
planar bipartite graph G there are several Kasteleyn matrices K for G but, as has been
shown independently by David Wilson and Horst Sachs, the singular values of K or,
equivalently, the eigenvalues of KK∗, are independent of the choice of K . Following a
question posed by James Propp [4], we search for a combinatorial interpretation for these
numbers.

In Section 1 we introduce generalized Kasteleyn matrices for planar bipartite graphs and
present a combinatorial interpretation for the determinant of such matrices A in terms of
counting matchings. In Section 2 we address the main issue of understanding what the
coefficients of the characteristic polynomial of AA∗ represent, and then, in Section 3, we
consider the special case of Kasteleyn matrices. In Section 4 we present the q-analogs of
these ideas. In Section 5 we take a look at rectangles in the plane and present a few other
small examples. We find the language of homology theory helpful and use it throughout the
paper. We thank James Propp, Richard Kenyon and Horst Sachs for helpful conversations
and emails.

1. Generalized Kasteleyn matrices and their determinants

Let G be a planar bipartite graph with n white vertices and n′ black vertices. We number
the white (black) vertices 1, 2, . . . , n (1, 2, . . . , n′). A generalized Kasteleyn matrix for G
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is an n × n′ complex matrix A such that

|ai j | =
{

1, if the i-th white vertex and the j-th black vertex are adjacent,

0 otherwise.

Such matrices are conveniently represented by labeling the edges ofG with complex numbers
of norm 1.

We may identify a generalized Kasteleyn matrix A with a cocomplex A ∈ C1(G, S
1) by

making the convention that ai j indicates the value of A(ei j ), ei j being the oriented edge
going from the j-th black to the i-th white vertex. A notational confusion must be avoided
here: the complex numbers of norm 1 form a multiplicative group but the coefficients for
homology or cohomology should be additive groups. Thus, from now on, the symbol S

1

shall denote the additive group R/Z and we denote the exponential x �→ exp(2π i x) by
η : S

1 → C. In particular, we write ai j = η(A(ei j )). Since C2(G, S
1) = 0, any cocom-

plex A is automatically closed and a generalized Kasteleyn matrix A defines an element
a ∈ H 1(G, S

1).
There is a natural inclusion Z/(2) ⊆ S

1; this defines η : Z/(2) → C with η(m) =
(−1)m . We also obtain induced inclusions C1(G, Z/(2)) ⊆ C1(G, S

1) and H 1(G, Z/(2)) ⊆
H 1(G, S

1). For a generalized Kasteleyn matrix A, A ∈ C1(G, Z/(2)) if and only if A is a
real matrix.

Lemma 1.1 There is a unique element k ∈ H 1(G, Z/(2)) such that for any cycle C,

k(C) ≡ m + l + 1 (mod 2) (1)

where m is the number of vertices in the interior of C and 2l is the length of C.

In the statement above, the word ‘cycle’ is used in the sense of graph theory: C is a simple
closed curve in the plane composed of edges and vertices of G and the interior of C is well
defined by Jordan’s theorem. Of course, graph theory cycles define homology cycles (i.e.,
closed elements of C1(G, Z)) but the converse is not always true; any homology cycle may
nevertheless be written as a linear combination of graph theory cycles.

Proof: Uniqueness is obvious since the above equation gives the value of k computed
against any cycle and thus, by linearity, against any element of H1(G, Z) (recall that
H 1(G, Z/(2)) = Hom(H1(G, Z), Z/(2))).

In order to construct k, we first notice that H 1(G, Z/(2)) = (Z/(2))h , where h is the num-
ber of holes (bounded connected components of the complement) ofG: in this identification,
the coordinates of a corresponding to a given hole is a(C), C being the outer boundary of
the said hole. It is then clear that there exists a unique element of H 1(G, Z/(2)), which we
call k, satisfying Eq. (1) for all such C .

Figure 1 illustrates a minor complication which has to be kept in mind: the boundary of
a hole is not always a cycle in the sense of graph theory. There should be no confusion,
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Figure 1. Examples of Kasteleyn classes.

however: in (a) we have l = 2, m = 1 for the only hole and in (b) we have l = 2, m = 0
and l = 2, m = 4 for the smaller and bigger hole, respectively.

Let C be an arbitrary cycle: we prove that Eq. (1) holds for C . The interior of C minus
G is a union of holes. If we discard the holes which are completely surrounded by other
holes in C and consider the outer boundaries C1, . . . , Ck of the remaining ones, we have
k(C) = ∑

i k(Ci ). Since Eq. (1) holds for each Ci we have

k(C) ≡ k +
∑

i

li +
∑

i

mi (mod 2),

where li and mi correspond to Ci . Notice that L = l + ∑
i li , L denoting the number of

edges of some Ci on C or in the interior of C , and M = 2l + m − ∑
i mi , M denoting the

number of vertices of some Ci on C or in the interior of C . Finally, by Euler characteristic,
k − L + M = 1 and we have Eq. (1) for C , proving our lemma.

We call k ∈ H 1(G, Z/(2)) as defined in the previous lemma the Kasteleyn class; when
the graph G is not clear from the context, we write kG . The definition of k involves m and
thus appears to depend on the way G is drawn in the plane. Indeed, examples (a) and (c)
in figure 1 represent equivalent graphs, but the Kasteleyn classes are different; solid lines
stand for a label 1 and dashed lines stand for a label −1. A Kasteleyn matrix is a generalized
Kasteleyn matrix corresponding to the Kasteleyn class.

We restrict ourselves for the rest of this section to the case n = n′ in order to explore
the relationship between matchings and the determinant of square generalized Kasteleyn
matrices A.

It is natural to interpret a matching of G as the sum of its edges oriented from black to
white and thus as an element of C1(G, Z). The boundary of any matching always equals
the sum of all white vertices minus the sum of all black vertices; thus, the difference of
two matchings of G is closed and may be identified with an element of H1(G, Z). Notice
furthermore that the difference of two matchings may be written in a unique way as a sum
of disjoint graph theory cycles.

For a ∈ H 1(G, S
1) and two matchings µ1 and µ2, η(a(µ2 − µ1)) is a complex number

of absolute value 1. In particular, if a ∈ H 1(G, Z/(2)) then η(a(µ2 − µ1)) is 1 or −1. We
then say that µ1 and µ2 have the same a-parity if η(a(µ2 − µ1)) = 1; a-parity splits the set
of matchings into two equivalence classes (occasionally one of these classes may turn out
to be empty).
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Lemma 1.2 For any planar graph G, for any a ∈ H 1(G, S
1) and for any given matching

µ0 we have

∑
µ1,µ2

η(a(µ2 − µ1)) =
∣∣∣∣∣
∑

µ

η(a(µ − µ0))

∣∣∣∣∣
2

,

where µ1, µ2 and µ range over all matchings.

Proof: We may write the right hand side as

( ∑
µ2

η(a(µ2 − µ0))

)( ∑
µ1

η(a(µ1 − µ0))

)

=
( ∑

µ2

η(a(µ2 − µ0))

)( ∑
µ1

η(a(µ0 − µ1))

)

and distribute to get the left hand side.

Define

δ(a,G) =
∑
µ1,µ2

η(a(µ1 − µ2)),

where µ1 and µ2 range over all matchings; if G admits no matchings we define δ(a,G) = 0.
As an example, δ(0,G) is the square of the number of matchings of G. Also, for a ∈
H 1(G, Z/(2)), δ(a,G) is the square of the difference between the number of matchings in
each a-parity equivalence class.

A matching may also be though of as a bijection from the set of white vertices to the set
of black vertices. Thus, if µ1 and µ2 are matchings then µ−1

1 ◦ µ2 is a permutation of the
set of white vertices: we say that these two matchings have the same permutation parity if
and only if the this permutation is even.

Lemma 1.3 Two matchings have the same permutation parity if and only if they have the
same k-parity, k being the Kasteleyn class.

Proof: Let µ1 and µ2 be two matchings and write µ1 − µ2 as a sum of disjoint cycles
C1, . . . , CN of lengths 2l1, . . . , 2lN . The interior and exterior of any of these cycles is
matchable, thus m1, . . . , m N as in Lemma 1.1 are all even. From Eq. (1), k(Ci ) ≡ li + 1
(mod 2) and thus k(µ0 − µ1) ≡ ∑

(li + 1) (mod 2).
The permutation µ−1

0 ◦ µ1 can be written as a product of N cycles (in the permutation
sense) corresponding to C1, . . . , CN with lengths l1, . . . , lN and the parity of the permuta-
tion µ−1

1 ◦ µ2 is thus
∑

(li + 1). This proves our claim.
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Notice that permutation parity, unlike the Kasteleyn class, does not depend on how G is
drawn in the plane. A corollary of the previous lemma is thus that if differences of matchings
generate H1(G, Z) then the Kasteleyn class of G is the same for all planar embeddings.

Lemma 1.4 For any generalized Kasteleyn matrix A we have |det(A)|2 = δ(a + k,G).

Proof: Each non-zero monomial in the expansion of det(A) corresponds to a matching.
Thus, each matching µ contributes with a complex number of absolute value 1 to det(A).
The expression η(a(µ−µ0)) obtains, up to a fixed multiplicative constant of absolute value
1, the product of the corresponding elements of A. From Lemma 1.2, k-parity is permutation
parity, i.e., gives the sign of the monomial in the definition of the determinant. Thus, the
contribution of µ to det(A) is, again up to a fixed multiplicative constant of absolute value
1, η((a + k)(µ − µ0)), proving our lemma.

As a special case, if K is a Kasteleyn matrix, |det(K )| is the number of matchings of G:
this is Kasteleyn’s original motivation.

2. Singular polynomials of generalized Kasteleyn matrices

Having provided an interpretation for |det(A)| when A is square, it is natural to ask about
other functions of A, specially if A is not square. We should not expect natural interpretations
for the argument of det(A) since it depends on the way we assign labels to vertices. Also,
a few simple experiments will show that the spectrum of A (even if A is square) is not a
function of a. The following lemma tells us what functions of A are determined by a.

Lemma 2.1 Let A be a generalized Kasteleyn matrix for G and let a be the corresponding
element of H 1(G, S

1). Then the generalized Kasteleyn matrices for G also corresponding
to a are precisely the matrices of the form D1 AD2 where D1 and D2 are unitary diagonal
matrices. Furthermore, if G is connected, D1 AD2 = D′

1 AD′
2 if and only if there exists a

complex number z of absolute value 1 with D1 = zD′
1, D2 = z−1 D′

2.

It is possible to give a more elementary proof, but following the spirit of the rest of this
paper we phrase the proof in homological language.

Proof: As we saw in Section 1, generalized Kasteleyn matrices correspond to 1-
cocomplexes in C1(G, S

1); two such 1-cocomplexes A and A′ induce the same element of
H 1(G, S

1) if and only if their difference is the coboundary of a 0-cocomplex. A 0-cocomplex
D is a function assigning an element of S

1 to each vertex; the η’s of these elements may
conveniently be arranged in a pair of unitary diagonal matrices, Dw for the white and Db for
the black vertices. It is a simple translating process to verify that the cocomplex A + d(D)
corresponds to the generalized Kasteleyn matrix DwAD−1

b , thus proving our first claim. The
uniqueness of D1 and D2 up to a constant multiplicative factor corresponds to the fact that
the only closed 0-cocomplexes are the constants, i.e., that H 0(G, S

1) = S
1 if G is connected.
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We recall that for any complex n × n′ matrix B, there are unitary matrices U1 and U2

such that S = U1 BU2 is a real diagonal matrix with non-increasing non-negative diagonal
entries; S is well-defined given B and its diagonal entries (i.e., the sii entries of S, even
if S is not square) are called the singular values of B. The rows of U1 (resp., columns of
U2) are called the left (resp., right) singular vectors of B. It is easy to see that the singular
values and left (resp. right) singular vectors of B are the non-negative square roots of the
eigenvalues and the eignevectors of BB∗ (resp., B∗ B). Inspired in these classical notions,
we call the characteristic polynomial of BB∗ the singular polynomial of B: its roots are the
squares of the singular values of B. Also, the singular polynomials of B and U1BU2 are
equal and the singular polynomials of B and B∗ differ by a factor of tn−n′

.
It follows from Lemma 2.1 and the remarks in the previous paragraph that the singular

polynomial of A is determined by a: we call it Pa. The singular values of A and, if the
singular values are simple, the absolute values of the coordinates of the singular vectors (up
to a constant factor) are also determined by a. We shall now present what we find to be a
reasonably natural interpretation for the coefficients of Pa. While these numbers determine
the singular values the question remains whether a nice interpretation exists for the actual
singular values and vectors.

LetH ⊆ G be a balanced subgraph ofG: the inclusion induces a map πG,H : H 1(G, S
1) →

H 1(H, S
1). More concretely, if a corresponds to a generalized Kasteleyn matrix A then

πG,H(a) corresponds to the submatrix of A obtained by picking only the elements for which
both row and column correspond to elements of H. The simplest interpretation is probably
in terms of labels for edges: just keep the old labels. When this causes no confusion, we
write a instead of πG,H(a): for instance, we write δ(a,H) instead of the more correct but
cumbersome δ(πG,H(a),H).

Theorem 2.2 Let A be a generalized Kasteleyn matrix and let Pa(t) = tn +a1tn−1 +· · ·+
an−1t + an be the singular polynomial of A. Then

am = (−1)m
∑

|H|=2m

δ(a + kH,H) (2)

where H ranges over all balanced subgraphs with 2m vertices.

Notice that for m = n Eq. (2) is equivalent to Lemma 1.4. For m = 1, we get the simple
remark that |a1| is the number of edges of G, regardless of a. An interpretation for a2 is
already subtler: each subgraph with two white and two black vertices contributes with a
real number between 0 and 4. Subgraphs which are not matchable of course contribute with
0 and two disjoint edges as well as four points on a line contribute with 1. The interesting
part are the squares, which admit two matchings, say µ1 and µ2: then δ(a + kH,H) = |1 −
η(a(µ1−µ2))|2; in general, this may be any number between 0 and 2 but if a ∈ H 1(G, Z/(2))
then this is 0 or 4.

In order to prove this theorem, we need an auxiliary result in linear algebra. The proof
of Lemma 2.3 is actually a rather straightforward computation.
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Figure 2. A pipe system.

Lemma 2.3 Let P(t) = tn + a1tn−1 + · · · + an−1t + an be the singular polynomial of A
(where A is an arbitrary n × n′ complex matrix). Then

am = (−1)m
∑

B

|det B|2

where B ranges over all m × m submatrices of A.

Proof: Since balanced subgraphs ofG with 2m elements correspond to m×m submatrices
of A, this is a consequence of Lemma 1.4 and Lemma 2.3.

We now describe another, more graphical, interpretation for Theorem 2.2. We define a
pipe system of G as an oriented pair ν = (µ1, µ2) of matchings of a subgraph H of G; we
call H the support of the pipe system. Figure 2 shows an example of a pipe system: we
draw the edges of µ2 oriented from black to white and the edges of µ1 from white to black
(unused edges are represented by dotted lines). A pipe system is thus a collection of pipes
(i.e., oriented edges of G) such that, at each vertex, there is either one pipe coming in and
one pipe going out or no pipe coming in and no pipe going out (the water that comes in
must go out and you can not pipe too much water through a vertex). We define the size |ν|
of the pipe system as half the number of vertices in H (in figure 3(c), |ν| = 5).

The Kasteleyn class kH shall be called kν . A pipe system obtains an element of C1(H, Z)
(and thus of C1(G, Z)) but must not be confused with it: if two pipes cancel each other
homologically, they still have to be taken into account for the pipe system. If a ∈ H 1(H, S

1),
η(a(ν)) and η((a + kν)(ν)) are well defined complex numbers.

Corollary 2.4 Let A be a generalized Kasteleyn matrix and let Pa(t) = tn + a1tn−1

+ · · · + an−1t + an be the singular polynomial of A. Then

Pa(t) =
∑

ν

(−1)|ν|tn−|ν|η((a + kν)(ν)),

where ν ranges over all pipe systems of G.

Proof: This follows directly from Theorem 2.2 and the definitions.

3. Singular polynomials of planar graphs

Theorem 2.2 provides an interpretation for the coefficients of singular polynomials of
arbitrary generalized Kasteleyn matrices. In this section we take a closer look at the right
hand side of Eq. (2) when A is a Kasteleyn matrix.
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Figure 3. A graph, a subgraph and Kasteleyn classes.

For planar balanced bipartite graphs H ⊆ G, define pG,H ∈ H 1(H, Z/(2)) by pG,H =
πG,H(kG) − kH. In figure 3 we illustrate the several objects involved in this definition: (a),
(b), (c) and (d) represent kG, πG,H(kG), kH and pG,H, respectively, where again solid lines
stand for a label 1 and dashed lines stand for a lable −1. The following lemma provides an
alternate definition for this class.

Lemma 3.1 Let H ⊂ G be balanced planar graphs and let C be a cycle in H. Let q be
the number of vertices of G not belonging to H which are inside C. Then

pG,H(C) ≡ q (mod 2).

Proof: This follows directly from Eq. (1) in Lemma 1.1.

In the hope of making the intuitive meaning of this definition clearer, especially for
adjacency graphs of quadriculated or triangulated disks, we introduce some extra
structure.

Let Ḡ be the CW-complex obtained from G by closing each hole with a 2-cell; Ḡ is thus
always homeomorphic to a disk. For H ⊆ G, let H̄ ⊆ Ḡ be the obtained from H by adding
the 2-cells of Ḡ whose boundaries are contained in H; in other words, we close the holes
of H which contain no points of G. The inclusion H ⊆ H̄ induces an injective map from
H 1(H̄, Z/(2)) to H 1(H, Z/(2)) which allows for a natural identification of H 1(H̄, Z/(2))
with a subset of H 1(H, Z/(2)).

Lemma 3.2 pG,H belongs to H 1(H̄, Z/(2)).

Proof: This follows easily from Lemma 3.1.

Recall that two tilings by dominoes of a quadriculated region are said to differ by a flip if
they coincide except for two dominoes; in other words, their difference (in the homological
sense) is a square. If G is the graph of a quadriculated planar region, the difference between
two tilings of H differing by a flip is 0 in H1(H̄, Z); thus, tilings mutually accessible by
flips always have the same pG,H-parity.

We may now state the promised interpretation for the coefficients of singular polynomial
Pk of K . Since Pk is well defined from G, we may adopt a lighter notation and call it PG ,
the singular polynomial of G.
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Theorem 3.3 Let G be a planar bipartite graph and let PG = tn + k1tn−1 + · · · + kn−1t
+ kn be the singular polynomial of G. Then

km = (−1)m
∑

|H|=2m

δ(pG,H,H) (3)

where H ranges over all balanced subgraphs with 2m vertices.

Proof: This is a corollary of Theorem 2.2 and the definition of pG,H.

Recall that if pG,H = 0 then δ(pG,H,H) is just the square of the number of matchings
of H. This always happens if H̄ is simply connected. As a corollary, if G is the graph of a
quadriculated planar region and m ≤ 3, or if G is the graph of a triangulated planar region
and m ≤ 5, then

km = (−1)m
∑

|H|=2m

δ(0,H)

where H ranges over all balanced subgraphs (subregions) with 2m vertices (squares, trian-
gles).

Notice that pG,H, and thus the right hand side of Eq. (3), depends on the way G is
drawn in the plane. Examples (a) and (c) in figure 1 show that PG indeed depends on
the way G is drawn: for (a) we have k2 = 9 but for (b) we have k2 = 5. This causes the
singular values to change in a complicated way: for (a) the singular values are approxi-
mately 0.5549581321, 0.8019377358, 2.246979604 while for (c) they are 0.3472963553,
1.532088886, 1.879385242.

It is natural to conjecture that the number of non-zero singular values coincides with the
size of a maximal partial matching of G. In figure 4(a) we present an example to show that
this is not always true: there are partial matchings of size 3 but since the singular polynomial
of G is t3 −7t2 +10t there are only two non-zero singular values:

√
2 and

√
5. In figure 4(b)

we draw the same graph in a different way and we now have three non-zero singular values:
1,

√
2 and 2.

We state Theorem 3.3 in the language of pipe systems. Denote pG,H(ν) (where H is the
support of ν) by p(ν) ∈ Z/(2). We describe an elementary definition of p(ν). Join pairs
of vertices not in H, matching black vertices with white vertices in an arbitrary way; if all

Figure 4. Two graphs with different singular values.
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intersections are transversal, p(ν) is the parity of the number of intersections of such new
lines with the pipes.

Corollary 3.4 Let G be a planar graph and PG(t) its singular polynomial. Then

PG(t) =
∑

ν

(−1)|ν|tn−|ν|η(p(ν)),

where ν ranges over all pipe systems of G.

Proof: This follows directly from Theorem 3.3 and Corollary 2.4.

4. q-counting

In several branches of combinatorics, q-analogues or quantizations of classical problems
have been seen to be interesting and useful. There are often several interpretations for
the q-analogue of a given concept, some sophisticated (involving quantum groups and the
like) and some elementary. In this section we briefly consider a q-analogue of Kasteleyn
matrices in a very naı̈ve way and extend the results of the previous sections to this setting;
our interest in doing so is that the methods of the previous sections extend very easily to
this more general context and the coefficients will actually have a natural interpretation.

Let Cq = C[q, q−1]. We extend the usual complex conjugation to Cq by postulating
q̄ = q−1; q may be thought of as an unknown complex number of absolute value 1. Let
G be a planar bipartite graph with n white vertices and n′ black vertices. A generalized
Kasteleyn q-matrix for G is an n × n′ matrix A with coefficients in Cq such that

ai j āi j =
{

1, if the i-th white vertex and the j-th black vertex are adjacent,

0 otherwise;

thus, the entries are always monomials and substituting q by a complex number of absolute
value 1 changes a generalized Kasteleyn q-matrix into an ordinary generalized Kasteleyn
matrix.

Consider the additive group Sq = S
1 ⊕ Z and let q be the canonical generator of the Z

component. If we extend the classical η to η : S
1 ⊕ Z → Cq by postulating η(q) = q we

may identify a generalized Kasteleyn q-matrix A with a cocomplex A ∈ C1(G, Sq ). Again,
C2(G, Sq ) = 0 and A defines an element a ∈ H 1(G, Sq ).

Let G be a planar graph. Bounded connected components of the complement of G have
well defined positively oriented boundaries β in H1(G, Z). We define a Kasteleyn q-matrix
to be a generalized Kasteleyn q-matrix A such that a(β) = q for all such boundaries β. We
define the singular q-polynomial of G to be the singular polynomial of a Kasteleyn q-matrix
of G. As before, singular q-polynomials are easuly seen to be well defined but now they are
of course polynomials in Cq [t], or, rather equivalently, polynomials in two variables q and
t . Finally, define the area of a pipe system ν, A(ν) to be the number of bounded connected
components of the complement of G positively surrounded by ν, counted with sign and
multiplicity.
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With these definitions we have the following theorem.

Theorem 4.1 Let G be a planar graph and PG(q, t) its singular q-polynomial. Then

PG(q, t) =
∑

ν

(−1)|ν|q A(ν)tn−|ν|η(p(ν)),

where ν ranges over all pipe systems of G.

Since the proof is entirely analogous to that of Corollary 3.4, we leave the details to the
reader.

5. Rectangles and other examples

Kasteleyn [2] computes the determinant of K for rectangles essentially by computing its
singular values. For the reader’s convenience, we repeat that part of his work in our language.
In order to simplify notation in the statement and proof, let

X+
M,N =

{
(k, �) ∈ Z

2 | 1 ≤ k ≤ M + 1

2
; if k = M + 1

2
then 1 ≤ � ≤ N + 1

2

}
,

X−
M,N =

{
(k, �) ∈ Z

2 | 1 ≤ k ≤ M + 1

2
; if k = M + 1

2
then 1 ≤ � <

N + 1

2

}
.

Theorem 5.1 Let G be a M × N rectangular grid and let K be its Kasteleyn matrix. Then
the non-zero singular values of K are σk,�, (k, �) ∈ X−

M,N , where

σ 2
k,� = (αk + α−k)2 + (β� + β−�)2, α = exp

(
π i

M + 1

)
, β = exp

(
π i

N + 1

)
.

The complicated description of the allowed values of the indices k and � is necessary in
order to avoid zeroes and duplications in a way which is correct for all possible parities of
M and N (Kasteleyn has a simpler formula since he assumes N to be even). Notice that

σk,� = 2

(
cos2 kπ

M + 1
+ cos2 �π

N + 1

)1/2

,

(an expression closer to Kasteleyn’s),

σk,� = σM+1−k,� = σk,N+1−� = σM+1−k,N+1−�

and that σk,� = 0 if and only if M and N are both odd, k = (M + 1)/2 and � = (N + 1)/2.
Thus, if we just demand 1 ≤ k ≤ M and 1 ≤ � ≤ N then all non-zero singular values are
counted twice and we occasionally introduce a 0.
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Proof: We index vertices by pairs (k ′, �′), 1 ≤ k ′ ≤ m, 1 ≤ �′ ≤ n. The vertex (k ′, �′)
is called white when k ′ + �′ is even. Define K as the Kasteleyn matrix with entries 1 for
horizontal edges and i for vertical edges: K defines a linear transformation from the “black
space” to the “white space”. Consider the white vectors

wk,l = (αkk ′ − α−kk ′
)(β��′ − β−��′

),

(k, �) ∈ X+
m,n: they clearly form an orthogonal basis for the white space (this is where a

careful choice of X+
m,n becomes necessary). Similarly, the black vectors bk,l defined by the

same formula with (k, �) ∈ X−
m,n form an orthogonal basis for the black space. A simple

computation yields |wk,l | = |bk,l | for (k, l) ∈ X−
m,n and

K bk,� = ((αk + α−k) + i(β� + β−�)) wk,�,

K ∗wk,� = ((αk + α−k) + i(β� + β−�)) bk,�.

Thus, wk,� and bk,� are singular vectors and σk,� are singular values.

Corollary 5.2 Let G be a m × n rectangular grid. Let

α = exp

(
π i

m + 1

)
, β = exp

(
π i

n + 1

)
, N =

⌊
mn

2

⌋
.

Then

∏
(k,�)∈X−

m,n

(t − (αk + α−k)2 − (β� + β−�)2) =
∑

j=0,...,N

t N− j (−1) j
∑

|H|=2 j

δ(pG,H,H),

where H ranges over all balanced subgraphs with 2 j vertices.

Proof: This follows directly from Theorem 3.3 and Theorem 4.1.

These results show that the characteristic polynomial of KK∗ usually factors a lot if G is a
rectangle. If ζ is a root of unity whose order M is the least common multiple of 2(m +1) and
2(n + 1) then all the roots σ 2

k,� of this polynomial are in R ∩ Z[ζ ], a ring of degree φ(M)/2
over Z. In particular, for square grids of order n, irreducible factors of the characteristic
polynomial of KK∗ have degree at most n. Here are a few sample examples; we give the
polynomial det(tI − KK∗) = tn + k1tn−1 + · · · + kn−1t + kn (whose roots are the squares
of singular values) factored in Z.

[5, 5] (t − 1)2(t − 2)2(t − 3)2(t − 6)2(t − 4)4

[6, 6] (t3 − 10t2 + 24t − 8)2(t3 − 10t2 + 31t − 29)4

[7, 7] (t − 2)2(t2 − 4t + 2)2(t2 − 8t + 8)2(t2 − 8t + 14)4(t − 4)6

[8, 8] (t − 2)2(t3 − 12t2 + 36t − 8)2(t3 − 9t2 + 24t − 17)4(t3 − 12t2 + 45t − 53)4



SINGULAR POLYNOMIALS OF GENERALIZED KASTELEYN MATRICES 207

Although Aztec diamonds have so many interesting properties (see [1] and [4]), the
characteristic polynomial of KK∗ does not factor very much:

3-Aztec diamond (t4 − 10t3 + 28t2 − 24t + 4)2(t − 4)4

4-Aztec diamond (t10 − 32t9 + 441t8 − 3424t7 + 16432t6 − 50240t5

+ 97041t4 − 112896t3 + 70921t2 − 18784t + 1024)2

5-Aztec diamond (t11 − 34t10 + 496t9 − 4064t8 + 20562t7 − 66524t6 + 137728t5

− 177120t4 + 131825t3 − 49066t2 + 6576t − 128)2(t − 4)8

The fact that these polynomials are always squares follows from symmetry. The factor
(t − 4)4k seems to appear in the 2k + 1-Aztec diamond, a fact for which we have no
explanation.

Finally, here are a couple of “irregular” examples. A possible real Kasteleyn matrix is
indicated by the dashed lines (the −1’s).

t5 − 13t4 + 63t3 − 140t2 + 140t − 49
= (t2 − 6t + 7)(t3 − 7t2 + 14t − 7)

2.101003, 1.949856, 1.563663, 1.259280, 0.867768

t5 − 13t4 + 62t3 − 132t2 + 121t − 36
= (t − 4)(t4 − 9t3 + 26t2 − 28t + 9)

2.126757, 2, 1.576415, 1.197126, 0.747468
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