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Abstract. We revisit the construction method of even unimodular lattices using ternary self-dual codes given
by the third author (M. Ozeki, in Théorie des nombres, J.-M. De Koninck and C. Levesque (Eds.) (Quebec, PQ,
1987), de Gruyter, Berlin, 1989, pp. 772–784), in order to apply the method to odd unimodular lattices and give
some extremal (even and odd) unimodular lattices explicitly. In passing we correct an error on the condition
for the minimum norm of the lattices of dimension a multiple of 12. As the results of our present research,
extremal odd unimodular lattices in dimensions 44, 60 and 68 are constructed for the first time. It is shown that
the unimodular lattices obtained by the method can be constructed from some self-dual Z6-codes. Then extremal
self-dual Z6-codes of lengths 44, 48, 56, 60, 64 and 68 are constructed.
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1. Introduction

There are many known relationships between codes and lattices [4]. In particular, self-dual
codes with large minimum weights are often used to construct dense unimodular lattices. A
construction method of even unimodular lattices using ternary self-dual codes was given by
the third author [11]. A condition for the minimum weights of ternary self-dual codes, so that
the obtained even unimodular lattices become extremal, was also provided (Theorem 2 in
[11]). It was mentioned in [11] that extremal even unimodular lattices in dimensions 48, 56
and 64 are constructed from some known ternary self-dual codes whose minimum weights
are greater than or equal to 15 without giving explicit generator matrices of the lattices.

In this paper, we revisit the construction method given in [11]. Our main purpose is
to apply the method to odd unimodular lattices, and give explicit generator matrices of
some extremal (even and odd) unimodular lattices. In [11], the construction method was
considered under the assumption that a self-dual code of length n contains a codeword
of maximum weight ≥n − 2. Moreover unfortunately there was an error in [11] on the
condition to determine the minimum norm of the lattices in the case when the dimension
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is a multiple of 12. In Section 3, we remove the restriction on the maximum weight, and
complete the construction of extremal unimodular lattice, by adding the assumption that the
code is admissible (Theorem 6). Our argument can be applied to odd lattices. Consequently
extremal odd unimodular lattices in dimensions 44, 60 and 68 are constructed from some
ternary self-dual codes for the first time (Theorem 7). Furthermore, in Section 4, it is shown
that unimodular lattices obtained by the method can be constructed from self-dual Z6-codes.
Hence extremal Type II Z6-codes of lengths 48, 56 and 64, and extremal Type I codes of
lengths 44, 60 and 68 are constructed for the first time (Theorems 10 and 12). Note that the
generator matrices of the corresponding extremal unimodular lattices are easily obtained
from generator matrices of extremal self-dual Z6-codes.

All the results about the construction of extremal odd unimodular lattices stated in this
paper were already announced in [14]. In particular, the construction of an extremal odd
unimodular lattice in dimension 44 was announced in April, 1998.

2. Type II Z6-codes and construction A

In this section, we recall some basic notions on codes over Z6, unimodular lattices and the
basic construction of lattices from codes. For undefined terms, we refer to [1, 4] and [13].

Let Z6 (= {0, 1, 2, . . . , 5}) be the ring of integers modulo 6. A code C of length n over Z6

(or a Z6-code of length n) is a Z6-submodule of Z
n
6. An element of C is called a codeword.

We define the inner product on Z
n
6 by x · y = x1 y1 + · · · + xn yn , where x = (x1, . . . , xn)

and y = (y1, . . . , yn). The dual code C⊥ of C is defined as C⊥ = {x ∈ Z
n
6 | x · y = 0 for

all y ∈ C}. A code C is self-dual if C = C⊥. The Hamming weight of a codeword is the
number of non-zero components in the codeword. The Euclidean weight of a codeword x is∑n

i=1 min{x2
i , (6− xi )2}. The minimum Euclidean weight dE of C is the smallest Euclidean

weight among all nonzero codewords of C . Two codes over Z6 are said to be equivalent
if one can be obtained from the other by permuting the coordinates and (if necessary)
changing the signs of certain coordinates [1]. A Type II code over Z6 is a self-dual code
with all codewords having Euclidean weight divisible by 12. It is known in [1] that there
is a Type II code of length n if and only if n ≡ 0 (mod 8). A self-dual code which is not
Type II is called Type I.

A (Euclidean) lattice L is integral if L ⊆ L∗ where L∗ is the dual lattice under the
standard inner product (x, y). An integral lattice with L = L∗ is called unimodular. A
lattice with even norms is said to be even. A lattice containing a vector of odd norm is
called odd. An n-dimensional even unimodular lattice exists if and only if n ≡ 0 (mod 8)
while an odd unimodular lattice exists for every dimension. The minimum norm min(L)
of L is the smallest norm among all nonzero vectors of L . The minimum norm µ of an
n-dimensional unimodular lattice is bounded by

µ ≤ 2

[
n

24

]
+ 2, (1)

unless n = 23 when µ ≤ 3 [12]. An n-dimensional unimodular lattice meeting the bound
is called extremal.
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The set of vectors f1, . . . , fn in an n-dimensional lattice L with ( fi , f j ) = kδi j is called
a k-frame of L where δi j is the Kronecker delta. The lattice L has a k-frame if and only if
L is obtained as

Ak(C) =
{

1

k

n∑
i=1

xi ei

∣∣∣∣∣ xi ∈ Z, (xi (mod k)) ∈ C

}
,

from some Zk-code C by Construction A. If C is a self-dual code over Zk then Ak(C) is uni-
modular. Moreover if C is a Type I (resp. Type II) Z6-code with minimum Euclidean weight
dE then A6(C) is an odd (resp. even) unimodular lattice with minimum norm min{dE/6, 6}
(cf. [1]).

By (1), the minimum Euclidean weight dE of a self-dual Z6-code of length n is bounded
by

dE ≤ 12

[
n

24

]
+ 12, (2)

for length n < 48 (cf. [1]). We say that a self-dual Z6-code of length n (<48) with dE =
12[n/24]+12 is extremal. Examples of extremal Type II codes of lengths n ≤ 40 are known
(cf. [1, 6, 7]).

3. Ternary code construction and extremal unimodular lattices

In this section, we revisit the construction method in [11] correcting the condition of min-
imum weights when dimensions are divisible by 12 and removing the restriction on the
maximum weights. The method is also reconsidered from the viewpoint of the theory of
shadow lattices in [3] and applied to odd unimodular lattices.

3.1. Ternary code construction

First we recall some results concerning shadow lattices of odd unimodular lattices from [3].
Let L be an n-dimensional odd unimodular lattice and let L0 denote its subset of vectors of
even norm. The set L0 is a sublattice of L of index 2. Let L2 be that unique nontrivial coset
of L0 into L . Then L∗

0 can be written as a union of cosets of L0: L∗
0 = L0 ∪ L2 ∪ L1 ∪ L3.

The shadow lattice of L is defined to be S = L1 ∪ L3. In the case that n is even, there are
three unimodular lattices L0 ∪ L2, L0 ∪ L1, L0 ∪ L3 containing L0 noting that L∗

0/L0 is the
Klein 4-group. The norms of vectors of the shadow lattice are congruent to n/4 (mod 2).
In this section, we consider the lattices L0 ∪ L1, L0 ∪ L3 for the case L = A3(C).

Let C be a ternary self-dual code of length n with minimum weight d. Then n must be a
multiple of 4. The lattices A3(C) and B3(C) by Constructions A and B are defined as:

A3(C) =
{

1

3

n∑
i=1

xi ei

∣∣∣∣∣ xi ∈ Z, (xi (mod 3)) ∈ C

}
,

B3(C) = {v ∈ A3(C) | (v, v) ∈ 2Z } ,
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respectively, where e1, . . . , en satisfy (ei , e j ) = 3δi j , that is, {e1, . . . , en} is a 3-frame. Then
A3(C) is an odd unimodular lattice with minimum norm min{3, d/3}, and B3(C) is the
unique even sublattice of A3(C) of index 2, that is, B3(C) = (A3(C))0.

Lemma 1

min(B3(C)) = min

{
6, 2

[
d + 3

6

]}
.

Proof: Let u = 1
3

∑n
i=1 xi ei (�=0) ∈ B3(C). If (xi (mod 3)) = (0, . . . , 0) then (u, u) is

clearly a multiple of 3, and thus (u, u) ≥ 6. Note that B3(C) contains a vector e1 + e2

of norm 6. If (xi (mod 3)) �= (0, . . . , 0) then (u, u) = (1/3)
∑n

i=1 x2
i ≥ (1/3) wt((xi

(mod 3)) where wt(c) denotes the weight of a vector c. Noting that (u, u) is an even integer
and d is a multiple of 3, then (u, u) ≥ (d + 3)/3 if d is odd and (u, u) ≥ d/3 if d is even
(and also a multiple of 6). In both cases (u, u) ≥ 2[(d +3)/6] holds, then the result follows.

Lemma 2 The shadow lattice of A3(C) is given by

B3(C)∗ \ A3(C) =
{

v = 1

6

n∑
i=1

xi ei

∣∣∣∣∣ xi ∈ Z, v(3) ∈ C, v(2) = (1, . . . , 1)

}
,

where v(p) = (xi (mod p)) ∈ Z
n
p for p = 2, 3.

Proof: Suppose that v = 1
6

∑n
i=1 xi ei satisfies the conditions v(3) ∈ C, v(2) = (1, . . . , 1).

Let b = 1
3

∑n
i=1 yi ei ∈ B3(C). Then v �∈ A3(C), because (e1, v) �∈ Z. Since v(3) ∈ C , we

have

((xi ), (yi )) ≡ 0 (mod 3).

Moreover since v(2) = (1, . . . , 1), we have

((xi ), (yi )) ≡
∑

i

yi ≡
∑

i

y2
i ≡ 0 (mod 2),

by (b, b) ∈ 2Z. Hence ((xi ), (yi )) ∈ 6Z and thus (v, b) ∈ Z, that is, v ∈ B3(C)∗.
We will show the converse. The existence of such a vector v is easily proved by the

Chinese remainder theorem. (We will give an explicit definition after this lemma.) Then since
[B3(C)∗ : A3(C)] = 2 and v /∈ A3(C), we have B3(C)∗ = 〈v, A3(C)〉 where 〈v, A3(C)〉
denotes the lattice generated by v and A3(C). Let u ∈ B3(C)∗ \ A3(C). Then u is written
as v + a with a = 1

3

∑n
i=1 zi ei ∈ A3(C). Then by definition a(p) = (2zi (mod p)) and

thus we have a(3) ∈ C and a(2) = (0, . . . , 0). Hence we have u(3) = v(3) + a(3) ∈ C and
u(2) = v(2) + a(2) = (1, . . . , 1).

We denote by m the maximum weight of C . For simplicity, we may assume that C
contains a codeword of the form (1, . . . , 1, 0, . . . , 0) (possibly, the all-one vector) with
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maximum weight m. We set

v0 = 1

6

(
m∑

i=1

ei +
n∑

i=m+1

3ei

)
.

Then clearly v0 ∈ B3(C)∗ \ A3(C). We define the following two lattices:

L S(C) = 〈v0, B3(C)〉, and LT (C) = 〈v0 − en, B3(C)〉.
By definition, we have directly the following:

Lemma 3
(1) The three unimodular lattices containing B3(C) are L S(C), LT (C) and A3(C) =

〈en, B3(C)〉.
(2) L S(C), LT (C) are even if and only if n is divisible by eight.

Proof: Follows from the basic fact of shadow lattices given in the beginning of this section.

Remark After the publication of [11], Montague introduced these construction methods
(when n is divisible by eight, and m = n holds), which were called straight and twisted,
respectively. It was shown that all the Niemeier lattices can be constructed from some
ternary self-dual codes by these methods.

Lemma 4 Suppose m < n. Then

min(v0 + B3(C)) = min((v0 − en) + B3(C)) = 1

12
(9n − 8m).

Proof: Let v be one of v0, v0 − en , and u = 1
6

∑n
i=1 zi ei ∈ v + B3(C). By Lemma 2,

u satisfies that u(3) ∈ C and u(2) = (1, . . . , 1). Hence it is easily verified that its norm is
minimum when u satisfies zi ∈ {±1, ±3} and the weight of u(3), which is equal to the
number of i with zi = ±1, is maximum. Since m < n, both of v0, v0 − en satisfy these
conditions, and hence we have min(v + B3(C)) = (v, v) = 1

12 (m + 9(n − m)), as required.

Now we consider the case m = n. The following definition is due to Koch [8], but it is
slightly modified and applied to all lengths as well as length 48.

Definition Let C be a ternary self-dual code of length n, and suppose that C contains the
all-one vector (hence n ∈ 12Z). The code C is said to be admissible if and only if C satisfies
one of the following (equivalent) conditions:

(A1) For every codeword c ∈ C of weight n, the number of 1’s in the components of c is
even.

(A2) If all the components of c (∈C) are 0 or 1, then its weight is even.
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Lemma 5 If m = n (hence n ∈ 12Z) then
(1) min(v0 + B3(C)) = n

12 .

(2) min((v0 − en) + B3(C)) =
{

n
12 + 2 if C is admissible,
n
12 otherwise.

Proof: Let v be one of v0, v0 − en and let u ∈ v + B3(C). Set t = wt(u(3)). If t < m, then
t ≤ m − 3 and (u, u) ≥ n/12 + 2 by the proof of Lemma 4.

Suppose t = m. Then clearly (u, u) ≥ n/12 and the equality holds if and only if all the
components of u are ±1. The vector v0 satisfies this condition. Hence we have proved the
assertion (1).

We will prove that the following condition

(#) (v0 − en) + B3(C) contains a vector u = 1
6

∑n
i=1 zi ei with zi = ±1,

holds if and only if C is not admissible.
Suppose (#) holds. Let X be the set of i with zi = 1. Then u+v0 −en = ( 1

3

∑
i∈X ei )−en ,

and its norm is equal to 1
3 |X |+1 (resp. 1

3 |X |+3) if n ∈ X (resp. n �∈ X ). Since this norm is
even, |X | is odd and this means that C is not admissible. Conversely if C is not admissible,
then C does not satisfy the condition (A2), and thus C contains an odd weight codeword
whose components are 0 or 1. Hence B3(C) contains a vector w = ( 1

3

∑
i∈X ei ) − en for

some set X with |X | = odd. Then u = w − (v0 − en) satisfies the condition (#).
If (#) does not occur, then the minimum norm is greater than n/12. Since all the vectors

in (v0 − en) + B3(C) have the same parity, min((v0 − en) + B3(C)) = n/12 + 2 = (v0 −
en, v0 − en).

Remark The proof in [11] of the result corresponding to the above lemma was incorrect.
More precisely, the additional assumption that C is admissible if min((v0 − en)+ B3(C)) =
n
12 + 2 is necessary. However, it seems that Conway and Sloane already became aware that
the additional assumption is necessary because they point out that the unimodular lattices
constructed from the Pless symmetry codes of lengths 36 and 60 are not extremal (cf. [4,
p. 148]).

All the discussions in this section establish the following:

Theorem 6 Let C be a ternary self-dual [n, n/2, d] code with maximum weight m. Let
L = L S(C) or LT (C). Then

min(L) = min

{
6, 2

[
d + 3

6

]
,

n

12
+ 2

}
,

if m = n (hence n is divisible by 12), L = LT (C) and C is admissible, and

min(L) = min

{
6, 2

[
d + 3

6

]
,

1

12
(9n − 8m)

}
,

otherwise.
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Table 1. Known unimodular lattices.

n Codes C (d, m) min(LT (C)) min(L S(C)) Comments

32 Extremal (9, 30) 4∗ 4∗ See remark

36 P36 (12, 36) 3 3 [4, p. 148]

40 Extremal (12, 39) 4∗ 4∗ See remark

44 T44 (12, 42) 4∗ 4∗ New

48 Q48, P48 (15, 48) 6∗ 4 P48p , P48q

52 – (≤12, ≤51) ≤4 ≤4

56 T56 (15, 54) 6∗ 6∗

60 Q60 (18, 60) 6∗ 5 New

64 T64 (18, 63) 6∗ 6∗

68 T68 (18, 66) 6∗ 6∗ New

The extremal cases are indicated by ∗.

3.2. Extremal unimodular lattices

In Table 1, we collect known examples of (extremal) unimodular lattices constructed by our
method from known ternary self-dual codes (see [13, Table XII] for the current information
on the existence of extremal ternary self-dual codes). The unimodular lattices in dimensions
up to 24 and 28-dimensional odd unimodular lattices with minimum norm 3 are classified
and it is known that there is no 28-dimensional odd unimodular lattice with minimum norm
4 (cf. [4]). The minimum norms of lattices by the method are at most 6. Hence we deal with
dimensions 32 ≤ n ≤ 68 (n ≡ 0 (mod 4)). The first column indicates the dimensions of
the lattices. The second column gives the ternary self-dual codes C which we consider and
the minimum and maximum weights (d, m) are listed in the third column. In the following
remark, we list the examples of ternary self-dual codes given in the table. The fourth and
fifth columns list the minimum norms of LT (C) and L S(C), respectively. The extremal
cases are indicated by ∗. From the table, we have the following:

Theorem 7 There is an extremal odd unimodular lattice in dimensions 44, 60 and 68.

Note that an extremal odd unimodular lattice is previously unknown for each of these
dimensions.

Remark We give some comments on the existence of ternary self-dual codes described
in the above table. Here we denote by Pn and Qn the Pless symmetry code and the extended
quadratic residue code of length n, respectively.

• n = 32, 40: Many extremal ternary self-dual codes are known, and many examples of
extremal even unimodular lattices can be constructed from known codes. Thus we skip
these dimensions, but it is a worthwhile project to determine if the lattices constructed
are isometric.
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• n = 36: Only known extremal ternary self-dual [36, 18, 12] code is P36. The code has
maximum weight m = 36 and is not admissible [4, p. 148]. If there exists a self-dual
[36, 18, 9] code with m = 33 or an admissible extremal code, then it is possible to
construct an extremal unimodular lattice. We do not know such examples.

• n = 44: Some extremal ternary self-dual codes of length 44 are obtained from an extremal
self-dual code of length 48 by subtracting. Two such codes are known, namely P48 and
Q48 (cf. [9]). As an example, we consider the extremal self-dual code T44 of length 44
subtracting the first four coordinates from Q48. Hence an extremal odd unimodular lattice
is constructed from such a code.

• n = 48: It is well known that the two codes P48 and Q48 are admissible and the extremal
even unimodular lattices P48p and P48q are obtained from P48 and Q48, respectively [4].
It is shown in [8] that any admissible code of length 48 has the same complete weight
enumerator as P48 and Q48 containing the all-one vector. In addition, such a code is
constructed from some Hadamard matrix of order 48.

• n = 56: Some extremal ternary self-dual [56, 28, 15] codes are constructed by subtracting
from Q60 and P60 which are known extremal self-dual [60, 30, 18] codes (cf. [4]). Here we
consider the extremal self-dual [56, 28, 15] code T56 subtracting the first four coordinates
from Q60.

• n = 60: Only Q60 and P60 are known extremal ternary self-dual codes of length 60.
It is already mentioned in [4, p. 148] that P60 is not admissible. However, we have
verified that Q60 is admissible. Hence an extremal odd unimodular lattice is
constructed.

• n = 64: Let H32 be the Paley Hadamard matrix of order 32. Then the matrix (I, H32)
generates a ternary extremal self-dual code T64 of length 64 [5].

• n = 68: It is not known if there is a ternary extremal self-dual [68, 34, 18] code. However,
a ternary self-dual [68, 34, 15] code makes an extremal odd unimodular lattice. Such a
code is obtained from Q72 which is a ternary self-dual [72, 36, 18] code by subtracting.
Here we consider the self-dual [68, 34, 15] code T68 subtracting the first four coordinates
from Q72.

We note that all examples of codes satisfy n − m < 2. It seems that no examples
with minimum weight >3 and maximum weight <n − 3 are known. It follows from the
Gleason theorem that an extremal self-dual code of length n ≤ 68 satisfies the condition
that n − m < 2.

4. Extremal self-dual Z6-codes

First we demonstrate that the lattices constructed from ternary self-dual codes can be con-
structed from some self-dual Z6-codes by Construction A. Then we construct self-dual
Z6-codes which determine the lattices described in Table 1 for dimensions 44, 48, 56, 60, 64
and 68 showing that these codes are extremal. The generator matrices of the corresponding
extremal unimodular lattices are easily obtained from the generator matrices of the above
extremal self-dual Z6-codes.
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4.1. 6-Frames and self-dual Z6-codes

Let C be a ternary self-dual code of length n. Clearly the lattice B3(C) contains the sublattice
generated by ei ± e j (1 ≤ i, j ≤ n), which is isometric to

√
3R(Dn) where R(Dn) is the

root lattice of type Dn . Thus the two lattices L S(C) and LT (C) contain a 6-frame

{e1 + e2, e1 − e2, e3 + e4, . . . , en−1 − en}. (3)

Hence, we have the following:

Proposition 8 The lattices L S(C) and LT (C) are constructed from some self-dual Z6-
codes by Construction A.

By permuting the vectors ei ’s, it is easy to get other 6-frames {ei ±e j , ek ±el , . . .}. In this
section, we specify a 6-frame given in (3) so as to construct self-dual Z6-codes. In general,
it is possible to construct distinct self-dual Z6-codes which generate the same lattice.

4.2. Extremal type II Z6-codes

Proposition 9 The largest possible minimum Euclidean weights of Type II Z6-codes of
lengths 48, 56 and 64 are 36.

Proof: Proofs of three lengths are similar, so we give only the proof for length 48. Suppose
that C is a Type II code with minimum Euclidean weight >36. Then its minimum Euclidean
weight is greater than or equal to 48, since C is of Type II. Consider the even unimodular
lattice A6(C). By the assumption, the vectors of norm 6 in A6(C) are only ± f1, . . . ,± f48

where { f1, . . . , f48} is the 6-frame in A6(C). However, the theta series of an extremal even
unimodular lattice is uniquely determined for each dimension and such a lattice contains
52416000 vectors of norm 6 for dimension 48 (cf. [4, p. 195]).

Remark A similar argument can be applied to larger lengths in order to determine the
largest possible minimum Euclidean weights.

We say that a Type II code with minimum Euclidean weight 36 is extremal for lengths
48, 56 and 64. This definition coincides with the one derived from (2) in Section 2 for lengths
up to 40. In Section 3, an extremal even unimodular lattice is constructed for dimensions
48, 56 and 64. Since an extremal lattice is constructed from an extremal code, Proposition 8
shows the following:

Theorem 10 There is an extremal Type II Z6-code for lengths 48, 56 and 64.

Now we give explicit generator matrices of the extremal Type II Z6-codes. We give
generator matrices (I, M) in standard form after suitable permutations and changing the
signs of certain coordinates, that is, generator matrices of equivalent codes. In addition,
throughout this section, only right halves M are given using the form m1, m2, . . . , mn/2
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where m j is the j-th row in order to save space.

• n = 48: Here we give generator matrices (I, M48,P ) and (I, M48,Q) of the extremal Type II
codes C48,P and C48,Q corresponding to P48P and P48Q , respectively.

M48,P = 320422043242002002022250, 502222044142204204002234,

340022002232020220240412, 100022004423244004042434,

342000024042324400022254, 342402440440432040004052,

320044404002443004002032, 542422222200444500020410,

300440244002244050442430, 142024404024424005422230,

500420000402222240144010, 522024444240240242432030,

140222244242242242023250, 540400500200440440020050,

540454204002402404244054, 324540242442202224402412,

542201400000020020240230, 350020204420242442424054,

435353135533315315355153, 543444240242222442040214,

124040420000040040040011, 353355353515535535133341,

304420410420220220020054, 100420220242002002200154,

M48,Q = 020120400244424042222231, 153515135131331115153101,

351311531151133311311330, 000452022240000400220053,

242201022242004224202053, 020040520222400004002233,

044222012220202022042431, 402220005402002204020033,

200404202322240240244455, 244040022212444240440031,

240022044005042420004015, 424042002442300042442451,

204422022222032244422211, 000020042004425042442453,

200242022042240120402251, 420000200420044250424435,

442440204224404403042453, 440400424200002044100411,

402440024000224004450235, 424444402000402404205451,

240444004420042442020511, 432444442022222044242213,

003422240224220002202233, 500240024442404222224053.

Note that the generator matrices given in this section can be also obtained electroni-
cally from “http://www-sci.yamagata-u.ac.jp/~ozeki”. We say that C (mod p)
= {x (mod p)|x ∈ C} is the binary part (resp. the ternary part) of C if p = 2 (resp. p = 3).
The binary and ternary parts of a Type II (resp. Type I) Z6-code is a binary Type II (resp.
Type I) code and a ternary self-dual code, respectively [6]. We have verified by MAGMA

that the binary parts of the two codes are equivalent and they have the following weight
enumerator 1 + 276y4 + 10626y8 + 134596y12 + · · ·. The ternary parts of the codes are
self-dual [48, 24, 9] codes with weight enumerators 1+8y9 +3560y12 +373920y15 +· · ·
and 1 + 2y9 + 2918y12 + 380472y15 + · · ·, respectively.

We have found one more extremal Type II code C48. The code C48 is the extended
cyclic code over Z6 by appending 1’s to the generators where the generator polynomial
g48 is defined as

g48 = x23 + 4x22 + 4x21 + 3x19 + x18 + 4x17 + 4x16 + x14 + 5x13 + 3x12

+ 2x11 + 3x10 + 3x9 + 4x8 + 3x7 + 5x6 + x5 + 5x3 + 3x2 + 3x + 5.
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Note that g48 (mod 2) (resp. g48 (mod 3)) is a generator polynomial of the binary (resp.
ternary) extended quadratic residue code of length 48. By Construction A, an extremal
even unimodular lattice A6(C48) is constructed from the above extremal Type II code
C48. Robin Chapman has shown in private communication [2] that the extremal even
unimodular lattice A6(C48) from C48 by Construction A is isometric to P48q . We thank
him for his useful comment.

Therefore there are at least three inequivalent extremal Type II Z6-codes of length 48.
• n = 56, 64: We give a generator matrix (I, Mn) of the extremal Type II code Cn corre-

sponding to the extremal lattice LT (Tn) obtained from Tn which is given in Section 3.

M56 = 3355315513153333515531511305, 1513353155331535111533155415,

0522000222244242000200402312, 2012404422422000224020440154,

4445420024240422040000002312, 4220540422422024200024040512,

4044410224222024440242404552, 4440243200202420220002044354,

0040222100404240200240024114, 0044224414000240204000404152,

0424022025242220220044202354, 0202224420120220440000020114,

4200222444214044404202424554, 2402044044043440402444000534,

2224440424040520240020240552, 0020040240044010444004002132,

0202422002440405200442440530, 0040420004444040120044204112,

4024440442224000230222220552, 4444240222002024405000020314,

4040422004004402040344002130, 4440224440400420424054020554,

4200002042420424222203240332, 0022244424020224224444522312,

0442202440420202224440230512, 4444242004024240024222421554,

2040222200024004002042242135, 1242004204002022400422004134.

M64 = 13515331131333535513114335153111, 35331135353333135135543553511533,

32242440240002402444413002424422, 43004244400024404444031424022002,

24302240442404204444215204242424, 02210424204222444222435422022402,

44203402400442024240415020004404, 42424322004224440224415420044444,

20404054400204402404013040004022, 22042405240044202440213404224420,

02024244304244442200433202022200, 00402442454024200004253402002422,

20224004225020004044011240002244, 22224024402322024200455200222044,

40220004224254204202413020040044, 44040202242221242000255020400400,

22204000040044344000451200224004, 22022400440402003440053420040440,

42024020224020244244431240420232, 00024404022420022440235200440300,

20040222202202402200015022410022, 00444002404244424422011442302220,

04200400022220220002235021004404, 40224402224424204022253344000242,

24440204420042240225013400444444, 24400004000404422342015200202040,

04020422442244234200051424204420, 20244400020042004454251444402442,

42222240244204440240553442024222, 42420042244242002044211014020404,

40240402042244004402253020205022, 44040000200224204024251004244205.

The binary and ternary parts of the code C56 have the following weight enumerators
1 + 378y4 + 20475y8 + 376740y12 +· · · and 1 + 346y12 + 69928y15 +· · ·, respectively.
The binary and ternary parts of the code C64 have the weight enumerators 1 + 496y4 +
35960y8 + · · · and 1 + 64y12 + 9088y15 + · · ·, respectively.
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4.3. Extremal type I Z6-codes

Proposition 11 The largest possible minimum Euclidean weights of Type I Z6-codes of
lengths 60 and 68 are 36.

Proof: Conway and Sloane [3] show that if the theta series of an odd unimodular lattice
L is written as

θL (q) =
�n/8�∑
j=0

a jθ3(q)n−8 j�8(q) j ,

then the theta series of the shadow lattice S is written as

θS(q) =
�n/8�∑
j=0

(−1) j

16 j
a jθ2(q)n−8 jθ4(q2)8 j ,

where �8(q) = q
∏∞

m=1(1 − q2m−1)8(1 − q4m)8 and θ2(q), θ3(q) and θ4(q) are the Jacobi
theta series [4]. For dimension 60, the theta series of an extremal odd unimodular lattice
and its shadow lattice are

θL (q) = 1 + (3416640 + a6)q6 + · · · ,
θS(q) = − a7

224
q +

(
27a7

222
+ a6

212

)
q3 + · · · ,

respectively. Hence a6 must be divisible by 212. Then 3416640 + a6 cannot be 120. Therefore
a similar argument to the proof of Proposition 9 shows the assertion.

Similarly, the theta series of a 68-dimensional extremal odd unimodular lattice and its
shadow lattice are written as using parameters a6, a7, a8:

θL (q) = 1 + (388416 + a6)q6 + · · · ,
θS(q) = a8

228
q −

(
a7

216
+ 31a8

226

)
q3 + a6

24
q5 + · · · ,

respectively. Hence a6 must be divisible by 24 then 388416 + a6 cannot be 136. So the result
follows.

Remark A similar argument can be applied to other lengths in order to determine the
largest possible minimum Euclidean weights.

In Section 3, an extremal odd unimodular lattice is constructed for dimensions 44, 60
and 68. By Proposition 8, we have the following:

Theorem 12 For lengths 44, 60 and 68, there is an extremal Type I Z6-code.

For n = 44, 60 and 68, we give a generator matrix (I, Mn) of the extremal Type I code
Cn corresponding to the extremal lattice LT (T ) obtained from T = T44, Q60 and T68,
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respectively.

M44 = 4211504004224442402024, 2031052022240000400220,

0033205204404420222224, 0231204100242200420244,

4453224030404420042220, 0033402043040002044400,

2415002204144044024242, 4051402440050202220404,

2011002044005402442024, 0035004200442504244242,

2253002020020250040022, 0431220220202241042040,

4253224042422420322420, 0233244022420402452200,

4015202044220222445220, 4031042402400444402104,

0213200204400422202454, 3253042422204244442402,

0315224022422000220220, 3345131551531115531551,

3354135113351353315155, 4455002024222442042025.

M60 = 531355115551551131513341511353, 252004202402422004240532042042,

041420202004242442444554402404, 422124240000442002420532420240,

242212402004224404240354422044, 022043420204204202204154424002,

422404302000444200404134022002, 024202432220424024440154444204,

422040041000004404224514000022, 244220420100440402024314420220,

040204200454220202444512020042, 242002244443244020420554202000,

440424004020124440400332020042, 420044204022212442424550042404,

424202240200221440424152204044, 151111153353113355135455333355,

200202420444242540404552440422, 424220244042004432222350442000,

424420022220040441220332024404, 422204004240404024304114444002,

000242202402024422030130200242, 000204204424424424245312204224,

022224442202202022200352102040, 404044004200240224204112032242,

040024242224402442222154241424, 244402422204044244422534000124,

242224244220040000224514424012, 044044440444004024442350024443,

202220420444422000042155020204, 304042000044240202404312022022.

M68

= 2002442404243522252002420420444442, 1535535131335055513351315153515311,

2424422244205122045044422024204422, 2420220204425504422340040422400044,

4444044442403524044454420242402020, 0024404402445520044401224022020440,

2240220042423544422042344442422004, 0424444440405542200220452240204444,

4044204224021122024024401242002242, 0200420224041144000224242542402040,

0024002022021104020402040254004244, 4242400242205144004022440045042002,

4420222000443100022244420444540022, 2222422000021142442222422242034400,

0024040244445524200242024440201200, 2404242022441504242242004220204520,

4422222200041142000420002200200054, 2020404022245120504042444202004044,

5513333111334555111555531531353315, 0442422042203545404202240222244440,

2424244242223330040242244220422404, 3422444244421102024422024042200420,

0244002000005524444220220022404023, 4100004040001122442240000422242002,

4430022404005120402000024420442204, 0001204202041502402040224424040004,

2444120200423342424420224244404024, 0004054404045522042400404000422404,

2220020542423122220040202220404202, 4420025004001142042240000224020042,

4222244450445340204002220022442422, 0444222245041122242002242444040400,

4224024024121300042042242000000044, 2440402404211140202244222424440020.
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Let W (2)
n and W (3)

n be the weight enumerators of the binary and ternary parts of Cn ,
respectively. Then

W (2)
44 = 1 + 231y4 + 7315y8 + 74613y12 + · · · ,

W (3)
44 = 1 + 46y9 + 8330y12 + · · · ,

W (2)
60 = 1 + 435y4 + 27405y8 + 593775y12 + · · · ,

W (3)
60 = 1 + 82y12 + 25464y15 + · · · ,

W (2)
68 = 1 + 561y4 + 46376y8 + 1344904y12 + · · · ,

W (3)
68 = 1 + 8y12 + 2524y15 + · · · .

5. Concluding remarks

For dimensions 56 and 64, we have constructed an extremal even unimodular lattice
from some ternary self-dual code in Section 3. Note that generator matrices of the
lattices can be obtained from those of extremal Type II codes given in Section 4.
It is interesting to investigate lattices constructed from other ternary self-dual codes. For
these dimensions, only a few examples of extremal even unimodular lattices are known [4,
p. 194]. It is also worthwhile to determine if these lattices are isometric.

The largest possible minimum norms of the lattices L S(C) and LT (C) from ternary self-
dual codes C are 6. If we seek to construct unimodular lattices with larger minimum norms
along with the present ideas, then we will be forced to use codes over larger fields such as
F5, F7 and so on.
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