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Abstract. The 1-dimensional universal formal group law is a power series (in two variables and with coefficients
in Lazard’s ring) carrying a lot of geometrical and algebraic properties. For a prime p, we study the corresponding
“p-localized” formal group law through its associated pk -series, [pk ](x) = ∑

s≥0 ak,s xs(p−1)+1—the pk -fold
iterated formal sum of a variable x . The coefficients ak,s lie in the Brown-Peterson ring BP∗ = Z(p)[v1, v2, . . .]
and we describe part of their structure as polynomials in the variablesvi with p-local coefficients. This is achieved by
introducing a family of filtrations {Wϕ}ϕ≥1 in BP∗ and studying the value of ak,s in each of the associated (bi)graded
rings BP∗/Wϕ . This allows us to identify, among monomials in ak,s of minimal Wϕ -filtration (1 ≤ ϕ ≤ k), an
explicit monomial mϕ,k,s carrying the lowest possible p-divisibility. The p-local coefficient of mϕ,k,s is described
as a Stirling-type number of the second kind and its actual value is computed up to p-local units. It turns out that
mk,k,s not only carries the lowest Wk -filtration but, more importantly, the lowest p-divisibility among all other
monomials in ak,s . In particular, we obtain a complete description of the p-divisibility properties of each ak,s .

Keywords: formal group laws, universal typical pk -series, Stirling numbers

1. Introduction

The theory of formal group laws has shown to be of special importance in mathematics
mainly due to the wide variety of connections it has had with other mathematical branches
like geometry, algebraic topology, number theory and combinatorics. One of the basic
connections arises through the universal example. For the purposes of this paper we lo-
calize at a given prime p. Let BP stand for the p-local Brown-Peterson spectrum with
homotopy groups BP∗ = Z(p)[v1, v2, . . .] (say Araki generators vi ∈ BP2(pi −1)) and let
µp = µp(x, y) ∈ BP∗(CP∞ × CP∞) = BP∗[[x, y]] denote the corresponding Euler class
for the tensor product of the canonical complex line bundles over the axes of CP∞ ×CP∞.
A fundamental theorem of Quillen claims that µp is both algebraically and topologically
universal (see [2, Theorem 4.6]). This bridge has led to a number of basic developments. For
instance, Hopkins-Miller and Hopkins-Mahowald have used a partial converse of Quillen’s
theorem in constructing higher K -theories related to elliptic curves (see [17] and [34]). One
of their resulting spectra has been used by Bruner, Davis and Mahowald [4] in obtaining
sharper information for the elusive problem of finding optimal Euclidean immersions for
real projective spaces.
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In this paper we concentrate on the algebro-combinatorial properties of µp. We follow
the idea originally introduced by Johnson in [18] (as modified in [11, 12]) to make an
indirect study of µp through its associated n-series; that is, the formal power series [n](x)
inductively defined by [n + 1](x) = µp([n](x), x), with [0](x) = 0. Since BP is p-local,
the n-series carries the same information as the pk-series, where k = ν(n) is the highest
power of p dividing n. We will focus on the latter series. By sparseness it takes the form

[pk](x) =
∑
s≥0

ak,s x s̄, (1)

where s̄ will stand for s(p − 1) + 1 and where ak,s ∈ BP2s(p−1) is the s-th (nontrivial)
coefficient. Thus each ak,s is a polynomial

ak,s =
∑

ck,s,I v
I (2)

with p-local coefficients ck,s,I . The summation is over sequences I = (i1, i2, . . .) of non-
negative integers, almost all zero, where v I stands for the monomial v

i1
1 v

i2
2 . . ..

Remark 1.1 We prove in [12] that each coefficient ck,s,I (and therefore ak,s itself ) is
divisible by pµk,s , where

µk,s = ks〈0〉 + (k − 1)s〈1〉 + · · · + s〈k−1〉. (3)

Here and in what follows, for a non-negative integer s we write s〈i〉 for the i th coefficient
in the p-adic decomposition of s̄ and set

αs = s〈0〉 + s〈1〉 + · · · . (4)

As an immediate consequence of Theorem 1.2 below, we see that pµk,s+1 does not divide
ak,s , that is, µk,s is in fact the highest power of p dividing ak,s .

Theorem 1.2 Let µk,s be defined as in (3) and let λk,s be defined by

(p − 1)λk,s = −1 + s〈0〉 + ps〈1〉 + · · · + pks〈k〉 + pk−1
(
s〈k+1〉 + s〈k+2〉 + · · · ). (5)

Then, up to p-local units, the monomial v Ik,s shows up in (2) with coefficient pµk,s . Here
Ik,s = (λk,s, i2,k,s, i3,k,s, . . .), where i j,k,s = pk−1s〈 j+k−1〉, for j ≥ 2.

Remark 1.3 In our notation 1 ≡ s̄ ≡ αs modulo p − 1, so that λk,s above is indeed an
integer. We observe that ak,s is never divisible by v

pk

j (in fact by v
p
j in view of the case

ϕ = 1 in Theorem 1.4 below) if j ≥ 2; however, any large power of v1 divides v Ik,s for a
suitable value of s.

The monomial in ak,s described by Theorem 1.2 is in fact part of a general pattern: our
main result, Theorem 1.4 below, generalizes Theorem 1.2 by identifying k monomials in
each ak,s (which may not be all different, for instance for small values of s; however, in the
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typical situation, Theorem 1.4 does detect k different monomials). The following notation
helps to describe the new monomials. For s ≥ 0 and 1 ≤ ϕ ≤ k set

µϕ,k,s = ks〈0〉 + (k − 1)s〈1〉 + · · · + (k − ϕ + 1)s〈ϕ−1〉
+ (k − ϕ)

(
s〈ϕ〉 + s〈ϕ+1〉 + · · · ), (6)

(p − 1)λϕ,s = −1 + s〈0〉 + ps〈1〉 + · · · + pϕs〈ϕ〉 + pϕ−1
(
s〈ϕ+1〉 + s〈ϕ+2〉 + · · · ) (7)

and

Iϕ,s = (λϕ,s, i2,ϕ,s, i3,ϕ,s, . . .), (8)

where i j,ϕ,s = pϕ−1s〈 j+ϕ−1〉 for j ≥ 2. Note that for ϕ = k these definitions extend the
corresponding ones in (3) and in Theorem 1.2.

Theorem 1.4 For s ≥ 0, 1 ≤ ϕ ≤ k and up to p-local units, the monomial v Iϕ,s shows
up in (2) with coefficient pµϕ,k,s .

It is to be observed that, as suggested by the notation, the monomial v Iϕ,s is independent
of k and, therefore, shows up in every ak,s with k ≥ ϕ. Moreover, while Theorem 1.4 claims
that the coefficient of this monomial is of the form cϕ,k,s pµϕ,k,s in ak,s , with cϕ,k,s a p-local
unit, Proposition 3.5 below computes the actual mod-p value of cϕ,k,s which, in particular,
turns out to be independent of ϕ and k.

As for the methods, the proof of Theorem 1.4 requires using suitable “weight” filtrations
Wϕ (1 ≤ ϕ ≤ k) in BP∗ (Section 2) which are slight variations of the usual filtration by
powers of the invariant prime ideal (p, v1, v2, . . .). In more detail, the formal logarithm for
µp yields an inductive formula for the coefficients of the pk-series. In the bigraded object
BP∗/Wϕ associated to Wϕ , this gives an expression for ak,s in terms of “highly” p-divisible
terms together with the monomial cϕ,k,s pµϕ,k,s v Iϕ,s in Theorem 1.4 (Section 3). Up to this
point the methods are purely algebraic. The combinatorics arise in describing the p-local
unit cϕ,k,s . This requires a determination of the mod p values of the following combinatorial
function (Section 4).

Definition 1.5 For s ≥ 0 let φ(s) be the number of ways in which s̄ distinct objects can
be partitioned into p unlabeled subsets each having size congruent with 1 modulo p − 1.

Remark 1.6 The function φ is a modified version of the usual definition for Stirling
numbers of the second kind as the number of equivalence relations defined on a set: we are
imposing an extra condition on the size of each class. For instance φ(0) = 0, φ(1) = 1 and
φ(2) = ( 2p−1

p ). Note that the last two agree modulo p. This is a general fact which will be
essential for our work.

Proposition 1.7 For s ≥ 1, φ(s) ≡ 1 (mod p).

This result and Proposition 3.5 solve the two main combinatorial problems left open
in [19]. Up to the author’s knowledge, Proposition 1.7 has not appeared in the literature
before.1 The author’s original proof used a rather involved induction argument which had
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the advantage of relating Propositions 1.7 and 3.5 to the same combinatorial phenomenon.
Later on, Ira Gessel and Martin Klazar independently suggested a proof of Proposition 1.7
based on a direct analysis with the exponential generating function of φ. The simple and
elegant proof presented here was suggested by one of the reviewers assigned to the original
version of this work.

In an appendix we have briefly addressed two points: (potential) applications and (pos-
sible) extensions for the theory of formal groups and, in particular, the results in this paper.

2. The weight filtrations

Let log(x) = ∑
s≥0 ms x ps ∈ (BP∗ ⊗ Q)[[x]] be the formal logarithm for the universal p-

typical formal group µp [16]. By expanding both sides of the relation log([pk](x)) =
pk log(x) and equating coefficients we get the inductive relation

−ak,s =
∑

mi

(
pi

U

)
aU

k − pkδs (9)

where δs = mn if s̄ = pn , and δs = 0 otherwise. The sum is taken over i ≥ 1 and over
sequences U = (u0, u1, . . .) of non-negative integers satisfying the two conditions

pi = u0 + u1 + u2 + · · · , (10)

s̄ = 0̄u0 + 1̄u1 + 2̄u2 + · · · . (11)

We use the short hand aU
k for the product au0

k,0au1
k,1 · · ·, and ( pi

U ) = ( pi

u0,u1,...
) stands for the

multinomial coefficient. We distill information from (9) through the following family of
filtrations in BP∗ ⊗ Q.

Definition 2.1 Fix a positive integer ϕ and let ν : Q → Z be the usual p-valuation; that
is, ν(q) stands for the highest power of p “dividing” a given rational number q.

(a) The ϕ-weight of a monomial qv
1
1 v

2
2 · · · vn

n ∈ BP∗ ⊗ Q is ωϕ(qv
1
1 v

2
2 · · · vn

n ) =
pϕ−1ν(q) + ∑n

i=1 i . More generally, the ϕ-weight of an element v ∈ BP∗ ⊗ Q, de-
noted by ωϕ(v), is defined as the smallest of the ϕ-weights of monomials in v. We agree
to set ωϕ(0) = ∞.

(b) The ϕ-weight filtration Wϕ = {Wϕ, j } j∈Z in BP∗ ⊗ Q is defined by Wϕ, j = {v ∈
BP∗ ⊗ Q : ωϕ(v) ≥ j}.

For n ≥ 0, ωϕ(mn) can be inductively computed from the formula pmn = ∑n
i=0 miv

pi

n−i
[31, A.2.2.2]. The properties we need are summarized in the following result. For p = 2
the proof is given in [12] and this immediately generalizes to p > 2. We omit the details.

Proposition 2.2 For a positive integer i let g(i) = (pi − 1)/(p − 1).
(a) ωϕ(uv) = ωϕ(u) + ωϕ(v), for u, v ∈ BP∗ ⊗ Q. In particular, the ϕ-weight filtration is

a multiplicative decreasing filtration in BP∗ ⊗ Q.
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(b) ωϕ(mn) = g(n) − npϕ−1, for 0 ≤ n ≤ ϕ − 1.
(c) ωϕ(mn) ≥ g(ϕ − 1) − (ϕ − 1)pϕ−1, for n ≥ ϕ − 1.

The following is a more explicit statement of Theorem 1.4. The proof is the crux of this
paper.

Theorem 2.3 For s ≥ 0 and 1 ≤ ϕ ≤ k let µϕ,k,s, λϕ,s and Iϕ,s be as defined in (6)–(8).
Then the ϕ-weight filtration of ak,s, ωϕ,k,s for short, is given by

ωϕ,k,s = pϕ−1µϕ,k,s + λϕ,s + pϕ−1
(
s〈ϕ+1〉 + s〈ϕ+2〉 + · · · ). (12)

Furthermore, ak,s ≡ cs pµϕ,k,s v Iϕ,s modulo (pµϕ,k,s+1) ∩ Wϕ,ωϕ,k,s + Wϕ,ωϕ,k,s+1, where cs is a
p-local unit.

Thus, the monomial cs pµϕ,k,s v Iϕ,s above captures both the the p-divisibility and the ϕ-
weight of ak,s in the sense that any other monomial in (2) either has a larger ϕ-weight or
a larger p-divisibility. Note by the way that only the mod-p value of cs is relevant here. It
will be described in Proposition 3.5.

The following alternative expression for ωϕ,k,s will be useful in the course of proving
Theorem 2.3.

Lemma 2.4 Set Aϕ,s = ∑ϕ−1
j=0(pϕ−1(p − 1)(ϕ − j) − pϕ + p j )s〈 j〉 and dϕ,k = pϕ +

pϕ−1(p − 1)(k − ϕ), then (p − 1)ωϕ,k,s = −1 + dϕ,kαs + Aϕ,s .

Proof: From (12), (6), (7) and (4) (in that order) we get

(p − 1)ωϕ,k,s

= (p − 1)pϕ−1µϕ,k,s + (p − 1)λϕ,s + (p − 1)pϕ−1
∑

j≥ϕ+1

s〈 j〉

= (p − 1)pϕ−1

(
ϕ−1∑
j=0

(k − j)s〈 j〉 + (k − ϕ)
∑
j≥ϕ

s〈 j〉

)

− 1 +
ϕ∑

j=0

p j s〈 j〉 + pϕ−1
∑

j≥ϕ+1

s〈 j〉 + (p − 1)pϕ−1
∑

j≥ϕ+1

s〈 j〉

= (p − 1)pϕ−1

(
ϕ−1∑
j=0

(k − j)s〈 j〉 + (k − ϕ)
∑
j≥ϕ

s〈 j〉

)
− 1 +

ϕ−1∑
j=0

p j s〈 j〉 + pϕ
∑
j≥ϕ

s〈 j〉

= −1 + (pϕ−1(p − 1)(k − ϕ) + pϕ)αs

+
ϕ−1∑
j=0

(−pϕ−1(p − 1)(k − ϕ) − pϕ + (p − 1)pϕ−1(k − j) + p j )s〈 j〉.

We close the section by recalling a few auxiliary technical tools. The first one is a
well known relation (see for instance [43]); the last two are Lemmas 7 and 9 in [19] and
Lemma 2.8 in [12].
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Lemma 2.5 Let m have p-adic decomposition m = ∑
i≥0 mi pi , then m = (p−1)ν(m!)+

α(m), where α(m) = ∑
i≥0 mi .

Lemma 2.6 (Johnson [19]) With the notation of (4) and (11) we have αs ≤ α0α(u0) +
α1α(u1) + · · ·. In the presence of (a) below, the above inequality is in fact an equality if
and only if condition (b) below holds.
(a) ut < p, for all t ≥ 0, and
(b) s〈 j〉 = 0〈 j〉u0 + 1〈 j〉u1 + · · ·, for all j ≥ 0.

Lemma 2.7 Let  ∈ N and assume given c0 ≥ c1 ≥ · · · ≥ c−1 ≥ 0. If
∑

j≥0 ε j p j =∑
j≥0 e j p j , where ε j ≥ 0 and 0 ≤ e j ≤ p −1 for j ≥ 0, and where only finitely many ε j ’s

and e j ’s are non-zero, then c0ε0 + c1ε1 + · · · + c−1ε−1 ≥ c0e0 + c1e1 + · · · + c−1e−1.

3. Filtering the coefficients

The calculations in this section are rather technical, they transform the algebraic information
in (9) into a combinatorial problem which will be tackled in Section 4.

Lemma 3.1 Let ωϕ,k,s be as defined in (12).
(a) Consider a summand σ = mi (

pi

U )aU
k in (9). Then ωϕ(σ ) ≥ ωϕ,k,s . This is a strict

inequality provided either one of conditions (a) or (b) in Lemma 2.6 fails.
(b) ωϕ(ak,s) ≥ ωϕ,k,s .

Proof: When s̄ = pn , Proposition 2.2 implies ωϕ(pkmn) ≥ ωϕ,k,s ; therefore part (b)
follows from part (a) and (9). We now prove part (a) by induction over s, the case s = 0
being vacuously true. Since pi mi lies in the i th power of the ideal (p, v1, v2, . . .) (see
[41]) we have i ≤ ωϕ(pi mi ) = ipϕ−1 + ωϕ(mi ), in view of Proposition 2.2(a). Thus
ωϕ(mi ) ≥ i(1 − pϕ−1) and then

ωϕ

(
mi

(
pi

U

))
≥ i(1 − pϕ−1) + pϕ−1

(
ν(pi !) −

∑
t≥0

ν(ut !)

)

= i(1 − pϕ−1) + pϕ−1(pi − 1)

p − 1
− pϕ−1

∑
t≥0

ν(ut !). (13)

On the other hand, Proposition 2.2 and Lemmas 2.4–2.6, together with (10) and the inductive
hypothesis yield

(p − 1)ωϕ

(
aU

k

) ≥ (p − 1)
∑
t≥0

utωϕ,k,t =
∑
t≥0

ut (−1 + dϕ,kαt + Aϕ,t )

= −pi + dϕ,k

∑
t≥0

((p − 1)ν(ut!) + α(ut ))αt +
∑
t≥0

ut Aϕ,t

≥ −pi + dϕ,k

∑
t≥0

(p − 1)ν(ut!)αt + dϕ,kαs +
∑
t≥0

ut Aϕ,t . (14)



MODIFIED STIRLING NUMBERS 81

But from (11) we see
∑

j≥0 s〈 j〉 p j = ∑
t≥0(

∑
j≥0 t〈 j〉 p j )ut = ∑

j≥0(
∑

t≥0 ut t〈 j〉)p j , so
that Aϕ,s ≤ ∑ϕ−1

j=0[(pϕ−1(p − 1)(ϕ − j) − pϕ + p j )
∑

t≥0 ut t〈 j〉] = ∑
t≥0 ut Aϕ,t , in view

of Lemma 2.7. Therefore, with σ as in the hypothesis, (13) and (14) now give

(p − 1)ωϕ(σ ) ≥ i(p − 1)(1 − pϕ−1) + pi (pϕ−1 − 1) − pϕ−1 + dϕ,kαs + Aϕ,s

+ (p − 1)(−pϕ−1 + dϕ,k)
∑
t≥0

ν(ut!)

≥ i(p − 1)(1 − pϕ−1) + pi (pϕ−1 − 1) − pϕ−1 + dϕ,kαs + Aϕ,s (15)

≥ −1 + dϕ,kαs + Aϕ,s = (p − 1)ωϕ,k,s, (16)

in view of Lemma 2.4 again. The proof is completed by noticing that inequality (15) is strict
when condition (a) in Lemma 2.6 fails; otherwise, inequality (14) is strict when condition
(b) in Lemma 2.6 fails.

Remark 3.2 In view of Lemma 3.1, the proof of Theorem 2.3 depends only on establishing
the required congruence modulo the larger ideal (pµϕ,k,s+1) + Wϕ,ωϕ,k,s+1.

Corollary 3.3 Modulo the ideal in Remark 3.2, (9) simplifies to −ak,s ≡ ∑
m1( p

U )aU
k −

pkδs, where the sum is taken over sequences U which satisfy (10) ( for i = 1) as well as
conditions (a) and (b) in Lemma 2.6.

Proof: Lemma 3.1 gives −ak,s ≡ ∑
mi (

pi

U )aU
k − pkδs modulo ϕ-filtration larger than

ωϕ,k,s , where the summation is over i ≥ 1 and over sequences U satisfying (10) as well as
parts (a) and (b) in Lemma 2.6. Observe that there can not be any such sequence U when
αs = 1—implying the desired conclusion in this case. Indeed, with s̄ = pn and if u is a
positive term in U , then for each j ≥ 0 with 〈 j〉 > 0, the relation 0〈 j〉u0 + 1〈 j〉u1 + · · ·
+ 〈 j〉u + · · · = s〈 j〉 = δ( j, n) (Kronecker’s delta) implies 〈 j〉 = u = 1 and j = n.
This means ̄ = pn , or  = g(n) where g is as in Proposition 2.2, so that ug(n) = 1 and
ur = 0 for r �= g(n). But this is incompatible with (10). Thus we can assume αs > 1.
Then, for ϕ = 1 the desired conclusion follows directly from Eq. (37) in [19], whereas for
ϕ ≥ 2 it follows from the proof of Lemma 3.1 with the added observation that the inequality
i(p − 1)(1 − pϕ−1) + pi (pϕ−1 − 1) − pϕ−1 ≥ −1 used in (16) is strict for i ≥ 2.

Although the congruence in Corollary 3.3 above would seem to be circularly giving some
ak,s in terms of all other ak,t , t ≥ 0, it is actually inductive (on αs): in view of condition (b)
in Lemma 2.6, the U th summand in that congruence must satisfy αs = ∑

t≥0 αt ut , so that
for any nontrivial factor aut

k,t (that is, one with ut �= 0) we have αt < αs in view of (10).
Thus, the next result will ground an inductive proof for Theorem 2.3.

Proposition 3.4 For s̄ = pn the congruence in Theorem 2.3 (modulo the ideal in
Remark 3.2) holds with cs = 1.

Proof: Assume first n ≤ ϕ. By definition µϕ,k,s = k − n, λϕ,s = g(n) and ωϕ,k,s = (k −
n)pϕ−1+g(n), where g(n) is as in Proposition 2.2. Then the desired congruence follows from
ak,s ≡ pk−nv

g(n)
1 modulo pk−n+1, which is the conclusion of Corollary 2.6 in [12]. Assume
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now n > ϕ, so that µϕ,k,s = k −ϕ, λϕ,s = g(ϕ−1) and ωϕ,k,s = pϕ−1(k −ϕ+1)+g(ϕ−1).
Now the desired congruence is

ak,s ≡ pk−ϕv
g(ϕ−1)
1 v

pϕ−1

n−ϕ+1 mod (pk−ϕ+1) + Wϕ,ωϕ,k,s+1. (17)

Under our notation, Lemma 11 in [19] translates as ak,s ≡ pk−1a1,s modulo W1,k+1 which,
for ϕ = 1, implies (17) in view of the relations ω1,k,s = k and a1,s ≡ vn modulo W1,2—the
latter being a standard consequence of the formal sum expression [2]

[p](x) =
∑
i≥0

µp

vi x
pi
. (18)

Thus we further assume ϕ ≥ 2 (in particular k ≥ 2). Consider the inductive equation

[pk](x) = [pk−1]([p](x)) =
∑
j≥0

ak−1, j ([p](x)) j(p−1)+1 . (19)

By Remark 1.1, ak−1, j is divisible by pk−ϕ+1 unless j(p − 1) + 1 = rpϕ−1 for some r > 0.
But in such a case, ωϕ(ak−1, j ([p](x)) j(p−1)+1) ≥ 1+ rpϕ−1 ≥ ωϕ,k,s +1, for r > k −ϕ +1,
while if 2 ≤ r ≤ k − ϕ + 1 (so that ϕ < k), Lemma 3.1(b) gives

ωϕ

(
ak−1, j ([p](x)) j(p−1)+1

)
≥ ωϕ,k−1, j + rpϕ−1 = pϕ−1

(
(k − 1) j〈0〉 + (k − 2) j〈1〉 + · · · + (k − ϕ) j〈ϕ−1〉

+ (k − ϕ − 1)
(

j〈ϕ〉 + j〈ϕ+1〉 + · · · )) + 1

p − 1

(−1 + j〈0〉 + pj〈1〉 + · · · + pϕ j〈ϕ〉

+ pϕ−1
(

j〈ϕ+1〉 + j〈ϕ+2〉 + · · · )) + pϕ−1
(

j〈ϕ+1〉 + j〈ϕ+2〉 + · · · ) + rpϕ−1

which is easily verified to be larger than ωϕ,k,s (for this it is convenient to consider the three
cases ν(r ) = 0, ν(r ) = 1 and ν(r ) ≥ 2). Thus, (19) becomes

[pk](x) ≡ ak−1,g(ϕ−1)([p](x))pϕ−1
mod (pk−ϕ+1) + Wϕ,ωϕ,k,s+1. (20)

Now, a second application of [12, Corollary 2.6] yields ak−1,g(ϕ−1) ≡ pk−ϕv
g(ϕ−1)
1 modulo

pk−ϕ+1; therefore, in terms of the µp-formal sum expression (18), the right hand side of (20)
transforms as

ak−1,g(ϕ−1) ([p](x))pϕ−1 ≡ pk−ϕv
g(ϕ−1)
1

(∑
j≥0

µp
v j x

p j

)pϕ−1

mod (pk−ϕ+1)

≡ pk−ϕv
g(ϕ−1)
1

(∑
j≥0

v j x
p j

)pϕ−1

mod Wϕ,ωϕ,k,s+1

≡ pk−ϕv
g(ϕ−1)
1

∑
j≥0

v
pϕ−1

j x p j+ϕ−1
mod (pk−ϕ+1).
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All together gives [pk](x) ≡ pk−ϕv
g(ϕ−1)
1

∑
j≥0 v

pϕ−1

j x p j+ϕ−1
modulo (pk−ϕ+1)+Wϕ,ωϕ,k,s+1,

and (17) follows by comparing coefficients of the pnth power of x .

Proof of Theorem 2.3: Let αs ≥ 2 and pick a sequence U as in Corollary 3.3. Using (6),
(7), (8), (10) with i = 1, (12) and condition (b) in Lemma 2.6 we easily get

(i)
∑

t≥0 utλϕ,t = −1 + λϕ,s ,
(ii)

∑
t≥0 ut i j,ϕ,t = i j,ϕ,s ,

(iii)
∑

t≥0 utµϕ,k,t = µϕ,k,s and, therefore,
(iv)

∑
t≥0 utωϕ,k,t = −1 + ωϕ,k,s .

Since ν( p
U ) = 1 and pm1 ≡ v1 mod p [41], we inductively see that the summand m1( p

U )aU
k

in the congruence of Corollary 3.3 contributes with 1
p ( p

U )(
∏

t≥0 cut
t )pµϕ,k,s v Iϕ,s in the ex-

pression for −ak,s modulo the ideal in Theorem 2.3. The proof is completed by the next
result.

Proposition 3.5 Let cs ∈ Z/p be defined (inductively on αs) by cs = 1 if αs = 1, and
cs = − ∑ 1

p ( p
U )

∏
t≥0 cut

t for αs > 1, where the sum is taken over sequences U as in

Corollary 3.3. Then cs = (
∏

j≥0 s〈 j〉!)−1.

The proof of this result is deferred until we had proved Proposition 1.7 in the next and
final section.

4. Modified Stirling numbers

For a ≥ 1 let �a stand for the permutation group (acting on the left) of the set [a] =
{1, 2, . . . , a}. For an equivalence relation ∼ on [a] and a permutation σ ∈ �a consider the
equivalence relation ∼σ given so that i ∼σ j precisely when σ (i) ∼ σ ( j). This produces a
(right) action of �a on the set Ra of equivalence relations on [a]. Now, for a prime number
p and a positive integer s set a = s̄ = s(p − 1) + 1 and consider the set �(s) ⊆ Rs̄

consisting of those equivalence relations having exactly p equivalence classes each one of
which has size congruent with 1 modulo p − 1 (thus φ(s) in Definition 1.5 is the size of
�(s)). It is clear that �(s) is closed under the action of �s̄ . We consider the restricted action

�(s) × Z/p → �(s) (21)

under the usual group monomorphisms Z/p ↪→ �p ↪→ �s̄ . As �(1) consists of a single
point, the action of Z/p on �(1) is trivial; however, the next result (whose straightforward
proof is included just for completeness) shows that the situation is certainly different for
s ≥ 2.

Lemma 4.1 Let s ≥ 2. The orbit of ∼ ∈ �(s) reduces to {∼} if and only if i ∼ j for all
i, j ∈ [p].
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Proof: It is clear from the construction that, when [p] is contained in some equivalence
class of ∼, the relation σ (i) ∼ i holds for any i ∈ [s̄] and any σ ∈ Z/p so that, in particular,
∼σ = ∼. Conversely, assume ∼σ = ∼ for all σ ∈ Z/p, but i �∼ i +1 for i ∈ [p−1]. Then
for any j ∈ [p−1] choose σ j ∈ Z/p with σ j (i) = j and observe i �∼ i +1 ⇒ i �∼σ j i +1 ⇒
j = σ j (i) �∼ σ j (i + 1) = j + 1. Since s ≥ 2, there are j ∈ [p] and k > p with j ∼ k and
take σ ∈ Z/p to be the usual generator if j < p, but to be the inverse of the usual generator
otherwise (so that j �∼ σ ( j) as shown above). Now, j ∼ k ⇒ j ∼σ k ⇒ σ ( j) ∼ σ (k) = k.
But the last relation is incompatible with k ∼ j �∼ σ ( j).

Proof of Proposition 1.7: Let s ≥ 2 and consider the map θ :Rs̄ → Rs−1 given by
restriction of equivalence relations under the inclusion ι:

[
s − 1

] → [s̄], where ι(1) = 1
and ι() =  + p − 1, for  ≥ 2. With �′(s) standing for the set of elements in �(s) whose
orbit under (21) is a singleton, Lemma 4.1 claims that the restriction of θ to �′(s) is a
one-to-one map onto �(s − 1). But p is prime, so that any Z/p-orbit in �(s) either is a
singleton or has size p. Therefore, in a mod-p counting of �(s), we can throw away the
latter orbits and obtain φ(s) ≡ |�′(s)| = φ(s − 1) modulo p. The result follows since, as
observed in Remark 1.6, φ(1) = 1.

Our approach to Proposition 3.5 requires a generalized version of the above combinatorial
situation: we want the same sort of partitions, however, now the objects to be partitioned
admit repetitions. We set up the situation in detail. For s ≥ 0 and j ≥ 0 assume given a set Tj

consisting of s〈 j〉 distinct elements, which we refer to as having “type” j , so that Ti ∩ Tj = ∅
for i �= j . (We keep the conventions in Remark 1.1, so that Ti = ∅ for almost all i ; moreover
αs , the size of T = ⋃

j≥0 Tj , is congruent with 1 modulo p−1 in view of Remark 1.3). Let us

identify the set �( αs−1
p−1 ), denoted by �(T ) for simplicity, with the set of partitions of T into

p unlabeled sets each one having size congruent with 1 modulo p − 1. Likewise, let �R(T )
stand for the set of partitions as above but where we do not distinguish among elements
of T having the same type. There is an obvious surjective function π : �(T ) → �R(T )
obtained by neglecting any distinction among objects of the same type. As we shall see, the
proof of Proposition 3.5 demands, on the one hand, knowing the size of π−1({y}) for each
y ∈ �R(T ), and on the other, using the sequences U in Corollary 3.3 as a way to identify
elements in �(T ) with the same π -image. We start with the latter task, and for that matter,
we denote by S the set of sequences U satisfying (10) for i = 1, as well as conditions (a)
and (b) in Lemma 2.6.

Let τ be a block of an element in �(T ). For j ≥ 0 let τ〈 j〉 be the number of elements
in τ of type j . By construction,

∑
j≥0 τ〈 j〉—the size of τ—is congruent with 1 modulo

p − 1, thus there is a unique number t ≥ 0, called the “type distribution” of τ , such that
t̄ = ∑

j≥0 τ〈 j〉 p j . Note that t〈 j〉 = τ〈 j〉 as τ〈 j〉 ≤ s〈 j〉 < p. It is clear that two elements
x1, x2 ∈ �(T ) have the same π -image if and only if the blocks of x1 can be set into a
one-to-one correspondence with those of x2 so that corresponding blocks have the same
type distribution (such a situation will be referred as “x1 and x2 having the same type
distribution”). Now for x ∈ �(T ) set Ux = (u0, u1, . . .), where ut is the number of blocks
in x having type t . In these conditions (10) for i = 1 and condition (b) in Lemma 2.6
clearly hold, as well as the fact that 0 ≤ ut ≤ p for t ≥ 0. Moreover, if ut0 = p for some
t0 ≥ 0, there would be a type j ≥ 0 repeating at least p times, in contradiction to the
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fact that s〈 j〉 < p. Therefore the correspondence x �→ Ux defines a map ρ : �(T ) → S
which, by construction, is constant on each π−1({y}). In particular we get an induced map
ρ̄ : �R(T ) → S.

Lemma 4.2 ρ̄ is bijective.

Proof: It suffices to construct a map ν :S → �(T ) such that πνρ = π and ρ̄πν is the
identity onS (the former condition implies that πν is surjective; the latter that πν is injective
and, therefore, that (πν)−1 = ρ̄). Let U ∈ S have nonzero terms ut(1), ut(2), . . . , ut(r ). The
formulæ p = ∑r

i=1 ut(i) and s〈 j〉 = ∑r
i=1 ut(i)t(i)〈 j〉 mean we can choose a (numbered)

partition of Tj into p blocks in such a way that the first ut(1) blocks have size t(1)〈 j〉, the
second ut(2) blocks have size t(2)〈 j〉, . . . , and the last ut(r ) blocks have size t(r )〈 j〉 (some
of the blocks may be empty, but we count them anyway). Then ν(U ) is formed by the
partition whose th block (1 ≤  ≤ p) consists of the elements in the th block of each
Tj for j ≥ 0—the typical combinatorial situation (p = 7, r = 3, ut(1) = 2, ut(2) = 3 and
ut(3) = 2) is illustrated in the picture below where the boxes on the j th row represent the
chosen partition of Tj , the union of the boxes on a given column form a block of ν(U ) and
the number inside boxes exemplifies their size.

T0

T1

T2

ut(1) ut(2) ut(3)

t(1)-type blocks of ν(U ) t(2)-type blocks of ν(U ) t(3)-type blocks of ν(U )

�

�

�

�

�

�

✻

�

�

�

✻

�

�

�

✻

�

�

�

✻

�

�

�

✻

�

�

�

✻

�

�

�

✻

t(1)〈0〉

t(2)〈1〉

t(3)〈2〉

As 1 ≡ t̄ = ∑
j≥0 t〈 j〉 p j ≡ ∑

j≥0 t〈 j〉 modulo p − 1, ν(U ) is indeed an element in �(T ).
Then the relation ρν = 1S is immediate, while the relation πνρ = π follows from the
observation that, for any x ∈ �(T ), νρ(x) has been constructed so to have the same type
distribution as x .

Proof of Proposition 3.5: We proceed by induction on αs , the result being obvious for
αs = 1. For αs > 1 Wilson’s theorem gives

cs =
∑
U∈S

( ∏
t≥0

ut!

)−1 ∏
t≥0

cut
t . (22)

On the other hand, for U ∈ S and using the notation in the proof of Lemma 4.2, a straight-
forward counting shows that |ρ−1(U )|, the size of ρ−1(U ), is given by

1

ut(1)! · · · ut(r )!

∏
j≥0

(
s〈 j〉

t(1)〈 j〉, t(1)〈 j〉, . . . , t(1)〈 j〉, . . . . . . , t(r )〈 j〉, t(r )〈 j〉, . . . , t(r )〈 j〉

)
,

(23)
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where t(i)〈 j〉 repeats ut(i) times in the j th multinomial coefficient. Since ut = 0 for t �= t(i),
the product of the multinomial coefficients in (23) can be rewritten as(∏

j≥0

s〈 j〉!

) (∏
t≥0

(∏
j≥0

t〈 j〉!

)−ut
)

,

whose mod-p values agrees with(∏
j≥0

s〈 j〉!

) (∏
t≥0

cut
t

)
, (24)

in view of the inductive hypothesis and the observations in the paragraph just before
Proposition 3.4. Thus (22)–(24) yield

cs =
(∑

U∈S
|ρ−1(U )|

) (∏
j≥0

s〈 j〉!

)−1

.

The conclusion follows since, by Lemma 4.2 and Proposition 1.7,∑
U∈S

|ρ−1(U )| = |�(T )| ≡ 1 modulo p.

Appendix

It should be stressed how just a simple modification (Definition 2.1) of the standard fil-
tration by powers of the ideal (p, v1, v2, . . .) allows us to get so much information on the
polynomial structure of the coefficients in the pk-series. Yet, there are many more obvious
modified filtrations worth trying on. We believe that further modifications will eventually
shed considerable light toward a true global understanding of these algebraic objects. The
next lines are intended to stress the importance of such a goal; indeed, we briefly sample
areas which could (or even have) benefit(ted) from the results in this paper. Far from making
an exhaustive list of applications, our intention is just to pinpoint explicit situations directly
related to our work.

Number theory is perhaps the most natural area linked to the theory of formal groups,
and the relations have become abundant over the time. The text [16] gives an excellent
revision for known applications (up to the mid 70’s) of formal group theory into number
theory as well as into arithmetical and algebriac geometry. More recent applications to
cryptography, where it is important to have methods for computing the cardinality of the
group of rational points of elliptic curves defined over a finite field F , can be derived from
the results in [8]. In that work, formal group laws associated to elliptic curves are used to
give effective methods to compute isogenies (see also [3, 23] for further developments in
this direction). More generally, it is possible to associate formal group laws to algebraic
varieties. Most interesting cases seem to be one-dimensional formal groups arising from
Calabi-Yau varieties. For instance, the p-series—and in particular the pth coefficient—
contains information about the number of rational points on the variety over the field with
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p elements [14, 36, 37, 44]. Formal group theory has also proven to have close connections
to class field theory, offering alternative approaches which reveal remarkable properties of
number and local fields [10].

In combinatorics it is worth noticing the interrelation of formal group theory with umbral
calculus [6, 33]. As for applications in other areas of mathematics, the theory of formal
groups has played, in fact, a sort of unifying role. Since the 1986 conference at the IAS
in Princeton ([22], see also [35, 38])—whose original aim centered at (that time) recent
developments of elliptic genera and elliptic cohomology—it has became clear that geometry
and physics enter prominently into the subject [1, 30, 42]. In particular, and as already
noticed in the introduction, algebraic topology has seen deep connections to those areas via
the formal-group-grounds it shares with number theory.

We finish this brief survey with a bit more thorough revision of some aspects in algebraic
topology directly related to the results in this paper.

Right from the original work of Johnson [18] it was known that “half” the coefficients
in the 2-series were even (but not divisible by 4). It turns out that this information was
the key to compute in [9] BP-Euler theoretic obstructions for the existence of Euclidean
immersions of real projective spaces. The calculation led to what could be the most general
and strongest result known to date on this problem of differential topology and, consequently,
was a motivation for the development of this paper. Indeed, the 2-divisibility properties for
the 2k-series obtained here (or in [12]) were used in [13] to compute the corresponding
obstructions for the existence of Euclidean immersions of 2-torsion lens spaces, extending
in part the main result in [9].

Another (far reaching) connection with algebraic and differential topology starts with
the study of bordism classes of free (Z/p)n-actions on oriented manifolds. This problem
led Conner and Floyd [7] to consider the oriented bordism (MSO-homology) of (BZ/p)∧n ,
the iterated n-fold smash product of the classifying space for Z/p with itself. As they
noticed, the bottom “toral” class in these groups plays a fundamental role in the problem,
for its MSO∗ annihilator ideal In is generated by those bordism classes of oriented manifolds
admitting a free (Z/p)n-action. Conner and Floyd’s main geometric results can be recovered
provided a conjectured description of In holds (the so-called Conner-Floyd conjecture). For
this problem one can replace the Thom spectrum MSO by the Brown-Peterson spectrum BP
and, in these terms, the iterated n-fold tensor product (over BP∗) of BP∗(BZ/p) with itself
—where the p-series plays a major role—yields a first approximation to In . The Conner-
Floyd conjecture was proved in the early 80’s: In = (p, v1, v2, . . . , vn−1) [29, 32], and it
turns out that, together with detailed information about the p-series, the above description
of In leads in fact to a full description of the (additive) structure of the Brown-Peterson
homology of (BZ/p)∧n [20, 21]. The relevance of such a calculation has been confirmed
by Minami’s work [25–28] on the possible existence of framed manifolds of Kervaire
invariant 1 (that is, on the basic problem of understanding stable homotopy classes of
spheres detected in the 2-line of the classical Adams spectral sequence). Now, in view of
the basic role the p-series played in the above development, it would be interesting to see
to what extent the information in this paper for the pk-series can be used in a calculation of
BP∗(BZ/pk1 × · · ·× BZ/pkn ), as well as its implications in the stable homotopy groups of
spheres.
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Note

1. Some algebraic-combinatoric aspects of the poset of partitions with restricted block size has been studied in
[5, 15, 24, 39, 40].
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