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Abstract. The geometries studied in this paper are obtained from buildings of spherical type by removing all
chambers at non-maximal distance from a given element or flag. I consider a number of special cases of the
above construction chosen among those which most frequently appear in the literature, proving that the resulting
geometry is always simply connected but for three cases of small rank defined over GF(2) and GF(4). I also
compute the universal cover in those exceptional cases.
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1. Introduction

Geometries obtained from buildings of spherical type by removing all elements at non-
maximal distance from a given element or a flag, are met in the context of many interesting
characterizations and classifications. Many of them also appear in connection with embed-
dings of buildings of spherical type, as affine expansions of some of those embeddings (see
[16]). As shown in [16], the hull of an embedding corresponds to the universal cover of the
expansion of that embedding. In particular, an embedding is its own hull if and only if its
expansion is simply connected.

In this paper I consider a number of special cases of the construction sketched above,
proving that nearly all of the geometries obtained in those cases are simply connected. It is
likely that the same conclusion holds for more families of ‘far away’ geometries, different
from those studied here. In fact, I have only considered those families that either are related
to some of the embeddings discussed in [16] or include examples that have been investigated
by some authors in some contexts. Actually, my selection misses one family which however,
according to the above criteria, deserved to be studied, namely the case of the subgeometry
of a building of type F4 far from a given point or symp. I have not considered it simply
because I couldn’t find the right way to treat it.

We follow [13] for basic notions and general results on geometries and Tits [18] for build-
ings. In particular, according to [13], we assume all geometries to be residually connected
and firm, by definition.

We refer to chapters 8, 11 and 12 of [13] for m-covers, m-quotients and m-simple con-
nectedness, but we are only interested in 2- and (n − 1)-covers in this paper. We recall that
the (n − 1)-covers of a geometry of rank n are called topological covers in [13], but many
authors simply call them covers. We too do so in this paper. Accordingly, in the sequel, the
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universal cover of a geometry � of rank n is its universal (n − 1)-cover and we say that �

is simply connected if it is (n − 1)-simply connected.

1.1. The geometry far from a flag

Suppose � is a thick building of connected spherical type and rank at least 2. It is well
known that, given a flag F �= ∅ and a chamber C of �, there is a unique chamber CF ⊇ F
at minimal distance from C (Tits [18]). We denote the distance between C and CF by
d(C, F). For every nonempty flag X , the distance d(X, F) from X to F is the minimal
distance d(C, F) from F to a chamber C ⊇ X . We say that a flag X is far from F if
d(X, F) is maximal, compatibly with the types of F and X . We denote by Far�(F) the
substructure of � formed by the elements far from F , with the incidence relation inherited
from � but rectified as follows: two elements x, y of Far�(F) are incident in Far�(F) if
and only if they are incident in � and the flag {x, y} is far from F .

As � is thick, the structure Far�(F) is firm. It is known that Far�(F) is residually
connected (whence, it is a geometry) except for a few cases defined over GF(2) (Blok and
Brouwer [4]), but none of those exceptional cases will be met in this paper.

In the sequel we call Far�(F) a geometry of far away type, also a far away geometry,
for short. Before to state the results of this paper, we mention a few examples, focusing on
simple connectedness.

Example 1.1 Suppose � is a non-degenerate projective geometry of dimension n ≥ 3
and let A be a hyperplane or a point of �. Then Far�(A) is an affine geometry or the dual
of an affine geometry. In any case, Far�(A) is simply connected.

Example 1.2 With � as in Example 1, let F be a point-hyperplane flag of �. Then Far�(F)
is an affine-dual-affine geometry as in Van Nypelseer [19]. It follows from the main result
of [19] that Far�(F) is simply connected.

Example 1.3 Let � be a thick polar space of rank n > 2 and p a point of �. Then Far�(p)
is an affine polar space (Cohen and Shult [7]). Affine polar spaces are simply connected
(Pasini [12]; also Cuypers and Pasini [8] and [13, Proposition 12.50]). So, Far�(p) is simply
connected.

A similar conclusion holds when � is a building of type Dn and p is an element of �

corresponding to a point of the polar space � associated to �. Indeed, the subgeometry
of � corresponding to Far�(p) is an affine polar space and, as recalled above, affine polar
spaces are simply connected.

1.2. Main results

The geometries Far�(A), Far�(F) and Far�(p) of Examples 1.1, 1.2 and 1.3 are simply
connected. In this paper we obtain the same conclusion in a number of other cases. Explicitly,
the following are the results we shall prove.
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Theorem 1.1 Let � be a non-degenerate projective geometry of dimension n ≥ 3 and A
an element of � other than a point or a hyperplane. Then Far�(A) is simply connected.

Theorem 1.2 Let � be a thick polar space of rank n ≥ 3 and A a maximal singular
subspace of �. Namely t(A) = n − 1, where the nonnegative integers 0, 1, 2, . . . , n − 1
are taken as types, as follows:

Then Far�(A) is simply connected, except when n = 3 and � is either the symplectic variety
S(5, 2) of PG(5, 2) or the hermitean variety H(5, 4) of PG(5, 4).

Theorem 1.3 For n ≥ 4, let � be a thick building of type Dn and A an element cor-
responding to a maximal singular subspace of the polar space associated to �. That is,
t(A) = + or −, where the nonnegative integers 0, 1, 2, . . . , n − 3 and the symbols + and
− are taken as types, as follows:

Then Far�(A) is simply connected.

Theorem 1.4 For n ≥ 4, let � be a thick building of type Dn and F a flag of � of type
{+, −}, with types as in Theorem 1.4. Then Far�(F) is simply connected except when n = 4
and � is defined over GF(2).

Theorem 1.5 Let � be a thick building of type E6, with types 0, 1, 2, 3, 4, 5 as follows:

Then Far�(p) is simply connected for every 0-element p.

A few small cases are not covered by the previous theorems: Theorem 1.2 misses the cases
of � = S(5, 2) and � = H(5, 4). Theorem 1.5 misses the case of � = D4(2), the building
of type D4 over GF(2). The next theorem settles those exceptions.
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Theorem 1.6 With � = S(5, 2), H(5, 4) or D4(2), let X be a singular plane of � in the
first two cases and a {+, −}-flag in the third case. In any case, let �̃ be the universal cover
of � := Far�(X ). Then,

(1) if � = S(5, 2), then �̃ is a double cover;
(2) if � = H(5, 4), then �̃ is a 4-fold cover;
(3) if � = D4(2), then �̃ is a double cover.

Claim (2) of the above theorem is new whereas (1) and (3) are known (Baumeister, Meixner
and Pasini [2]). However, the proofs we will give of (1) and (3) are shorter than those of [2]
and, we presume, more perspicuous.

We recall that the universal 2-cover and the universal cover of a geometry of rank 3
are the same thing, but in higher rank cases the former is possibly larger than the latter.
Accordingly, a geometry of rank n > 3 might be simply connected without being 2-simply
connected. However, nearly all of the geometries considered in this paper are 2-simply
connected. Explicitly:

Corollary 1.7 All far-away geometries considered in Theorems 1.1, 1.4 and 1.5 are 2-
simply connected. The geometries of Theorem 1.2 are 2-simply connected provided that �

is neither the symplectic variety S(2n − 1, 2) of PG(2n − 1, 2) nor the hermitean variety
H(2n − 1, 4) of PG(2n − 1, 4). The geometries of Theorem 1.4 are 2-simply connected
provided their underlying field is different from GF(2).

According to the above corollary, the following exceptional cases need a separate discussion:

(1) � = Far�(A) as in Theorem 1.2, but � = S(2n − 1, 2);
(2) � = Far�(A) as in Theorem 1.2, but � = H(2n − 1, 4);
(3) � = Far�(F) as in Theorem 1.4, but � = Dn(2).

A description of the universal 2-cover �̃ of � is known in cases (1) and (3) (Baumeis-
ter, Meixner and Pasini [2]). In particular, �̃ is a 2k-fold cover with k = 2n − ( n+1

2 ) − 1
in case (1) and k = 2n−1− ( n

2 ) −1 in case (3). I will also offer a construction of �̃ for cases
(1) and (3) in Sections 9 and 10, which I think will clarify the descriptions given in [2]. A
construction of �̃ for � as in case (2) is also given in Section 9. In principle, it is possible
to exploit it to compute the size of �̃ but, regretfully, I have been able to accomplish that
computation only for n ≤ 4: When n = 3, �̃ is a 4-fold cover (Theorem 1.6(2)); when
n = 4, �̃ is a 28-fold cover.

As said at the beginning of this Introduction, I have not found the right approach to
investigate Far�(x) with � a thick building of type F4 and x a point or a symp of �. I only
mention a partial result, proved in [16] (Corollary 9.9):

Result 1.8 Suppose � is of type F4(p) for a prime p > 2 and Res(x) ∼= S(5, p). Then
Far�(x) is 2-simply connected.
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1.3. Organization of the paper

The rest of this introduction contains some references and the list of the diagrams of the
geometries of far-away type considered in the previous theorems.

A few general results and constructions to be used in this paper are recalled in Section 2.
Sections 3, 4, 5 and 7 contain the proofs of Theorems 1.1, 1.2, 1.4 and 1.5 respectively. We
will split the proof of Theorem 1.4 in two parts. The first part forms Section 6 and deals
with the generic case, where either the underlying field K of � is different from GF(2)
or K = GF(2) but � has rank n > 5. The case of � = D5(2) remains to consider, but
we pospone its discussion till Section 10. The proof of Corollary 1.7 is given in Section 8.
Claims (1) and (2) of Theorem 1.6 are proved in Section 9 and claim (3) is proved in
Section 10. Universal 2-covers for the exceptional cases (1), (2) and (3) mentioned after
Corollary 1.7 are discussed in Sections 9 and 10. The proof of Theorem 1.4 in the case of
� = D5(2), put aside in Section 6, will be obtained in Section 10 as a by-product of the
informations we will collect in that section on the universal 2-cover of Far�(F).

1.4. Remarks

Remark 1.9 A few special cases of some of our theorems have been earlier discussed
by a number of authors. For instance, Baumeister, Meixner and Pasini [2] consider the
special case of Theorem 1.2 where � is the non-singular orthogonal quadric Q(2n, 2) of
PG(2n, 2). Baumeister, Shpectorov and Stroth [3] consider the case of � = Q(2n, q) for
any q (but their argument works as well for the general case of Theorem 1.2).

The special case of Theorem 1.4 with � defined over a finite field is implicit in Munemasa
and Shpectorov [10] and Munemasa, Pasechnik and Shpectorov [11] (also in Hybrechts and
Pasini [9] when the underlying field of � is GF(2)).

When K = GF(q) with q > 2, the conclusion of Theorem 1.4 is contained in Baumeister
and Stroth [1], who obtained that result group-theoretically, whereas the case of q = 2 is
discussed by Baumeister, Meixner and Pasini [2].

Turning to Far�(A) with � = H(5, 4), let H be the collinearity graph of the dual of
� := Far�(A), having the planes and the lines of � as vertices and edges. Then H is
isomorphic to the hermitean forms graph over GF(4). A quadruple cover of H is described
by Brouwer, Cohen and Neumaier [5, p. 365]. That cover is in fact the collinearity graph
of the dual of the universal cover of �. A double cover of H is also described in [5]. It
corresponds to a (non simply connected) double cover of �.

Remark 1.10 The far-away geometries considered in the previous theorems belong to
the following diagrams, where • •Af stands for the class of affine planes, • •Af∗

is the class of dual affine planes and • •Af represents the class of affine generalized
quadrangles, which are geometries obtained from generalized quadrangles by removing a
maximal full subquadrangle, an ovoid or the star of a point (the latter is always the case
here). In all cases but Theorem 1.1 diagrams are given the orientation opposite to that used
in the statements of the previous theorems. In the first picture, k := n −1−d and d = t(A)
is the projective dimension of A.
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Remark 1.11 In the case considered in Theorem 1.1, if k = n − 1 − t(A) as above, then
the {0, 1, . . . , k −1}-truncation of Far�(A) is an attenuated space. So, Theorem 1.1 implies
that attenuated spaces of rank at least 3 are simply connected.

2. A selection of general results

2.1. Terminology and notation

As in [13], given an element x of a geometry �, we denote the type of x by t(x), but we
change the notation of [13] for residues, denoting the residue of x by Res�(x) (also Res(x)
if no ambiguity arises). The same notation will be used for flags. As in [13], given a subset
J �= ∅ of the type-set I of �, we denote by Tr−J (�) the geometry obtained from � by
removing all elements of type j ∈ J . We call Tr−J (�) the J -truncation of �. When J ⊂ I ,
we set Tr+J (�) := Tr−I\J (�) and we call it the J -cotruncation of �.

As in [13], we denote by D(�) the diagram graph of � (also called basic diagram of
�). Suppose that D(�) is connected. Denoted by I the set of types of � and given a type
0 ∈ I , let fr(0) be the neighbourhood of 0 in D(�). The 0-point-line system L0(�) of � is
the point-line geometry having the 0-elements of � as points and the flags of type fr(0) as
lines, with the incidence relation inherited from �. The collinarity graph of L0(�) will be
denoted by G0(�).

2.2. A criterion for simple connectedness

Given a flag F �= ∅ with 0 �∈ t(F), Res(F) is the direct sum of subgeometries corresponding
to the connected components of the graph induced byD(�) on I \t(F). In particular, denoted
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by I0 the connected component of 0 in that induced subgraph, the I0-cotruncation of Res(F)
is a direct summand of Res(F). We denote it by Res0(F). When fr(0) �⊆ t(F), Res0(F) has
rank at least 2 and we can consider its 0-point-line system L0(Res0(F)). We denote the
collinearity graph of L0(Res0(F)) by G0(F). When fr(0) ⊆ t(F), then Res0(F) has rank 1
(in fact, it is the point-set of a line of L0(�)). In that case G0(F) stands for the complete
graph over the set Res0(F).

We say that a closed path of G0(�) is good if it is a path of G0(F) for some nonempty
flag F . The following proposition, which immediately follows from [13, Theorem 12.64],
is the main tool we will use in this paper:

Proposition 2.1 Suppose that no two lines of L0(�) meet in more than one point. Then �

is simply connected if and only if every closed path of G0(�) splits in good closed paths.

2.3. Universal covers of shadow geometries

The geometry L0(�) coincides with the {0, 1}-cotruncation of a geometry of the same rank
as � but with a string as its diagram graph, usually called the 0-shadow geometry of � and
denoted by Sh0(�) (but we warn that the symbol Gr0(�) and the words grassmann geometry
are used in [13] instead of Sh0(�) and shadow geometry). We are not going to recall the
construction of Sh0(�) in general. We only consider the special case where � belongs to
a diagram as follows, where X1,X2, . . . ,Xn−3 and Y are classes of geometries of rank 2
different from generalized digons and 0, 1, . . . , n − 3, + and − are the types:

(1)

In this case the definition of Sh0(�) is a straightforward generalization of the construction
of the polar space associated to a Dn-building. The elements of Sh0(�) are the elements
and the {+, −}-flags of �. The elements of � of type i = 0, 1, . . . , n − 3 keep their type
in Sh0(�), those of type + and − form the class of (n − 1)-elements of Sh0(�) and the
{+, −}-flags are given the type n − 2 as elements of Sh0(�). The incidence relation of
Sh0(�) is inherited from �, except that two elements of type + and − are never incident in
Sh0(�). The geometry Sh0(�) belongs to the following diagram:

(2)

Note that the residues of Sh0(�) of type {n − 2, n − 1} are grids, as the order 1 at the right
end of (2) reminds us.

The following are contained in [14, Theorems 7 and 9] (see also Rinauro [17]):

Proposition 2.2 Let � be a geometry belonging to diagram (1). Then the universal cover
of Sh0(�) is the 0-shadow geometry of the universal cover of �. Suppose furthermore that
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Sh0(�) admits the universal 2-cover. Then � also admits the universal 2-cover and the
universal 2-cover of Sh0(�) is the 0-shadow geometry of the universal 2-cover of �.

Remark 2.3 If C is the chamber system of a geometry � of rank n > 3, we do not know
if the universal 2-cover of C necessarily comes from a geometry. When it does, then that
geometry is the universal 2-cover of � and we may say that � admits the universal 2-cover.
This remark explains why the existence of the universal 2-cover of Sh0(�) is put as an
hypothesis in the second part of Proposition 2.2. On the other hand, every geometry admits
the universal cover. So, no hypothesis like that is needed in the first part. We could drop it
from the second part too by rephrasing that statement in terms of chamber systems, but we
prefer not to concern ourselves with them in this paper. Anyhow, all geometries considered
in this paper admit the universal 2-cover. Indeed, for each of them, either we prove that it
is 2-simply connected, or we construct its universal 2-cover as a geometry.

2.4. Expansions of GF(2)-embeddings of matroids

In this section we discuss a special case of the theory of embeddings and expansions of [16],
taking GF(2)-vector spaces as codomains for the considered embeddings and assuming that
the geometries to embed are finite dimensional simple matroids (also called dimensional
linear spaces; see Buekenhout [6, Chapter 6]).

HenceforthM is a given simple matroid of finite dimension n ≥ 1, regarded as an n-tuple
M = (P,F1, . . . ,Fn−1), where P is the set of points and, for i = 1, 2, . . . , n − 1, Fi is
the set of i-dimensional flats, also called i-flats for short. In particular, the 1-flats are the
lines of M. We set L := F1 and F := ∪n−1

i=1 Fi .
Given a vector space V over GF(2), a GF(2)-embedding ε : M → V of M in V is an

injective mapping ε : P → V \ {0} such that ε(P) spans V and, for any two flats X, Y ∈ F ,
we have 〈ε(X )〉 ⊆ 〈ε(Y )〉 only if X ⊆ Y (where, regarding X as a subset of P , we write
ε(X ) for {ε(p)}p∈X ).

For X ∈ F , we put VX := 〈ε(X )〉. Also, for x ∈ P , we denote by Vx the 1-dimensional
subspace of V spanned by ε(x).

The expansion Exp(ε) of ε is the geometry of rank n + 1 defined as follows: The types
of Exp(ε) are the integers 0, 1, . . . , n; the vectors of V are the elements of Exp(ε) of type
0, which we also call points of Exp(ε); the elements of type 1 are the cosets in V of the
1-dimensional subspaces Vx for x ∈ P and the elements of type j = 2, 3, . . . , n are the
cosets of the subspaces VX in V , for X ∈ F j−1; the incidence relation of Exp(ε) is the
natural one, namely symmetrized inclusion.

Clearly, Res(v) ∼= M for every point v ∈ V of Exp(ε) and, given an element W = v+VX

of Exp(ε) of type j > 1, the {0, 1, . . . , j−1}-cotruncation Res0(W ) of Res(W ) is isomorphic
to Exp(εX ), where εX : Res0(X ) → VX is the restriction of ε to X . In particular, if all lines of
M have finite size s > 2, then the {0, 1}-residues of Exp(ε) are quotients of the point-graph
of the s-dimensional cube; explicitly, if d = dim(VL ) for L ∈ L, then Res0(v + VL ) is a
2s−d -fold quotient of that graph. If every line of M has just two points, then the {0, 1}-
residues of Exp(ε) are ordinary quadrangles.
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Example 2.1 Assume that the lines of M have size 3. If dim(VL ) = 3 for every L ∈ L,
then the {0, 1}-residues of Exp(ε) are isomorphic 3-dimensional cubes. If dim(VL ) = 2 for
every line L , then those residues are isomorphic to AG(2, 2), which may be regarded as the
quotient of the 3-cube by the antipodal relation.

Example 2.2 Suppose that, for every L ∈ L, |L| = 5, dim(VL ) = 4 and {Vx }x∈L is an
ovoid of PG(VL ) ∼= PG(3, 2) (compare Section 9, Lemma 9.4). Then the {0, 1}-residues
of Exp(ε) are isomorphic to the quotient of the 5-cube by the antipodal relation.

Let V̂ be a |P|-dimensional vector space over GF(2) and ι a given bijection from P to a
basis of V̂ . Clearly, ι is a GF(2)-embedding of M. We call it the free GF(2)-embedding
of M.

Every GF(2)-embedding of M is involved in the free embedding. More explicitly, given
a GF(2)-embedding ε : M → V , the mapping sending the image ι(x) of a point x ∈ P to
the vector ε(x) ∈ V , extends to a surjective linear transformation π : V̂ → V . As π maps
ι(X ) onto ε(X ), it maps the subspace V̂X := 〈ι(X )〉 of V̂ onto the subspace VX of V and,
denoted by K the kernel of π and by K X the kernel of the restriction of π to V̂X , we have

K X = K ∩ V̂X . (1)

Henceforth we assume n ≥ 2 and define:

K̃ := 〈K X 〉X∈F , K̃ (1) := 〈KL〉L∈L, Ṽ := V̂ /K̃ , Ṽ (1) := V̂ /K̃ (1).

We call K̃ and K̃ (1) the local kernel and the 1-local kernel of ε. The subspace K will be
called the global kernel of ε.

Clearly, K̃ (1) ≤ K̃ ≤ K and π = ϕ̃π̃ = ϕ̃(1)π̃ (1) where π̃ and π̃ (1) are the natural
projections of V̂ onto Ṽ and Ṽ (1), and ϕ̃ and ϕ̃(1) are the natural projections of Ṽ and Ṽ (1)

onto V . Therefore,

K̃ ∩ V̂X = K X for all X ∈ F, (2)

K̃ (1) ∩ V̂L = KL for all L ∈ L. (3)

Lemma 2.4 Regarded Ṽ , Ṽ (1) and the subspaces VX of V as additive groups and the
posets

A := ({VX }X∈F ∪ {Vx }x∈P , ⊆), A(1) := ({VL}L∈L ∪ {Vx }x∈P , ⊆)

as amalgams of groups, Ṽ is the universal completion of A and Ṽ (1) is the universal
completion of A(1).

Proof: Let U be the universal completion of A. As all groups VX are generated by
involutions, U is generated by involutions. Furthermore, as the points of M are mutually
collinear, any two generating involutions of U are contained in VL for some L ∈ L. So,
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they commute in VL . Hence U is an elementary abelian 2-group. It is now clear that U is a
homomorphic image of V̂ . The equality U = Ṽ follows from (2). By a similar argument,
except for using (3) instead of (2), one can prove that Ṽ (1) is the universal completion of
A(1).

We define the hull ε̃ and the 1-hull ε̃(1) of ε as the compositions of the free embedding ι

with the projections π̃ : V̂ → Ṽ and π̃ (1) : V̂ → Ṽ (1):

ε̃ := π̃ ι, ε̃(1) := π̃ (1)ι.

Both ε̃ and ε̃(1) are GF(2)-embeddings and we have ε = ϕ̃ε̃ = ϕ̃(1)ε̃(1). Also, π̃ = ψπ̃ (1)

and ϕ̃(1) = ϕ̃ψ , where ψ is the natural projection of Ṽ (1) onto Ṽ . Hence ε̃ = ψε̃(1).

Proposition 2.5 The geometries Exp(ε̃) and Exp(ε̃(1)) are respectively the universal cover
and the universal 2-cover of Exp(ε). Their deck groups are isomorphic to K/K̃ and K/K̃ (1),

respectively.

Proof: The claims on Exp(ε̃) and K/K̃ follow from Theorem 3.3 of [16] and the fact
that Ṽ is the universal completion of A (Lemma 2.4). The claims on Exp(ε̃(1)) and K/K̃ (1)

follow from Theorem 4.4 of [16], the fact that Ṽ (1) is the universal completion of A(1) and
the well known fact that matroids are 2-simply connected.

Corollary 2.6 The geometry Exp(ε) is simply connected if and only if K = K̃ . It is
2-simply connected if and only if K = K̃ (1).

(Trivial, by the second part of Proposition 2.5.) Corollary 2.6 is also helpful to compute K̃
in certain cases. Note first that, according to (1), for X, Y ∈ F we have K X ⊆ KY whenever
X ⊆ Y . Therefore, in any case:

K̃ = 〈KS〉S∈Fn−1 . (4)

Corollary 2.7 Suppose that, for a given k > 1 and every i = k, k + 1, . . . , n − 1, all
{0, 1, . . . , i}-residues of Exp(ε) are simply connected. Then

K̃ = 〈KS〉S∈Fk−1 . (5)

In particular, if all residues of Exp(ε) of type {0, 1, . . . , i} are simply connected for all
i = 2, 3, . . . , n − 1, then K̃ = K̃ (1).

Proof: As previously remarked, given an (i + 1)-element W = v + VX of Exp(ε), the
{0, 1, . . . , i}-cotruncation of Res(W ) is isomorphic to the expansion of the restriction εX of
ε to X . The conclusion follows by induction, applying (4) and Corollary 2.6 to K X , which
is the global kernel of εX .

Proposition 2.8 We have ε̃(1) = ι if and only if the set ε(L) is linearly independent for
every L ∈ L.
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Proof: The set ε(L) is independent if and only if KL = 0. The conclusion immediately
follows from this remark.

Corollary 2.9 If all lines of M have size 2, then ε̃(1) = ι.

Proof: If |L| = 2, then ε(L) only contains two vectors, whence it is independent. The
conclusion follows from Proposition 2.8.

3. Proof of Theorem 1.1

Let d = dim(A). By assumption, 0 < d < n − 1. We will apply Proposition 2.1 with the
points of � = Far�(A) taken as 0-elements. So, the lines of L0(�) are the lines of � that
miss A. We call them lines of �, for short.

Lemma 3.1 For every point p and every line L of �, at most one of the points of L is
non-collinear with p in �.

Proof: If p ∈ L there is nothing to prove. Suppose p �∈ L and let π be the plane of �

spanned by p and L . As L ∩ A = ∅, we have |π ∩ A| ≤ 1. Hence at most one of the lines
of π through p meets A.

Lemma 3.2 The graph G0(�) has diameter 2 and every closed path of G0(�) splits in
triangles.

Proof: Let (a, b, c, d) be a path of G0(�) with a �∼ c and b �∼ d, where ∼ stands
for the collinearity relation of �. Denoted by L the line of � through c and d, we have
L \ {c, d} ⊆ a∼ ∩ b∼ by Lemma 3.1. However, L \ {c, d} �= ∅, as |L| ≥ 3. Thus, there
exists a point collinear with all of a, b, c, d. Both claims of the corollary follow from this
remark.

Lemma 3.3 Every bad triangle of G0(�) splits in good triangles.

Proof: Every triangle of G0(�) is contained in plane of �. Furthermore, if a plane of �

contains a line of �, then it has at most one point in common with A. Thus, all planes
containing triangles of G0(A) meet A in at most a point.

When n − d = 2, a plane P of � belongs to � if and only if P ∩ A is a point. When
n − d > 2, P belongs to � if and only if P ∩ A = ∅. So, when n − d = 2 all triangles of
G0(�) are contained in planes of �, hence all of them are good.

Assume n − d > 2. Let {a, b, c} be a bad triangle of G0(�) and P = 〈a, b, c〉 the plane
of � spanned by it. Then P ∩ A is a point, say p. However, as n − d > 2, P is contained in
a 3-space S such S ∩ A = p. Clearly, given a point x ∈ S \ P , each of the planes 〈a, b, x〉,
〈b, c, x〉 and 〈a, b, x〉 misses A. So, each of the triangles {a, b, x}, {b, c, x} and {a, b, x} is
good.

Theorem 1.1 follows from Lemmas 3.2 and 3.3 via Proposition 2.1.
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4. Proof of Theorem 1.2

As noticed in Remark 1.9, a proof of Theorem 1.2 is given by Baumeister, Shpectorov and
Stroth [3]. However, as [3] has not yet appeared, we will prove that theorem here, for the
sake of completeness. Our proof is in fact very similar to that of [3].

The elements of � := Far�(A) are the points of � that do not belong to A and the
singular subspaces S of � such that S ∩ A = ∅. We keep for the elements of � the types
they have in � and their usual names, as point, line, plane, maximal singular subspace. We
denote by ∼ the collinearity relation of � keeping the symbol ⊥ for the collinearity relation
of �. If a, b are distinct collinear points of �, we denote by 〈a, b〉 the line of � through
them.

4.1. Preliminaries

If {a, b, c} is a triangle of G0(�) not contained in a line, then {a, b, c} is contained in
a unique plane 〈a, b, c〉 of �. The triangle {a, b, c} is good if and only if 〈a, b, c〉 ∩
A = ∅.

Lemma 4.1 If {a, b, c} is a bad triangle of G0(�), then 〈a, b, c〉 ∩ A is a point.

Proof: The plane 〈a, b, c〉 contains three lines of �, namely three lines of � that miss A.
Thus, 〈a, b, c〉 ∩ A cannot contain any line.

Lemma 4.2 Given in � a maximal singular subspace S and a point p, then p∼ contains
all points of p⊥ ∩ S but at most one.

Proof: Let S′ be the maximal singular subspace of � spanned by {p} ∪ (p⊥ ∩ S). Then
A ∩ (p⊥ ∩ S) = ∅, as S ∩ A = ∅. However, p⊥ ∩ S is a hyperplane of S′. Hence S′ ∩ A
contains at most one point. Consequently, at most one of the lines of S′ through p is missing
in �.

Lemma 4.3 The graph G0(�) has diameter 2.

Proof: Given two points a, b of �, let S be a maximal singular subspace of � containing
b. If a ∈ S, then a ∼ b. Otherwise, a∼ ∩ S �= ∅ by Lemma 4.2. Picked a point c ∈ a∼ ∩ S,
we have a ∼ c ∼ b.

Lemma 4.4 Every closed path of G0(�) splits in quadrangles and triangles.

Proof: By Lemma 4.3, every closed path of G0(�) splits in pentagons, quadrangles and
triangles. We shall prove that every pentagon splits in quadrangles and triangles.

Given five points a0, a1, a2, a3, a4 of � with ai ∼ ai+1 for 0 ≤ i ≤ 4 (indices computed
modulo 5), pick a maximal singular subspace S of � on the line 〈a2, a3〉. By Lemma 4.2,
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a∼
0 ∩ S contains at least one point, say b. Thus, the pentagon {a0, a1, a2, a3, a4} splits in

{a0, a1, a2, b}, {a0, a4, a3, b} and {a2, a3, b}.

So far, we have not distinguished between the cases of n > 3 and n = 3, but from now on
we must discuss them separately.

4.2. The case of n > 3

Suppose � has rank n > 3.

Lemma 4.5 Every quadrangle of G0(�) splits in triangles.

Proof: Given four points a0, a1, a2, a3 of � with ai ∼ ai+1 for i = 0, 1, 2, 3 (indices
computed modulo 4), pick a maximal singular subspace S of � containing 〈a1, a2〉. The sets
a⊥

0 ∩ S and a⊥
3 ∩ S are hyperplanes in the projective geometry Res(S). Hence a⊥

0 ∩ a⊥
3 ∩ S

contains at least one line L , as dim(S) = n − 1 ≥ 3. Clearly, L belongs to �, as S ∈ �.
By Lemma 4.2, for i = 0, 3 at most one point of L is missing in a∼

i ∩ S. Hence L contains
at least one point b ∈ a∼

0 ∩ a∼
3 . Thus, {a0, a1, a2, a3} splits in four triangles, namely the

triangles {ai , ai+1, b} for i = 0, 1, 2, 3.

Lemma 4.6 Every bad triangle of G0(�) splits in good triangles.

Proof: Let {a, b, c} be a bad triangle. By Lemma 4.1, 〈a, b, c〉 meets A in one point p.
Note that p does not belong to any of the lines 〈a, b〉, 〈b, c〉 or 〈c, a〉 as all these lines
belong to �. Let S be a maximal singular subspace of � containing 〈b, c〉. Then a �∈ S.
Consequently, a⊥ ∩ S is an (n − 2)-dimensional subspace of S. However, only one point of
a⊥ ∩ S is missing in a∼ and, as p �∈ �, that point is necessarily the intersection of 〈b, c〉
with the line 〈a, p〉 of �. As dim(a⊥ ∩ S) = n − 2 ≥ 2, a∼ ∩ S contains two lines L , M
containing b and c respectively and meeting in a point d. Clearly, each of the triangles
{a, b, d}, {a, c, d} and {b, c, d} is good.

The simple connectedness of � follows from Lemmas 4.4, 4.5 and 4.6 via Proposition 2.1.

4.3. The case of n = 3

In this subsection, n = 3 and � is neither S(5, 2) nor H(5, 4). Namely, every line of �

belongs to at least four planes. Given a plane P of � and a point or a line X , we denote by
pP (X ) the plane of � containing X ∪ (X⊥ ∩ P).

Lemma 4.7 Given a line L of �, all but one of the planes of � on L belong to �. The
missing plane meets A in one point.

Proof: The plane pA(L) is the missing one. Indeed L⊥ ∩ A is a point and that point
together with L span pA(L).
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Lemma 4.8 Given in � a line L and a point p �∈ L , one of the following occurs:
(1) p and L are coplanar in �.
(2) p∼ ∩ L = L \ {x} for a point x ∈ L. In this case p∼ ∩ P = L \ {x} for every plane

P ∈ Res�(L).
(3) p∼∩L = {x} for a point x ∈ L. In this case there exists at most one plane P0 ∈ Res�(L)

such that p∼ ∩ P0 = M \ {x0} for a line M of P0 on p and a point x0 ∈ M. If P is any
of the remaining planes of Res�(L), then p∼ ∩ P is a line through x.

(4) p∼ ∩ L = ∅. In this case p⊥ ∩ L is a point, say x, and for every plane P ∈ Res�(L),
we have p∼ ∩ P = M \ {x} for a line M of P on x.

Proof: If p and L are coplanar in �, then we have either (1) or (2) according to whether
the plane of � containing L and p belongs to � or not (see Lemma 4.7 for the latter case).
Suppose p⊥ ∩ L is a point, say x , and put L ′ := 〈p, x〉.

If L ′ ∈ � then we are in case (3). Given two planes P1, P2 ∈ Res�(L), let Mi := p⊥ ∩ Pi

and suppose that p∼ ∩ Pi misses a point xi ∈ Mi , for i = 1, 2. Let Li := 〈p, xi 〉. As xi �∼ p,
Li meets A in a point pi . Clearly, p1 ⊥ p2. Hence x1 ⊥ x2. Consequently, L ′ ∪ M1 ∪ M2

is contained in a singular subspace of �. However, this is impossible, as � has rank 3. We
avoid this contradiction only assuming that things are as described in the second part of (3).

Finally, suppose L ′ �∈ �. Then, for every plane P ∈ Res�(L), p and the line p⊥ ∩ P are
as in case (2) and the situation is as described in (4).

Lemma 4.9 Every quadrangle of G0(�) splits in triangles.

Proof: Let {a0, a1, a2, a3} be a quadrangle of G0(�), with ai ∼ ai+1 and ai �∼ ai+2 for
every i = 0, 1, 2, 3 (indices computed modulo 4). Let L be the line of � through a2 and a3.
We have three cases to examine.

Case 1. L ⊂ a⊥
0 ∩ a⊥

1 . Then both pairs (a0, L) and (a1, L) are as in case (2) of Lemma 4.8.
Hence a0 ∼ p ∼ a1 for some point p ∈ L and the quadrangle splits in the triangles
{a0, a1, p}, {a1, a2, p}, {a0, a3, p} and {a2, a3, p} (the latter being contained in L).

Case 2. a⊥
0 ∩L = a3 and a⊥

1 ∩L = a2. Then we are in case (3) of Lemma 4.8. By Lemma 4.7,
as � contains at least four planes on L , the geometry � contains at least three planes on L .
According to (3) of Lemma 4.8, for at least one of those planes, say P , both a∼

0 ∩ P and
a∼

1 ∩ P are lines. These lines meet in a point p. Thus, we can split {a0, a1, a2, a3} in four
triangles, namely {a0, a1, p}, {a1, a2, p}, {a0, a3, p} and {a2, a3, p}.
Case 3. L is contained in a⊥

i but not in a⊥
j , for (i, j) = (0, 1) or (1, 0). Suppose L ⊂ a⊥

1

and L ∩ a⊥
0 = a3, to fix ideas. As a1 �∼ a3, the line 〈a1, a3〉 meets A in a point p. As every

line of � belongs to at least four planes, we can always take a plane P of � on p and a0,
distinct from the plane containing {a0, a1, a3} and such that P ∩ A = pP (a1) ∩ A = p. If
a′

1 is a point of a⊥
2 ∩ P different from p, then a3 �⊥ a′

1, because a⊥
3 ∩ P = 〈a0, p〉. So, if

we replace a1 with a′
1, we get a quadrangle as in Case 2.

Lemma 4.10 Every bad triangle of G0(�) splits in good triangles.
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Proof: Let {a1, a2, a3} be a bad triangle and p the point 〈a1, a2, a3〉∩ A (compare Lemma
4.1). As every line of � belongs to at least four planes, we can take a plane P ∈ Res�(p)
with the property that P ∩ A = P ∩ 〈a1, a2, a3〉 = p and pA(ai ) ∩ P = p for i = 1, 2, 3.
Given a line L of P not through p, let P0 be a plane of � on L , far from both A and
〈a1, a2, a3〉 in �. Suppose that, for i = 1, 2 or 3, a point x of the line a⊥

i ∩ P0 does not
belong to a∼

i . Then the line M := 〈ai , x〉 meets A in a point y. As both p and y belong to
A, we have p ⊥ y. Hence p ⊥ M , as ai ⊥ p ⊥ y. On the other hand, we also have p ⊥ L
and L meets the line a⊥

i ∩ P0 in a point z.
Suppose z = x . Then M ⊂ pP (ai ), hence y ∈ pP (ai ). Thus, pP (ai ) contains at least

two points of A, namely y and p. Consequently, pP (ai ) = pA(ai ), hence pA(ai ) ∩ P = M ,
contrary to the assumption that pP (ai ) ∩ A = p. So, z �= x . However, if so, p is collinear
with two distinct lines of pP0 (ai ), namely M and the line 〈ai , z〉. Hence p ∈ pP0 (ai ) (as �

has rank 3). However this is impossible. Therefore, all points of a⊥
i ∩ P0 are collinear with

ai in �, namely: pP0 (ai ) ∈ �.
For {i, j, k} = {1, 2, 3}, put Li := 〈a j , ak〉. Suppose that pP0 (Li ) �∈ �. Then pP0 (Li )∩ A

contains a point x ∈ A. We have p ⊥ x and x �∈ Li . Moreover, p ⊥ Li . Hence p ∈ pP0 (Li ),
which is impossible. Therefore, pP0 (Li ) ∈ �.

So far, we have proved that all planes pP0 (ai ) and pP0 (Li ) belong to �. Hence, with
bi = L⊥

i ∩ P0, all triangles {bi , a j , ak} and {ai , b j , bk} are good. As the triangle {b1, b2, b3}
is also good, we have decomposed {a1, a2, a3} in seven good triangles.

The conclusion of Theorem 1.2 follows from Lemmas 4.4, 4.9 and 4.10 via Proposition 2.1.

5. Proof of Theorem 1.3

Let � be the polar space associated to �. The structure Far�(A) can be defined in the same
way as Far�(A). However, as � is non-thick, Far�(A) is non-firm. So, Far�(A) is not a
geometry in the sense of [13]. Actually, most of the theory of [13] (including Theorem 12.64,
rephrased as Proposition 2.1 in this paper), also holds for residually connected but non-firm
incidence structures, but one should rewrite too many parts of [13] to show this with full
evidence. So, we shall argue differently.

Let 	 be the {n − 1}-truncation of Far�(A). Then 	 is a geometry and the proof of
Theorem 1.2 can be recycled to show that 	 is simply connected. Clearly, G0(	) = G0(�)
where � := Far�(A). All closed paths of G0(�) that are good for 	 are also good for �.
The simple connectedness of � follows from this remark and the simple connectedness of
	, via Proposition 2.1.

6. Proof of Theorem 1.4 in the generic case

Troughout this section � := Far�(F) where � is the building of type Dn defined over
a given field K and F is a {+, −}-flag as in Theorem 1.4, but we assume n > 5 when
K = GF(2).
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6.1. Notation and preliminaries

As usual, we call the elements of � of type 0 and 1 points and lines respectively. The
elements of � of type + or − are maximal singular subspaces of the polar space associated
to �. Accordingly, we call them maximal subspaces of �. For an element X of �, let σ (X )
be the set of points (i.e. 0-elements) of � incident to X . We take the liberty to write X for
σ (X ). So, given a set of points S or a point p, we will write X ⊆ S for σ (X ) ⊆ S and
p ∈ X for p ∈ σ (X ).

We denote by U+ and U− the two maximal subspaces of � forming the flag F , with U+

of type + and U− of type −. We set S := U+ ∪ U− and S0 := U+ ∩ U−.
The geometry � can be described as follows: The 0-elements (points) of � are the points

of � that do not belong to S; for i = 1, 2, . . . , n − 3, the i-elements of � are the i-elements
of � that meet S trivially; the elements of � of type + and − (which we also call maximal
subspaces of �) are the elements U of � of type + or − such that |U ∩S| = 1; the incidence
relation is inherited from �, but for stating that two maximal subspaces X, Y are incident
in � only if X ∩ Y ∩ S = ∅.

We recall that two maximal subspaces U, U ′ of � have the same type if and only if
U ∩ U ′ has even codimension in any of U or U ′. So, dim(U ∩ U+) + dim(U ∩ U−) is odd
for every maximal subspace U . In particular, every maximal subspace of � meets at least
one of U+ or U− non-trivially and, if it meets S0 non-trivially, then it has at least a line in
common with at least one of U+ and U−. So, the maximal subspaces of � that belong to
� are those which intersect S0 trivially. Furthermore,

Lemma 6.1 For every element X of � of type i ≤ n − 3 disjoint from both U+ and U−,

for {ε, η} = {+, −} there exists a maximal subspace U of � such that U ⊃ X, U ∩U ε = ∅
and |U ∩ U η| = 1.

Proof: As X is far from U ε, it is contained in a maximal subspace U far from U ε, namely
such that U ∩ U ε = ∅. According to the above, U ∩ U η is a point.

We now split our proof in two parts. We consider the case of K �= GF(2) first, obtaining
the desired conclusion via Proposition 2.1 after a number of lemmas, as we have done in
Sections 3 and 4. A different approach will be used in the case of K = GF(2).

6.2. The case of K �= GF(2)

In the sequel K �= GF(2). We denote by ∼ the collinearity relation of �, keeping the symbol
⊥ for the collinearity relation of �. Also, given a clique X of the collinearity graph of �,
we denote by 〈X〉 the singular subspace spanned by X in the polar space associated to �.
In particular, if a, b are collinear points of �, then 〈a, b〉 is the line of � through them.

Lemma 6.2 The graph G0(�) has diameter 2.

Proof: Given points a, b of �, let p be a point of U+ \ S0 non-collinear with any of a or b
(such a point exists as K �= GF(2)). Let U be a maximal subspace of � with U ∩U+ = {p}
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and U ∩ U− = ∅ (Lemma 6.1). Then U belongs to �. The point p, which is the unique
point of U ∩ S, belongs neither to A := a⊥ ∩ U nor to B := b⊥ ∩ U . Put Va := 〈a, A〉
and Vb := 〈b, B〉. As A is a hyperplane of Va disjoint from S, the intersection Va ∩ U+

is either a point or empty. Similarly, Va ∩ U− is either a point or trivial. So Va belongs
to �. Furthermore, one of Va ∩ U+ and Va ∩ U− is a point and the other one is trivial.
Consequently, exactly one of the lines of Va through a meets S. Similarly, Vb belongs
to � and exactly one of the lines of Vb through b meets S. Thus, and since A ∩ B is at
least a line because n ≥ 4, there is a point d ∈ A ∩ B joined with both a and b by lines
avoiding S.

Lemma 6.3 Every closed path of G0(�) splits in quadrangles and triangles.

Proof: By Lemma 6.2, every closed path of G0(�) splits in pentagons, quadrangles or
triangles. It remains to prove that every pentagon splits in quadrangles and triangles.

Let a, b1, b2, c1, c2 be points of � forming a pentagon of G0(�), namely a ∼ bi ∼ ci

for i = 1, 2 and c1 ∼ c2. Let U be a maximal subspace on 〈c1, c2〉 disjoint from U+ and
meeting U− in exactly one point, say p. Put A := a⊥ ∩ U and V := 〈a, A〉. As A is a
hyperplane of both U and V and U ∩ U+ = ∅, the intersection V ∩ U+ is at most a point,
whence V ∩ U− is at most a line. Thus, the set of points x ∈ A such that 〈x, a〉 ∩ S �= ∅ is
contained in the join of a point and a line of A. Consequently, there are points x ∈ A such
that 〈x, a〉 ∩ S = ∅.

Lemma 6.4 Every quadrangle of G0(�) splits in triangles.

Proof: Let a1, a2, b1, b2 be points forming a quadrangle, with ai ∼ b j for i, j = 1, 2. We
may assume that neither a1 ∼ a2 nor b1 ∼ b2, otherwise there is nothing to prove. We have
three cases to consider.

Case 1 Suppose that a1 �⊥ a2 and b1 �⊥ b2. Let U be a maximal subspace on 〈a2, b2〉
disjoint from U+ and meeting U− in exactly one point, say p (such a subspace exists by
Lemma 6.1). Put A := a⊥

1 ∩ U , B := b⊥
1 ∩ U , V := 〈a1, A〉 and W := 〈b1, B〉. As A is a

hyperplane of V and V ∩ U = A, the maximal subspaces V and U have different type. So,
V ∩ U+ is a point, say pV , and V ∩ U− is either a line or empty. Similarly, W and U have
different type, W ∩ U+ is a point pW and W ∩ U− is either a line or empty. Clearly, W and
V have the same type. Suppose V ∩ U− is a line, say LV . Then LV meets S0 = U+ ∩ U−

in a point, as S0 is a hyperplane in U−. It also meets A in a point, since A is a hyperplane
of V . That point must be the same as p, since p is the unique point of U ∩ U−. Hence
p ∈ LV . Furthermore, pV ∈ LV , as LV ∩ S0 ⊆ U+ ∩ V = pV . Similarly for W . Thus, the
following are the cases that might occur, up to permuting V and W :

(i) Both LV = V ∩ U− and LW = W ∩ U− are lines through p and both pV = LV ∩ S0

and pW = LW ∩ S0 are points different from p.
(ii) W ∩ U− = ∅, pW = W ∩ U+ is a point, LV = V ∩ U− is a line through p and

pV = LV ∩ S0 is a point different from both p and pW .
(iii) V ∩ U− = W ∩ U− = ∅, whereas both pV = V ∩ U+ and pW = W ∩ U− are points.
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Clearly, a2 ∈ B and b2 ∈ A. Therefore, b1 �∈ V and a1 �∈ W , as a1 �⊥ a2 and b1 �⊥ b2.
Hence V �= W , the subspace X := 〈a1, b1, A ∩ B〉 is maximal and V ∩ W = A ∩ B, of
dimension n − 3. Also, X has type opposite to that of V and W , as it meets each of them
in an (n − 2)-dimensional subspace, namely 〈A ∩ B, a1〉 and 〈A ∩ B, b1〉. Consequently, X
and U have the same type and X ∩ U = A ∩ B.

Assume (i). The lines LV and LW are distinct and span a plane 〈LV , LW 〉 of � contained
in U−. Suppose first n > 4. Then a point c ∈ A ∩ B can always be chosen in such a way
that each of the lines 〈c, a1〉 and 〈c, b1〉 misses LV ∪ LW . Clearly, c �= p. Furthermore,
none of the lines 〈a2, c〉 and 〈b2, c〉 belongs to A ∩ B. Hence each of them misses S, as
p ∈ A ∩ B is the unique point of U ∩ S. So, we have decomposed {a1, b1, a2, b2} in four
triangles, namely {a1, b1, c}, {b1, a2, c}, {a2, b2, c} and {b2, a1, c}.

Suppose now that n = 4. Then dim(X ) = 3 and A ∩ B is a line. Furthermore, as
X has type opposite to V and V ∩ U− is a line, X ∩ U− is either a plane or a point.
If X ∩ U− is a plane, that plane meets the line 〈a1, b1〉 in a point, contrary to the fact
that 〈a1, b1〉 belongs to �. Therefore X ∩ U− is a point, necessarily equal to p, as p =
A ∩ B ∩ U−. Chosen a point c �= p in the line A ∩ B, we get a splitting of {a1, b1, a2, b2}
in four triangles {a1, b1, c}, {b1, a2, c}, {a2, b2, c} and {b2, a1, c} of G0(�), as in the case of
n > 4.

Suppose that (ii) occurs. As LV ∩A∩B ⊆ V ∩U−∩A∩B ⊆ V ∩U−∩W ⊆ U−∩W = ∅,
we have LV ∩ A ∩ B = ∅. Consequently, 〈a1, x〉 ∩ S �= ∅ for at most one point x ∈ A ∩ B.
Similarly, 〈b2, y〉 ∩ S �= ∅ for at most one point y ∈ A ∩ B and 〈b1, z〉 ∩ S �= ∅ for at most
one point z ∈ A ∩ B. Furthermore, 〈a2, v〉 ∩ S = ∅ for all points v ∈ A ∩ B, as pW �∈ B.
However, |A ∩ B| ≥ 4. (When n = 4, recall that K �= GF(2).) Therefore, a point c ∈ A ∩ B
can be chosen in such a way that each of the lines 〈ai , c〉 and 〈bi , c〉 misses S. The required
decomposition is obtained.

If (iii) holds then the conclusion follows by an argument as above. Things are even
easier now and there is no need to recall that K �= GF(2). We leave the details for the
reader.

Case 2. Suppose that a1 ⊥ a2 and b1 ⊥ b2. Then each of the lines 〈a1, a2〉 and 〈b1, b2〉 meets
S in a point, as a1 �∼ a2 and b1 �∼ b2 by assumption. Hence the space X := 〈a1, b1, a2, b2〉
meets S in a point (if X is a plane) or a line (when dim(X ) = 3). If X is a plane, then
c := 〈a1, b1〉∩〈a2, b2〉 is a point of �. Thus, we can decompose {a1, b1, a2, b2} in {a1, b1, c},
{b1, a2, c}, {a2, b2, c} and {b2, a1, c}. On the other hand, when dim(X ) = 3 we can always
pick a point c ∈ X such that each of the lines 〈a1, c〉, 〈b1, c〉, 〈a2, c〉 and 〈b2, c〉 misses S.
Again, we obtain a decomposition of {a1, b1, a2, b2} in triangles.

Case 3. The case where only one of the relations a1 ⊥ a2 or b1 ⊥ b2 holds remains
to consider. Suppose a1 ⊥ a2 but b1 �⊥ b2, to fix ideas. Then p := 〈a1, a2〉 ∩ S is a
point.

Suppose first p ∈ S \ S0. Without loss, we may assume that p ∈ U−. So, p �∈ U+ as
p �∈ S0. Pick a maximal subspace U of � containing 〈a1, a2, b2〉 and such that U ∩U− = p.
Then U ∩ U+ = ∅, as 〈p, p⊥ ∩ U+〉 = U−. Given a point c of (b⊥

1 ∩ U ) \ 〈a1, a2〉, we can
decompose {a1, b1, a2, b2} in {a1, b2, c}, {a2, b2, c} and {a1, b1, a2, c}, which are triangles
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and quadrangles of G0(�). (Recall that U ∩ S = p ∈ 〈a1, a2〉.) However, the quadrangle
{a1, b1, a2, c} is as in Case 2. So, it admits a decomposition in triangles.

Suppose that p ∈ S0. By Lemma 6.1 applied to Res�(p), there exists a maximal subspace
U of � containing 〈a1, a2, b2〉 and such that U ∩ U+ = p and L := U ∩ U− is a line
through p. Put B := U ∩ b⊥

1 and V := 〈b1, B〉. The line 〈a1, a2〉 is contained in B and
B ∩ S is either L or p. If L ∩ B = p, then V ∩ U− = p and V ∩ U+ is a line M through
p with M ∩ U− = p. Indeed V and U belong to opposite families, U meets U− in a line
and B, which is a hyperplane of V , has only one point in common with U−, namely p.
In this case we can always pick a point c ∈ B \ 〈a1, a2〉 in such a way that 〈c, b2〉 misses
L and 〈c, b1〉 misses M . Thus, {a1, b1, a2, b2} splits in the triangles {a1, b1, c}, {b1, a2, c},
{a2, b2, c} and {b2, a1, c}.

Finally, suppose L ⊂ B. Then V ∩ U− is a plane containing L , because U and V belong
to different families. However, V contains lines of � and these lines miss the plane V ∩U−.
Therefore dim(V ) ≥ 4. Furthermore, V ∩ S0 = V ∩ U− ∩ U−. So, V ∩ S is equal to the
plane V ∩ U−. As dim(V ) ≥ 4 and B is a hyperplane of V , the space B contains a point
c that does not belong to the join of the planes B ∩ 〈V ∩ U−, b1〉, B ∩ 〈V ∩ U−, a1〉 and
B∩〈V ∩U−, a2〉. (When n = 4, recall that K �= GF(2).) For such a point c, each of the lines
〈c, a1〉, 〈c, a2〉, 〈c, b1〉 and 〈c, b2〉 misses S. Again, we have decomposed {a1, b1, a2, b2} in
triangles.

We say that a triangle {a, b, c} of G0(�) is degenerate if it is contained in a line of �. Clearly,
all degenerate triangles are good.

Lemma 6.5 We have |〈a, b, c〉 ∩ S0| ≤ 1 for every non-degenerate triangle {a, b, c} of
G0(�), with equality holding if and only if {a, b, c} is bad.

Proof: As the plane 〈a, b, c〉 contains lines that do not meet S, the intersection 〈a, b, c〉∩
S0 is at most a point. Let U be a maximal singular subspace of � containing 〈a, b, c〉.
Suppose that 〈a, b, c〉 ∩ S0 = ∅. Then 〈a, b, c〉 is disjoint from at least one of U+ and U−.
Consequently, it is contained in a maximal subspace of � that is disjoint from either U+

or U− and, therefore, belongs to �. In this case, {a, b, c} is good. On the other hand, when
〈a, b, c〉 ∩ S0 �= ∅ none of the singular subspaces of � containing 〈a, b, c〉 is disjoint from
any of U+ or U−. In that case {a, b, c} is bad.

Lemma 6.6 Every bad triangle of G0(�) admits a decomposition in good triangles.

Proof: Let {a, b, c} be a bad triangle and p := 〈a, b, c〉 ∩ S. By Lemma 6.5, p ∈ S0. By
Lemma 6.1 in Res�(p), we can choose a maximal subspace U of � containing 〈a, b, c〉
and such that L := U ∩ U− is a line through p and U ∩ U+ = p. As dim(U ) ≥ 3 and
K �= GF(2), we can also pick a point d ∈ U \〈a, b, c〉 such that none of the planes 〈d, a, b〉,
〈d, b, c〉 and 〈d, c, a〉 contains p and each of the lines 〈d, a〉, 〈d, b〉 and 〈d, c〉 misses L .
So, the triplets {d, a, b}, {d, b, c} and {d, c, a} are triangles of G0(�). They are good, by
Lemma 6.5.

The simple connectedness of � follows from Lemmas 6.3, 6.4 and 6.5 via Proposition 2.1.
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6.3. The case of K = GF(2) with n > 5

In this subsection, K = GF(2) but n > 5. The proof we will give for this case makes
no use of Proposition 2.1. We will recognize certain configurations in � that don’t break
when lifted to covers. Via them, we will be able to prove that the collinearity graph of the
universal cover of � has diameter 2. The conclusion will follow.

Recall that, given a maximal subspace U of �, the mapping sending X ∈ Res�(U ) to the
set X ∩ U is injective. In view of this, in the sequel we will freely indentify a flag {X, U }
with the intersection X ∩ U whenever this minor abuse will be convenient.

Lemma 6.7 Given a line L of � and distinct points a1, a2 ∈ L, for i = 1, 2 let Li be a
line of � incident to ai and distinct from L. Then one of the following occurs:
(1) Some of the maximal subspaces of � contains all of L , L1 and L2.
(2) Modulo permuting L1 and L2, there exist a maximal subspace U of � containing L ∪L1

and planes A1, A2 of � such that Li ⊂ Ai for i = 1, 2, A1 ⊂ U, U ∩ A2 is a line and
A1 has at least one point in common with the line U ∩ A2.

(3) There exist a maximal subspace U of � containing L and planes A1, A2 of � such that
Li ⊂ Ai , Ai ∩U is a line for i = 1, 2 and the lines A1 ∩U and A2 ∩U meet in a point.

Proof: Let U be the family of maximal subspaces of � containing L and disjoint from
U+. Clearly, the elements of U belong to �. Suppose some U ∈ U contains L1. If U also
contains L2 then we are in case (1).

Assuming L2 �⊂ U , put U ′ := 〈L⊥
2 ∩U, L2〉. As U ∩U+ = ∅ and {t(U ), t(U ′)} = {+, −},

U ′ ∩U+ is a point p0 and U ′ ∩U− is either empty or a line through p0. However, dim(U ′) =
n − 1 ≥ 5. Hence U ′ contains at least m := 2n−2 − 4 ≥ 12 planes X1, X2, . . . , Xm on L2

with no points in S = U+ ∪ U−. As U ∩ U ′ is a hyperplane of U ′, each of those planes
meets U ∩ U ′ in a line. For i = 1, 2, . . . , m, put Mi := Xi ∩ U ∩ U ′ = Xi ∩ U . Let V be
a maximal subspace of � incident with L1 and forming a {+, −}-flag with U . The dual of
Res�(U ) is an affine geometry and we may regard U ∩ V as a point of that affine geometry.
Therefore, for i = 1, 2, . . . , m either U ∩ V ⊃ Mi or V ∩ U ∩ Mi is a point. Suppose
first that U ∩ V contains one of the lines Mi , say U ∩ V ⊃ M1 to fix ideas. Then both L1

and M1 belong to Res�(U, V ). As Res�(U, V ) is a projective geometry, any point of M1 is
coplanar with L1 and we have case (2) (with A2 = X1).

Assume now that none of the lines Mi is contained in U ∩ V . Then pi := Mi ∩ U ∩ V
is a point. Suppose first pi = p j for two disctinct indices i, j . Then pi = p j = a2, as
Mi �= M j and them both are incident to a2. Hence a2 ∈ U ∩ V . In Res�(U, V ) we find a
plane containing L1 and a2 (= pi = pj) and we have case (2) with any of Xi or X j taken
as A2.

Suppose the points p1, p2, . . . , pm are pairwise different. Denoted by A the dual of
Res�(U ), we have A ∼= AG(n − 1, 2), U ∩ V is a point of A and p1, p2, . . . , pm appear
as hyperplanes of A on the point U ∩ V . The line L1, regarded as an element of A, is a
subspace of codimension 2. As the hyperplanes p1, p2, . . . , pm are mutually non-parallel,
the space L1 is non-parallel with at least m − 3 ≥ 9 of them. Therefore, some pi meets L1

in a (n − 4)-space of A. Namely, the point pi and the line L1 are coplanar in Res�(U ), as
in case (2).
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If some members of U contain L2, then we obtain the same conclusion as above, but per-
muting L1 and L2. So, suppose that no member ofU contains any of L1 or L2. Consequently,
none of L1 or L2 is coplanar with L in �. Given U ∈ U , for i = 1, 2 let Vi be the maximal
subspace of � containing Li and forming a {+, −}-flag with U . (The element Vi is uniquely
determined inside Res�(ai ).) The subspace Vi meets S = U+∪U− in either a point or a line.
Consequently, for i = 1, 2 there exist at least m = 2n−2 − 4 planes Xi,1, Xi,2, . . . , Xi,m

of � contained in Vi , containing Li and meeting U in a line. For j = 1, 2, . . . , m, put
Mi, j := Xi, j ∩ U . Clearly, Mi, j �= Mi,h if j �= h, as Xi, j ∩ Xi,h = Li �⊆ U . Furthermore,
Mi, j �= L , as Li and L are non-coplanar in �. Denoted by Ai the dual of Res�(ai , U ), we
have Ai

∼= AG(n − 2, 2) and Mi,1, Mi,2, . . . , Mi,m are hyperplanes of Ai containing the
point Vi ∩ U of Ai . At most one of those hyperplanes is parallel to L in Ai . To fix ideas,
suppose Mi, j is non-parallel to L in Ai for j = 1, 2, . . . , m − 1 and let Yi, j be the meet of
L and Mi, j in Ai . So, Yi, j is the plane of � containing Mi, j ∪ L .

If Yi, j = Yi,h for j �= h then Yi, j has at least two lines in common with U ∩ Vi , namely
Mi, j and Mi,h . Therefore Yi, j ⊂ U ∩ Vi and, consequently, L ⊂ U ∩ Vi . Furthermore,
{Mi, j , Mi,h, L} is the triple of lines incident to Yi, j and ai . Conversely, suppose L ⊂ U ∩ Vi

and for every j = 1, 2, . . . , m − 1, let Z j be the 3-space of Res�(Vi ) containing Yi, j and
Li . As Z j contains a plane of �, namely Yi, j , Z j has at most one point in S (recall that
Vi ∩ S is either a point or a line). On the other hand, Z j contains the plane of � spanned
by L and Li . By assumption, that plane does not belong to �, hence it contains a point
of S. Thus, Z j meets S in one point, which belongs to the plane spanned by Li and L .
Consequently, Z j contains two planes of � on Li . The plane Yi, j is one of those two. The
other plane is Yi, fi ( j) for a uniquely determined index fi ( j) �= j . Thus, one of the following
holds:

(*) L �⊆ Vi and the planes Yi,1, Yi,2, . . . , Yi,m−1 are pairwise distinct;
(**) L ⊂ Vi , and Yi, j = Yi, fi ( j) for an involutory fixed-point-free permutation fi of

{1, 2, . . . , m}.

(Note that in case (**) none of the lines Mi, j is parallel to L in Ai , as m −1 is odd.) Assume
case (*), with i = 1 to fix ideas. Suppose that Y1, j �= Y2,h for any j = 1, 2, . . . , m − 1 and
h = 1, 2, . . .. Then we get at least m − 1 + m/2 ≥ 2n−2 − 5 + 2n−3 − 2 = 2n−2 + 2n−3 − 7
planes on L in Res�(U ). But Res�(U ) contains exactly 2n−2 − 2 planes on L . Therefore,
2n−3 ≤ 7, which forces n ≤ 5, contrary to the assumption n > 5. So, Y1, j = Y2,h for
suitable indices j and h, whence the lines M1, j and M2,h are coplanar and, therefore, they
meet in a point. We have case (3) with A1 = X1, j and A2 = X2,h .

Finally, suppose we have (**) for both i = 1 and i = 2. We may assume to have
chosen indices in such a way that f1(i) = f2(i) = i + m/2 for i = 1, 2, . . . , m/2. So,
Y1,1, . . . , Y1,m/2 and Y2,1, . . . , Y2,m/2 are the planes to consider. Note that L ⊂ U ∩ V1 ∩ V2,
as L ⊂ U ∩ V1 and L ⊂ U ∩ V2. For i = 1, 2, there are exactly 2n−3 − 1 planes on L in
Res�(U ∩ Vi ). As m/2 ≥ 2n−3 − 2, at most one of those planes is missing in the family
Yi := {Yi, j }m/2

j=1. However, as n > 5 by assumption, there are exactly 2n−4 − 1 ≥ 3 planes
of � between U ∩ V1 ∩ V2 and L . By the above, at least 2n−4 − 2 of them come from the
family Yi . As 2 · (2n−4 − 2) > 2n−4 − 1, some of those planes belongs to Y1 ∩Y2. Suppose
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Y1,1 = Y2,1 is such a plane. In Res�(Y1,1) we see that the lines M1,1 and M2,1 meet in a
point. Thus, we have case (3) with A1 = X1,1 and A2 = X2,1.

Let ϕ : �̃ → � be the universal covering of �.

Lemma 6.8 The collinearity graph G0(�̃) of �̃ has diameter 2.

Proof: Assuming that �̃ contains a pair of points at distance 3, we will show that those
points have distance ≤ 2. That contradiction will establish our Lemma.

Given two points b̃1, b̃2 of �̃ at distance 3, let (b̃1, ã1, ã2, b̃2) be a path of G0(�̃) from b̃1 to
b̃2. For i = 1, 2 let L̃ i be the line through b̃i and ãi and L̃ the line through ã1 and ã2. As ϕ is
a covering, the line L := ϕ(L̃) is different from Li := ϕ(L̃ i ) and the points a1 := ϕ(ã1) and
a2 := ϕ(ã2) are different. Thus, a1, a2, L , L1 and L2 are as in the hypotheses of Lemma 6.7.
Suppose case (1) of that lemma occurs and let U be a maximal subspace of � incident to
L , L1 and L2. As ϕ is a covering, U lifts via ϕ to a uniquely determined element Ũ of �̃

on L̃ . As ϕ isomorphically maps Res(L̃ i ) onto Res�(Li ) and Li ⊂ U , the line L̃ i is incident
to Ũ . Thus, both b̃1 and b̃2 are incident to Ũ . However, Res(Ũ ) is isomorphic to the dual of
AG(n − 1, 2) and the collinearity graph of a dual affine geometry has diameter 2, contrary
to the hypothesis that b̃1 and b̃2 have distance 3.

So, case (1) of Lemma 6.7 cannot occur. Assume that (2) occurs, namely there exist a
maximal subspace U of � containing L ∪ L1 and planes A1, A2 of � such that Li ⊂ Ai for
i = 1, 2, A1 ⊂ U , M := U ∩ A2 is a line and A1 ∩ M contains a point p. Let Ũ , Ã1, Ã2

and M̃ be the preimages of U, A1, A2 and M in Res(L̃), Res(L̃1), Res(L̃2) and Res(ã2). As
ϕ induces an isomorphism from Res(ãi ) to Res�(ai ), both Ã1 and M̃ are incident to Ũ and
M̃ is incident to Ã2. Again, ϕ induces an isomorphism from Res(Ũ ) to Res�(U ). Hence the
point p ∈ A1 ∩ M lifts via ϕ to a point p̃ incident to Ã1 and M̃ , whence to Ã2 too, as M̃ is
incident to Ã2. As we can see in Res( Ã1) and Res( Ã2), the point p̃ is collinear with both b̃1

and b̃2, contrary to the assumption that b̃1 and b̃2 have distance 3.
So, case (2) of Lemma 6.7 is also impossible. Case (3) remains to consider: there exist

a maximal subspace U containing L and planes A1, A2 such that Li ⊂ Ai , Mi := Ai ∩ U
is a line and the lines M1 and M2 meet in a point p. The elements U , Ai and Mi lift to a
maximal element Ũ incident to L̃ , a plane Ãi incident to L̃ i and a line M̃i incident to ãi

and, as ϕ induces on Res(ãi ) an isomorphism to Res�(ai ), the line M̃i is incident to both Ãi

and Ũ . Similarly, the point p lifts to a unique point p̃ of Res(Ũ ) incident to both M̃1 and
M̃2. For i = 1, 2 the points p̃ and b̃i are collinear in Res( Ãi ). Once again, we have reached
a contradiction.

We can now finish the proof. By way of contradiction, suppose ϕ is not an isomorphism.
Then ϕ(ã1) = ϕ(ã2) for distinct points ã1 and ã2 of �̃. The points ã1 and ã2 are distinct
and non-collinear, as ϕ is a covering. However, by Lemma 6.8, there is a point c̃ collinear
with both ã1 and ã2. For i = 1, 2 let L̃ i be the line through ãi and c̃. Clearly, L̃1 �= L̃2.
Hence the lines L1 := ϕ(L̃1) and L2 := ϕ(L̃2) are different, as ϕ induces an injective
mapping on Res(c̃). Thus, we have two distinct lines L1, L2 of � with two distinct points
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in common, namely c := ϕ(c̃) and a := ϕ(ã1) = ϕ(ã2). This is impossible. Therefore ϕ is
an isomorphism. The theorem is proved in this case too.

Remark 6.9 The hypothesis K = GF(2) is not strictly necessary for the above, but we
need K to be finite, in view of some arithmetical arguments used in the proof of Lemma 6.7.
On the other hand, K was allowed to be infinite in Section 6.2.

7. Proof of Theorem 1.5

The basic idea of this proof resembles that used for Theorem 1.4 in the case of K = GF(2):
we shall prove that a certain subgraph of the incidence graph of the universal cover has a very
small diameter and we will exploit that fact to show that the covering is an isomorphism.

Firstly, we state some terminology. Given � as in Theorem 1.5, we call the elements of
� of type 0 and 1 points and lines, respectively, writing x ⊥ y for two points x, y when they
are collinear. With points and lines chosen as above, G0(�) is the collinearity graph of �.
It is well known that any two points of � are incident with at least one common 4-element
[13, Section 7.6.1]. Hence G0(�) has diameter 2.

The elements of � may be regarded as distinguished subspaces of the point-line system
of �. Accordingly, given an element A of � and a point x or a subset X of the point-set of
�, we write x ∈ A if x is incident to A, X ⊆ A if all points of X are incident to A, and so
on. The claims gathered in the next lemma are straightforward.

Lemma 7.1 All the following hold for a point p of �:
(1) A point x of � is non-collinear with p if and only if there exists a unique 4-element of

� incident to both x and p.
(2) For 1 ≤ i ≤ 4, an i-element X of � is far from p if and only if X ∩ p⊥ = ∅.
(3) A 5-element X of � is far from p if and only if |X ∩ p⊥| = 1.

Given a point p of �, put � := Far�(p). The next Lemma easily follows from Lemma 7.1.

Lemma 7.2 All the following hold:
(1) We have Res�(X ) = Res�(X ) for every 4-element X of �.
(2) Given a point x of �, let Ax be the unique 4-element of � incident to both x and p

(compare Lemma 7.1(1)). Then Res�(x) is the subgeometry of Res�(x) far from Ax .
(3) Given a 5-element X, let pX be the unique point of X collinear with p (compare

Lemma 7.1(3)). Then Res�(X ) is the dual affine space obtained from Res�(X ) by
removing pX and all elements incident to it.

Lemma 7.3 Let �̃ be a geometry over the set of types {0, 1, 2, 3, 4, 5} where the residues
of the elements of type 0, 4 and 5 are as in �. Then for any two 4-elements of �̃ there exists
a 0-element incident to them both.

Proof: We shall prove that, given three 4-elements A, B, C of �̃, if there exist a 0-element
a incident to both A and B and a 3-element S incident to both B and C , then there exists
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a 0-element that is incident to both A and C . Once we have proved this, the conclusion
follows by considering for every 4-element X a path of type (4, 3, 4, . . . , 3, 4) from B to
X in the incidence graph of �̃.

Let A, B, C, a, S be as above. By assumption, Res(B) is a building of type D5. Hence
there exists a 5-element U ∈ Res(B) incident to both a and S. On the other hand, Res(a)
is isomorphic to the subgeometry of a building �a of type D5 far from a given point Aa

of �a . Denoted by ∼ the collinearity relation of �a and regarded U as a maximal singular
subspace of the polar space �a associated to �a , suppose first that A∼ ∩ U ⊆ A∼

a . Then
the 3-space X := A∼ ∩ U = A∼

a ∩ U is contained in three maximal singular subspaces of
�a , namely U , 〈X, A〉 and 〈X, Aa〉. This is impossible, as every singular 3-space of �a is
contained in exactly two maximal singular subspaces. Hence A∼ ∩ U �⊆ A∼

a .
In �a , given a point A′ ∈ A∼ ∩U \ A∼

a , let S′ be the line through A and A′. In the residue
of A′ in �a we find a maximal singular subspace U ′ incident to S′ and intersecting U in
a 3-space. Clearly, U ′ is a 1-element of �̃. We now turn to Res(U ), where both U ′ and C
live. The dual of Res(U ) is an affine geometry and, in that affine geometry, C and U ′ are a
point and a 3-space respectively. Hence there exists a hyperplane h of that affine geometry
incident to both C and U ′. The element h is in fact a 0-element of �̃, it is incident to C and,
as it is incident to U ′, it is incident to A, too. The claim is proved.

Now we can finish the proof of Theorem 1.5. Let ϕ : �̃ → � be a covering and suppose
that ϕ(A) = ϕ(B) for two 4-elements A, B of �̃. By Lemma 7.3, there exists a 0-element
a incident to both A and B. As ϕ is a covering, its restriction to Res(a) is injective. Hence
A = B. So, ϕ is injective on the set of 4-elements. This forces ϕ to be an isomorphism.

8. Proof of Corollary 1.7

A geometry � of rank n ≥ 3 is said to be residually simply connected if it is simply
connected and, when n > 3, all residues of � of rank at least 3 are simply connected.
Clearly, a residually simply connected geometry is also 2-simply connected. So, we only
need to prove the following:

Lemma 8.1 All far-away geometries considered in Theorems 1.1, 1.3 and 1.5 are resid-
ually simply connected. The geometries of Theorem 1.2 are residually connected provided
that � is neitherS(2n−1, 2) norH(2n−1, 4). The geometries of Theorem 1.4 are residually
connected provided that � �= Dn(2).

Proof: The main step of the proof is to show that the residues of the flags of the considered
far-away geometry � are either far-away geometries of the same kind as �, but of lesser rank,
or projective or affine geometries, or affine polar spaces (Section 1.1, Example 1.3), or affine-
dual-affine geometries of rank 3 (Section 1.1, Example 1.2), or direct sums of geometries
as above. Once this is proved, the conclusion follows. Indeed projective geometries, affine
geometries, affine polar spaces, affine-dual-affine geometries and direct sums are simply
connected whereas, when smaller far-away geometries of the same kind as � are involved,
we can argue by induction.
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We are not going to examine all cases one by one. We shall only consider one of them,
just to show how to do, leaving the remaining cases for the reader.

Given � and F as in Theorem 1.4, let p be a point of � = Far�(F) and U+, U− the two
maximal subspaces of � forming F . As p belongs to �, p �∈ U+ ∪U−. Put �p := Res�(p)
and U ε

p := 〈p, p⊥ ∩ U ε〉 for ε = +, −. Then Fp := {U+
p , U−

p } is a flag of �p of type
{+, −} and Res�(p) ∼= Far�p (Fp).

9. Proof of claims (1) and (2) of Theorem 1.6

Throughout this section �1,n := Far�(A) for � = S(2n − 1, 2) and �2,n := Far�(A) for
� = H(2n − 1, 4), with A an (n − 1)-element of � in both cases and n ≥ 3.

9.1. Preliminaries

It is known [16, Lemmas 6.1 and 6.5] that the dual of �1,n is isomorphic to the expan-
sion Exp(ε1,n) of a GF(2)-embedding ε1,n : PG(n − 1, 2) → V (( n+1

2 ), 2), called the ten-
sor embedding, and the dual of �2,n is isomorphic to the expansion of a GF(2)-embedding
ε2,n : PG(n − 1, 4) → V (n2, 2), called the twisted tensor embedding. Referring the reader
to [16, Section 6] for more details, we recall the definitions of ε1,n and ε2,n .

Definition of ε1,n For a nonzero vector v ∈ V = V (n, 2), ε1,n sends the point 〈v〉 of
PG(n − 1, 2) to the vector v ⊗ v. These vectors span an

(n+1
2

)
-dimensional subspace V1 of

V ⊗ V . In fact, if {ei }n
i=1 is a basis of V , then

{ei ⊗ ei }n
i=1 ∪ {ei ⊗ e j + e j ⊗ ei }i< j

is a basis of V1. The additive group of V1 can also be recovered inside the stabilizer of A in
S2n(2) = Aut(�) as the unipotent radical U of that parabolic subgroup. The group U acts
regularly on the set of 3-elements of �1,n . The isomorphism �1,n

∼= Exp(ε1,n) is implicit in
that fact.

Definition of ε2,n Given a basis {ei }n
i=1 of V = V (n, 4), for every non-zero vector v =∑n

i=1 ti ei of V we put v̄ := ∑n
i=1 t2

i ei and ε2,n(〈v〉) := v⊗v̄. As (tv)⊗(tv) = t3v⊗v̄ = v⊗v̄

for every non-zero scalar t , ε2,n is indeed a mapping from the set of points of PG(n − 1, 4)
to the set of non-zero vectors of V ⊗ V . Regarded the latter as a 2n2-dimensional GF(2)-
vector space, the vectors v ⊗ v̄ span an n2-dimensional subspace V2 in it. Explicitly, given
ω ∈ GF(4) \ GF(2), the vectors ei, j := ei ⊗ e j and fi, j := ωei ⊗ e j form a GF(2)-basis of
V ⊗ V and the set

{ei,i }n
i=1 ∪ {ei, j + e j,i }i< j ∪ {ei, j + fi, j + f j,i }i< j

is a basis of V2. The additive group of V2 is isomorphic to the unipotent radical U of the
stabilizer of A in U2n(2) = Aut(�). The group U acts regularly on the set of 3-elements of
�2,n and this fact implies that �2,n

∼= Exp(ε2,n).
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By Proposition 2.5 we immediately obtain the following, which in principle solves the
problem of determining the universal 2-covers of �1,n and �2,n:

Lemma 9.1 For i = 1, 2, the universal 2-cover of �i,n is isomorphic to the expansion
Exp(ε̃(1)

i,n) of the 1-hull ε̃
(1)
i,n of εi,n.

As stated in Theorem 1.2, if n > 3 then �i,n is simply connected. Hence ε̃i,n = εi,n when
n > 3. On the other hand, ε̃i,n = ε̃

(1)
i,n when n = 3 (recall that covers and 2-covers coincide

in the rank 3 case). So, there is no need to study ε̃i,n here.

9.2. The universal 2-cover of �1,n and proof of claim (1) of Theorem 1.6

Proposition 9.2 The universal 2-cover of �1,n is the expansion of the free embedding of
PG(n − 1, 2) in V (2n − 1, 2).

Proof: Given a line L of PG(n − 1, 2), we have L = 〈v1, v2〉 for two non-zero vectors
v1, v2 of V (n, 2). Hence

ε1,n(L) = {v1 ⊗ v1, v2 ⊗ v2, v1 ⊗ v2 + v2 ⊗ v1}.

The vectors v1 ⊗v1, v2 ⊗v2 and v1 ⊗v2 +v2 ⊗v1 are independent. The conclusion follows
from Lemma 9.1 and Proposition 2.8.

In view of Proposition 9.2 and since the codomain of ε1,n is ( n+1
2 )-dimensional, the universal

2-cover of �1,n is a 2k-fold cover where k = 2n − 1− ( n+1
2 ). In particular, the universal

cover of �1,3 is a double cover, as claimed in (1) of Theorem 1.6.

Remark 9.3 We can also describe the global kernel K of ε1,n . By the above, dim(K ) = 2k

with k = 2n − 1− ( n+1
2 ). In particular, dim(K ) = 1 when n = 3. In fact, if n = 3 then

K = 〈vP〉, where vP := ∑
p∈P ι(p), P stands for the point-set of PG(2, 2) and ι is the free

embedding.
If n > 4, then K = 〈vS〉S∈P where P is the collection of planes of PG(n − 1, 2) and

vS := ∑
p∈S ι(p). This follows by combining Corollary 2.6 with (4) of Section 2.4 when

n = 4 and with Corollary 2.7 when n > 4.

9.3. Proof of claim (2) of Theorem 1.6

In view of Lemma 9.1, describing the universal 2-cover of �2,n amounts to compute the
dimension of the 1-local kernel K̃ (1) of ε2,n , but this computation is not so easy as in the
case of ε1,n . We will accomplish it only when n = 3. We firstly describe KL for L a line of
PG(n − 1, 4).

Lemma 9.4 The subspace VL = 〈ε2,n(L)〉 has dimension 4 and the five vectors of ε2,n(L)
form an ovoid in PG(VL ) ∼= PG(3, 2).
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Proof: Given two points p∞ := 〈v1〉 and p0 := 〈v2〉 of L , the remaining three points of
L are the 1-dimensional linear subspaces of V (n, 4) spanned by the vectors vλ = v2 + λv1

for λ ∈ GF(4) \ {0}. With pλ := 〈vλ〉 and ω ∈ GF(4) \ GF(2) as in the definition of ε2,n ,
we have:

ε2,n(p∞) = v1 ⊗ v̄1,

ε2,n(p0) = v2 ⊗ v̄2,

ε2,n(p1) = v1 ⊗ v̄1 + v2 ⊗ v̄2 + v1 ⊗ v̄2 + v2 ⊗ v̄1,

ε2,n(pω) = v1 ⊗ v̄1 + v2 ⊗ v̄2 + v2 ⊗ v̄1 + ω(v1 ⊗ v̄2 + v2 ⊗ v̄1),

ε2,n(p1+ω) = ε2,n(p∞) + ε2,n(p0) + ε2,n(p1) + ε2,n(pω).

Every 4-subset of the above quintuple of vectors is independent over GF(2). The conclusion
follows.

Corollary 9.5 dim(KL ) = 1.

(Trivial, by Lemma 9.4.) We will give a more explicit description of KL in a few lines, but
we firstly state some notation. Denoted the point-set of PG(n − 1, 4) by P , for every point
p ∈ P we put vp := ι(p) where, according to the notation of Section 2.4, ι denotes the free
embedding of PG(n − 1, 4) in V ((4n − 1)/3, 2). Also, we put vX := ∑

p∈X vp for X ⊆ P .

Lemma 9.6 KL = 〈vL〉.

Proof: As dim(KL ) = 1, we have KL = 〈vX 〉 for a suitable nonempty subset X of
L . Furthermore, as ε2,n(L) is an ovoid of PG(VL ), the subspaces 〈vp, vX 〉 (p ∈ L) are 2-
dimensional, pairwise distinct and no four of them are contained in a common 4-dimensional
subspace. The unique choice of X that fulfils the above requirements is X = L .

Lemma 9.7 Let n = 3. Then dim(K̃ (1)) = 10.

Proof: Pick a conic C and a dual conic C∗ of PG(2, 4), in such a way that all lines of C∗

are exterior to C . Let T be the bundle of lines of PG(2, 4) tangent to C and putB := T ∪C∗.
We claim that the set B := {vL}L∈B is a basis of K̃ (1).

We firstly prove that B spans K̃ (1). Let n be the nucleus of C and N the nuclear line of
C∗. So, C∗ ∪ {N } is the set of lines exterior to the hyperoval C ∪ {n}. Every point of N
belongs to exactly one line of C∗ and, for every line L ∈ C∗, every point of L different
from L ∩ N belongs to exactly one line of C∗ different from L . Therefore,

vN =
∑
L∈C∗

vL . (1)

Given a secant line S of C , let {p1, p2} = C ∩ S and, for i = 1, 2, let Ti be the line through
n and pi . We can pick three lines L1, L2, L3 ∈ C∗ ∪ {N } in such a way that none of the
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points L1 ∩ L2, L2 ∩ L3 and L3 ∩ L1 belongs to S ∪ T1 ∪ T2. Then {S, T1, T2, L1, L2, L3}
is a dual hyperoval. By the same argument used to prove (1) one can see that

vS = vT1 + vT2 + vL1 + vL2 + vL3 . (2)

By (1) and (2), 〈B〉 = K̃ (1). It remains to prove that B is independent.
Suppose that

∑
L∈X vL = 0 for X ⊆ B. As every line of T contains one point that does

not belong to any other line of B, we have X ⊆ C∗. However, every line of C∗ contains one
point that does not belong to any other line of C∗. Hence X = ∅. That is, B is independent.

We are now ready to finish the proof of claim (2) of Theorem 1.6. By the previous lemma,
dim(Ṽ (1)) = 11 when n = 3. Since the codomain of ε2,3 is 9-dimensional, Exp(ε̃(1)

2,3) is a
4-fold cover of �2,3.

Remark 9.8 Given a Fano subplane S of PG(2, 4), the embedding induced by ε2,3 on S is
isomorphic to ε1,3. Hence �2,3 contains 120 copies of �1,3, as many as the Fano subplanes of
PG(2, 4). By Remark 9.3, the global kernel K of ε2,3 contains vS for every Fano subplane
S of PG(2, 4). Hence K ≥ 〈vS〉S∈P , where P stands for the collection of Fano subplanes
of PG(2, 4). In fact

(∗)K = 〈vS〉S∈P

but I am not going to prove this equality here. By combining Corollary 2.6 with Corollary 2.7
(or (4) of Section 2.4, when n = 4) we obtain that (∗) also holds for any n. (Needless to
say, in the general case P is the collection of Fano planes of PG(n − 1, 4).)

9.4. The universal 2-cover of �2,4

Lemma 9.9 If n = 4, then dim(K̃ (1)) = 61.

Proof: Given two points p1, p2 of PG(3, 4), let L0 be the line joining them and, for
i = 1, 2, pick six planes Si,0, Si,1, . . . , Si,5 on pi in such a way that they form a dual
hyperoval in the star of pi and L0 is not contained in any of them. For i, j = 1, 2, . . . , 5,
put Li, j := S1,i ∩ S2, j . Denoted by L1 the set of lines of PG(3, 4) incident to p1 and by L2,i

the set of lines of S2,i on p2, we set L2 := ∪5
i=0L2,i , L3 := ∪{Li, j }5

i, j=1, B := L1 ∪L2 ∪L3

and B := {vL}L∈B.
Let B be the set of lines L with vL ∈ 〈B〉. For k = 1, 2, . . . , 5, L2,k ∪ {Li,k}5

i=1 is
a configuration of ten lines of S2,k as considered in the proof of Lemma 9.7. Hence B
contains all lines of S2,k . Let L be a line of PG(3, 4) skew with L0, and S the plane spanned
by L and a. By the above, the five lines S ∩ Si,2 (i = 1, 2, . . . , 5) belong to B. Furthermore,
those five lines together with the five lines of S through p1 form in S a configuration as in
the proof of Lemma 9.7. Hence L ∈ B̄. Thus, B̄ contains all lines skew with L0. It is now
clear that B̄ contains all lines of PG(3, 4), namely B spans K̃ (1).
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Suppose that X ⊆ B is such that
∑

L∈X vL = 0. The line L0 has three points that do
not belong to any other line of B and every line of L1 \ {L0} contains one point that does
not belong to any other line of L1. It follows that X ∩ L1 = ∅. Similarly, every line of L2

contains one point that does not belong to any other line of L2 ∪L3. Hence X ⊆ L3. Finally,
every line of L3 contains a point that does not belong to any other line of L3. Consequently,
X = ∅. Namely, B is independent. As |B| = 61, we have dim(K̃ (1)) ≤ 61.

Proposition 9.10 The universal 2-cover of �2,4 is a 28-fold cover.

Proof: By Lemma 9.9, Exp(ε̃(1)
2,4), has exactly 224 points. On the other hand, �2,4 has 216

points. The conclusion follows.

10. Proof of claim (3) of Theorem 1.6 and end of the proof of Theorem 1.4

In this section �n := Far�(F) for � = Dn(2) and F a {+, −}-flag of �.

10.1. Preliminaries

It is known [15] that �n admits a 2-quotient �̄n with exactly 2n−1 elements of each of the
two types + and −, where every (+)-element is incident to all (−)-elements. That quotient
is obtained by factorizing �n over the center of the unipotent radical of the stabilizer of F
in O+

2n(2). More geometrically, �̄n = �n/� where � is the equivalence relation defined as
follows: for {U+, U−} = F and S := U+ ∪ U− as in Section 6, two elements X, Y of �n

correspond in � if and only if X⊥ ∩ S = Y ⊥ ∩ S.
The first step of our investigation is to prove that the 0-shadow geometry of �̄n is the

expansion of a suitable GF(2)-embedding, but we must describe that embedding first.
Given a linear hyperplane H of V = V (n, 2), the vectors of V \ H and the cosets v + X
for v ∈ V \ H and X a linear subspace of H form a copy of AG(n − 1, 2). Thus, we have a
GF(2)-embedding of AG(n −1, 2) in V (n, 2), which we call the natural GF(2)-embedding
of AG(n − 1, 2). We denote it by νn .

Lemma 10.1 The 0-shadow geometry Sh0(�̄n) of �̄n is isomorphic to the dual of the
expansion Exp(νn) of the natural GF(2)-embedding νn of AG(n − 1, 2).

Proof: We firstly revisit the construction of the geometry �̄n , describing it as the gluing
of two copies of AG(n − 1, 2), as in [15].

Recall that, for ξ ∈ {+, −}, Res�(U ξ ) can be regarded as a projective geometry Pξ ∼=
PG(n−1, 2) with U ξ as the set of points. The set S0 = U+∩U− is a hyperplane ofP+. Thus,
the elements of Pξ that are not contained in S0 form an affine geometry Aξ ∼= AG(n−1, 2).
The projective geometries P+ and P− induce on S0 the same geometry P0 (= Res�(F)),
which can be taken as the geometry at infinity of both A+ and A−. Accordingly, given an
element X of Aξ of dimension dim(X ) > 0 and denoted by ∞(X ) its space at infinity (or its
point at infinity, if dim(X ) = 1), we have ∞(X ) = X ∩S0. (Note that, when doing so, we are
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regarding the points of S0 as hyperplanes ofP0.) It is now clear that, for i ≤ n−3, the classes
of � on the set of i-elements of �n bijectively correspond to the pairs {X+, X−} where X+

and X− are (n − 2 − i)-dimensional subspaces of A+ and A− with ∞(X+) = ∞(X−).
For ξ ∈ {+, −}, the classes of � on the set of ξ -elements of �n bijectively correspond to
the points of Aη, where η = ξ if n is odd and {ξ, η} = {+, −} if otherwise. Two pairs
{X+, X−} and {Y +, Y −} as above correspond to incident elements of �̄n = �n/� if and
only if X ξ and Y ξ are incident in Aξ for ξ ∈ {+, −}. For ξ ∈ {+, −} a point x ∈ Aξ

and a pair {X+, X−} correspond to incident elements of �̄n if and only if x ∈ X ξ . As all
(+)-elements of �̄n are incident to all (−)-elements, every pair {x+, x−} with xξ a point of
Aξ corresponds to a {+, −}-flag of �̄n .

We shall now rephrase the above in a slightly different way. The sets U+ and U− are
equipped with the right structures (namely, P+ and P−) and have the right intersection for
we may regard them as hyperplanes of some projective geometryP1

∼= PG(n, 2). Thus,P+

and P− are the projective geometries induced by P1 on U+ and U−, the set S0 = U+ ∩U−

is an (n − 2)-dimensional subspace of P1 and P0 is the geometry induced by P1 on it. We
keep for A+ and A− the meaning stated above, namely Aξ is the affine geometry obtained
by removing S0 from Pξ . As above, P0 is taken as the geometry at infinity of both A+

and A−.
Denoted by U the hyperplane of P1 containing S0 but different from U+ and U−, let P

be the projective geometry induced by P1 on U , A ∼= AG(n − 1, 2) the complement of S0

in P and A1
∼= AG(n, 2) the complement of U in P1. For j = 1, 2, . . . , n − 2, given a

pair {X+, X−} of j-dimensional subspaces of A+ and A− with ∞(X+) = ∞(X−), the set
X := X+ ∪ X− is a ( j + 1)-dimensional subspace of A1 with S0 �⊆ ∞(X ). Accordingly,
∞(X ) can be regarded as a j-dimensional subspace of A. Thus, the elements of �̄n of
type i = 0, 1, . . . , n − 3 bijectively correspond to the (n − i − 1)-dimensional subspaces
of A1 with (n − i − 2)-dimensional subspaces of A as their spaces at infinity. The set
S \ S0 = (U+ ∪ U−) \ S0 is the point-set of A1. So, the points of A1 bijectively correspond
to the elements of �̄n of type + and −. The lines of A1 with their point at infinity in A
are precisely those that meet both A+ and A−. So, those lines bijectively correspond to the
{+, −}-flags of �̄n .

Thus, we have produced a copy of the 0-shadow geometry of �̄n insideA1. The conclusion
is now obvious.

Remark 10.2 One might object that Exp(νn) is isomorphic to the dual of Sh0(�̄n) rather
than to Sh0(�̄n) itself, but the distinction between a geometry and its dual is not crucial
here. We prefer not to insist on it.

As �̄n is a 2-quotient of �n , these two geometries have the same universal cover and the same
universal 2-cover. Thus, by combining Lemma 10.1 with Proposition 2.5 and Proposition 2.2
we obtain the following:

Lemma 10.3 The expansion of the hull of νn is the 0-shadow geometry of the universal
cover of �n. The expansion of the 1-hull of νn is the 0-shadow geometry of the universal
2-cover of �n.
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10.2. The universal 2-cover of �n and proof of claim (3) of Theorem 1.6

By Lemma 10.3 and Corollary 2.9 we immediately obtain the following:

Proposition 10.4 The 0-shadow geometry of the universal 2-cover of �n is the expansion
Exp(ι) of the free embedding ι of AG(n − 1, 2) in V (2n−1, 2).

Exp(ι) has 22n−1
points and the covering projection of Exp(ι) onto �n maps them onto the

elements of �n of type + and −. On the other hand, �n has 21+(n
2) elements of type + and −.

Hence the universal 2-cover of �n is a 2k-fold cover, with k = 2n−1− ( n
2 ) −1. In particular,

the universal 2-cover of �4 is a double cover.

Proof of Theorem 1.6(3): All residues of �4 of rank 3 are simply connected (see
Example 1.2 for those of type {+, 1, −}). Therefore, the universal cover and the universal
2-cover of �4 coincide. As noticed above, the latter is a double cover. Claim (3) of Theorem
1.6 is proved.

10.3. Revisiting Sh0(�n) as an expansion

Let D̄n be the deck group of the projection from Exp(ι) onto Exp(νn). The 1-local ker-
nel of νn is trivial (Corollary 2.9). Hence D̄n is isomorphic to the global kernel K of νn

(Proposition 2.5). In fact, D̄n is the same thing as K , but viewed as acting by addition
on V̂ = V (2n−1, 2), as a group of translations. Accordingly, all subgroups of D̄n can be
regarded as subspaces of V̂ . In the sequel, we will freely switch from one to the other of
these two points of view.

Every subgroup D of D̄n defines a 2-quotient Exp(ι)/D of Exp(ι). Denoted by P the
point-set of AG(n − 1, 2), no two vectors of ι(P) belong to the same orbit of D. Indeed, if
otherwise, the projection ϕ : Exp(ι) → Exp(ι)/D would send two distinct collinear points
of Exp(ι) onto the same point of Exp(ι)/D, contrary to the fact that ϕ is a 2-covering.
Therefore, ι induces a GF(2)-embedding ι/D of AG(2n−1, 2) in the quotient space V̂ /D.
Clearly, Exp(ι)/D = Exp(ι/D). In particular, if Dn ≤ D̄n is the deck group of the projection
of Exp(ι) onto Sh0(�n), then

Sh0(�n) ∼= Exp(εn) (1)

where εn := ι/Dn . As Exp(ι) is a 2
2n−1−( n

2 )−1
-fold cover of Sh0(�n), we have

|Dn| = 2
2n−1−( n

2 )−1
. (2)

Hence the codomain of εn is (( n
2 ) + 1) -dimensional. Clearly, Dn is the global kernel of εn .

Remark 10.5 The geometry �n is also an expansion, but in the more general sense of [16]:
it is the expansion of the natural embedding of the line-grassmannian of AG(n − 1, 2) in
the 2nd-exterior power of V (n, 2) (see [16, Lemma 8.4]). However, as line-grassmannians
are not matroids, the handy machinery set up in Section 2.4 does not work for expansions
like this. That is the reason why we have switched from �n to Sh0(�n).
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10.4. End of the proof of Theorem 1.4

We keep the notation of Section 10.3.

Lemma 10.6 We have D4 = 〈vP〉, where vP := ∑
p∈P ι(p) and P stands for the point-set

of AG(3, 2).

Proof: By (2) of Section 10.3, dim(D4) = 1. Hence D4 = 〈vx 〉, where vX = ∑
p∈X ι(p)

for a suitable nonempty subset X of P . On the other hand, as Exp(ι)/D4
∼= Sh0(�4) is

flag-transitive, the normalizer N of D4 in Aut(Exp(ι)) is flag-transitive on Exp(ι) (see [13,
Theorem 12.59]). In particular, N induces on ι(P) a transitive permutation group NP .
However, as N normalizes D4 and D4 is spanned by vX , NP is forced to stabilize X . Hence
X = P .

Lemma 10.7 We have D5 = 〈vS〉S∈P , where vS := ∑
p∈S ι(p) and P is the collection of

planes of AG(4, 2).

Proof: By Lemma 10.6, KS = 〈vS〉 for every S ∈ P . Hence D5, which is the global
kernel of ε5, contains W := 〈vS〉S∈P . However, dim(D5) = 5 by (2) of Section 10.3. So,
we only need to prove that dim(W ) ≥ 5.

Given a minimal spanning set {p∞
i }4

i=1 of the space at infinity of AG(4, 2) and a point
p of AG(4, 2), for k = 1, 2, 3, 4 let Sk be the 3-space of AG(4, 2) containing p and with
〈p∞

i 〉i �=k as the plane at infinity. Let S5 be the 3-space of AG(4, 2) parallel to S1. By a
routine computation one can check that the vectors vS1 , vS2 , vS3 , vS4 and vS5 are linearly
independent. Hence dim(W ) ≥ 5.

We can now finish the proof of Theorem 1.4. By Lemma 10.7, the local kernel and the
global kernel of ε5 coincide. Hence Exp(ε5) is simply connected, by Corollary 2.6. As
Sh0(�5) ∼= Exp(ε5) (Section 10.3, (1)), Sh0(�5) is simply connected, too. Therefore �5 is
simply connected, by the first part of Proposition 2.2.

Remark 10.8 The equality Dn = 〈vS〉S∈P , withP the collection of planes of AG(n−1, 2),
also holds when n > 5, as it follows from Lemma 10.7 and Corollaries 2.6 and 2.7. We
refer to Baumeister, Meixner and Pasini [2] for more information.
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