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Supernormal Vector Configurations
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Abstract. A configuration of lattice vectors is supernormal if it contains a Hilbert basis for every pointed cone
spanned by a subset. We study such configurations from various perspectives, including triangulations, integer
programming and Gröbner bases. Our main result is a bijection between virtual chambers of the configuration and
virtual initial ideals of the associated binomial ideal.
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1. Introduction

Let B = {b1, . . . , bn} ⊆ Z
m and let cone(B) be the polyhedral cone in R

m spanned by B.
We assume that B does not contain the zero vector or a vector that is a positive multiple
of another vector. The configuration B is normal if every lattice point in cone(B) is a non-
negative integer combination of B. We say that B is supernormal if, for every subset B ′ of
B, every lattice point in cone(B ′) is a non-negative integer combination of B ∩ cone(B ′).

In Section 2 we discuss supernormal configurations in low dimensions. In particular,
we exhibit a finitely generated submonoid of Z

3 which cannot be generated by a finite
supernormal subset. This implies that in general the process of normalization [8, Algorithm
13.2] cannot be extended to produce a finite supernormal generating set.

In Section 3 we characterize supernormal vector configurations in terms of polyhedral
geometry (triangulations) and in terms of integer programming (total dual integrality). This
will generalize the familiar characterizations of unimodular configurations [8, Section 8].
Recall that a configuration B in Z

m is unimodular if, for every subset B ′ of B, every lattice
point in cone(B ′) is a non-negative integer combination of B ′. Supernormal configurations
thus lie between unimodular and normal configurations; every unimodular configuration is
supernormal, and every supernormal configuration is normal.
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The algebraic theory of integer programming is closely related to Gröbner bases of
binomial ideals [9]. We encode our configuration B as the ideal JB in the polynomial ring
k[x1, . . . , xn] generated by

∏
i :u·bi >0

xu·bi
i −

∏
j :u·b j <0

x
−u·b j

j where u runs over Z
m . (1)

In the language of [4] or [6, Section 3.3], the ideal JB is the lattice ideal for the lattice
spanned by the rows of the (m × n)-matrix (b1, . . . , bn).

Every vector w ∈ cone(B) defines an initial ideal of JB as follows: inw(JB) is generated
by the monomials

∏
i :u·bi >0 xu·bi

i where u ∈ Z
m satisfies u · w > 0 and the binomials of

the form in Eq. (1) where u ∈ Z
m satisfies u · w = 0. Two vectors w, w′ ∈ cone(B) lie

in the same cell of the Gröbner fan of JB if inw(JB) = inw′ (JB), and they lie in the same
cell of the chamber complex of B if, for every subset B ′ of B, w ∈ cone(B ′) if and only if
w′ ∈ cone(B ′). In Section 4 we prove:

Theorem 1.1 If the configuration B is supernormal then the chamber complex of B
coincides with the Gröbner fan of JB.

We note that the converse statement does not hold, even for m = 1. For the special case
when B is unimodular, this theorem follows from [8, Proposition 8.15] via Gale duality.
Our proof will be self-contained.

A longstanding conjecture [9] states that the number of facets of any chamber in the
Gröbner fan of JB is bounded by a function of m alone, independent of the coordinates of
the bi . In Section 5 we examine this question for the supernormal configuration

B = {(1, u, v) ∈ Z
3 : (u, v) ∈ P ∩ Z

2} (2)

associated with a convex lattice polygon P in the plane. The chamber complex of B is
gotten by drawing the line segments connecting any two lattice points in P as in figure 1.
It is an open question whether polygons with arbitrarily many edges can appear in such a
picture. See Proposition 5.4 for the current status of the problem.

Figure 1. Chamber complex of a rectangle.
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The chambers of a vector configuration B are in bijection with the regular triangulations
of a Gale dual configuration A. This was extended in [3] to a bijection between all trian-
gulations of A and virtual chambers of B. We reexamine these concepts in Section 6, and
we introduce the following algebraic analogue: A monomial ideal M in k[x1, . . . , xn] is a
virtual initial ideal of JB if M has the same Hilbert function as JB with respect to the finest
grading which makes JB homogeneous. In [8, Section 10] such M were called A-graded
monomial ideals. There is a map from virtual initial ideals to virtual chambers (defined by
[8, Theorem 10.10]) but this map is in general neither injective nor surjective. Our main
result is the following extension of Theorem 1.1.

Theorem 1.2 If the configuration B is supernormal then the map from virtual initial ideals
of JB to virtual chambers of B is a bijection.

In A-graded language this has the following formulation.

Corollary 1.3 If A is a matrix whose Gale dual B is supernormal, then there is a bijection
between monomial A-graded ideals and triangulations of A.

2. Examples and counterexamples

In this section we study examples of supernormal configurations in low dimensions. Recall
that a configuration B of vectors in Z

m is normal if it generates the monoid Z
m ∩ cone(B).

We call B pointed if there exists u ∈ R
m such that bi · u > 0 for all i . We say that B is a

Hilbert basis if B is pointed and minimally generates the monoid Z
m ∩ cone(B). Clearly,

if B is a Hilbert basis then B is normal.

Dimension one: If m = 1 then B consists of a single vector, say b, or of the form {b1, b2}
where b1 < 0 < b2. The configuration B is normal if and only if either b = 1 , or b = −1 ,
or b1 < 0, b2 > 0 and gcd(b1, b2) = 1. But B is supernormal if and only if either b = 1 , or
b = −1 , or B = {−1, +1}. Thus B = {−2, 3} is normal but not supernormal. We conclude
that a one dimensional pointed configuration is normal if and only if it is supernormal.

The chamber complex of B consists of either one or two cones, and it coincides with the
Gröbner fan of the principal ideal JB . For instance, for B = {−2, 3} the ideal JB = 〈x2−y3〉
has two initial ideals, but for B = {2, 3} we get JB = 〈x2 y3 −1〉 which has only one initial
ideal. This shows that the converse to Theorem 1.1 does not hold.

Dimension two: The configuration B consists of distinct nonzero vectors in Z
2. We assume

that their ordering b1, b2, . . . , bn is counterclockwise, with b1 and bn being the extreme
rays if B is pointed, and we set bn+1 = b1 otherwise. They lie in an open half-plane if and
only if B is pointed. The last statement from the m = 1 case does not hold for m = 2: the
configuration B = {(1, 0), (1, 2), (0, 1)} is pointed and normal but not supernormal.

Proposition 2.1 A configuration B = {b1, . . . , bn} ⊆ Z
2 is supernormal if and only if

det(bi , bi+1) = 1 for i = 1, 2, . . . , n − 1, and also det(bn, b1) = 1 if B is not pointed.
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Proof: Suppose B is supernormal. Note that cone(bi , bi+1) contains no other b j , so bi and
bi+1 must be a Hilbert basis for cone(bi , bi+1) ∩ Z

2, and thus we have det(bi , bi+1) = 1.
Conversely, suppose that det(bi , bi+1) = 1 for all i . This means that any lattice point in

cone(bi , bi+1) can be written as a non-negative integer combination of bi and bi+1. Every
cone generated by a subset B ′ of the bi can be decomposed as a union of cones of the
form cone(bi , bi+1), so our assumption implies that every lattice point in cone(B ′) can be
written as a non-negative integer combination of the vectors in B ∩ cone(B ′). Therefore B
is supernormal.

Corollary 2.2 Every two-dimensional Hilbert basis is supernormal.

In the language of algebraic geometry, Proposition 2.1 says that B ⊆ Z
2 is supernormal

if and only if the toric surface X� is smooth, where � is the fan whose rays are the vectors
in B. In higher dimensions, supernormality means that all toric varieties that share a fixed
Cox homogeneous coordinate ring are smooth. This follows from Proposition 3.1 below.

Dimension three: Corollary 2.2 does not hold for m = 3. Take

B = {(1, 0, 0), (0, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 3), (1, 2, 4)} ⊆ Z
3.

This is the Hilbert basis for the cone spanned by (1, 0, 0), (0, 1, 0) and (1, 2, 4). The configu-
ration B is not supernormal. To see this consider B ′ = {(0, 1, 0), (1, 1, 1), (1, 2, 3)} and note
that (1, 2, 2) lies in cone(B ′) ∩ Z

3 but not in the monoid generated by cone(B ′) ∩ B = B ′.
If we add the vector (1, 2, 2) to B then the resulting configuration of seven vectors is su-
pernormal.

It is well-known that the monoid of lattice points in any pointed rational polyhedral cone
has a finite Hilbert basis. In the previous example, the Hilbert basis can be enlarged to a finite
supernormal generating set. This raises the question of whether every rational submonoid
of Z

m is generated by a finite supernormal subset. This is not the case.

Theorem 2.3 The monoid of lattice points in the three-dimensional cone spanned by
P0 = (−1, 1, 2), P1 = (1, −1, 1), P2 = (0, 1, 0) and P3 = (1, 0, 0) is not generated by a
finite supernormal subset.

Proof: Since P0, P1, P2 and P3 are the first lattice points on the extreme rays of this
cone, any supernormal generating set must contain these vectors. Consider the following
sequence of vectors in this monoid:

Pi := 1

2
· (Pi−2 + Pi−1 + Pi ′ ) for i ≥ 4,

where i ′ = (i mod 2). Explicitly,

P2i = (0, 1, i − 1), P2i+1 = (1, 0, i − 1) for i ≥ 1
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At each stage in this iteration, the three vectors Pi−2, Pi−1, Pi ′ generate an index two
sublattice of Z

3, and Pi is the unique vector which completes the Hilbert basis for their
triangular cone. Suppose there is a finite supernormal generating set B for the ambient
monoid and consider the smallest index i such that Pi is not in B. Then the subset B ′ =
{Pi−2, Pi−1, Pi ′ } violates the defining property of B being supernormal.

While this result shows that not every configuration can be embedded into a supernormal
one, there do exist interesting specific supernormal configurations in higher dimensions,
beyond the familiar class of unimodular configurations. Here is an example for m = 3:

Example 2.4 The configuration B = {−1, 0, +1}3 of all 27 vectors whose coordinates
have absolute value at most one is supernormal.

A configuration B is called convex if it is gotten from the set of all lattice points in a convex
polytope P by prepending an extra coordinate “1”. Thus (2) is a convex configuration in
dimension three. The three dimensional convex configurations arising from convex polygons
P play a special role and are discussed in detail in Section 5. In Proposition 5.1 we show
that they are supernormal.

Dimension four and beyond: Most convex configurations in higher dimensions are not
supernormal, however. Consider the cone over the three-dimensional cube given by the
columns of




1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1


 .

This configuration of eight vectors in Z
4 is convex but not supernormal. What is missing is

the vector (2, 1, 1, 1) which represents the centroid of the cube. The configuration together
with (2, 1, 1, 1) is supernormal.

It would be interesting to identify infinite families of configurations in higher dimensions
which are supernormal but not unimodular. Such families might arise from graph theory or
combinatorial optimization.

3. Polyhedral characterizations

In this section we present two characterizations of supernormal configurations B. The first
is in terms of triangulations, and the second involves the concept of total dual integrality
from integer programming.

A subdivision of a vector configuration B = {b1, . . . , bn} ⊆ Z
m is a polyhedral fan �

in R
m whose support is cone(B) and each of whose rays is spanned by a vector bi [10,

Section 9]. It is customary to identify � with the collection of subsets σ of B which lie in
the maximal cones of �. A subdivision � is regular if there exists a vector c ∈ Z

n such
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that σ ⊆ B is a face of � if and only if there exists an x ∈ Z
m with bi · x = ci for all

bi ∈ σ and bi · x < ci otherwise. Every choice of vector c gives rise to a subdivision of B.
A subdivision � of B is a triangulation if each maximal cell σ has precisely m elements.
A triangulation � of B is unimodular if every maximal cell σ is a lattice basis for Z

m . The
triangulation � uses all vectors if each element bi of B spans a ray of the fan �.

A configuration B is unimodular if and only if every triangulation of B is unimodular.
Here it suffices to consider regular triangulations. We prove an analogous characterization
for supernormal configurations.

Proposition 3.1 For a configuration B, the following are equivalent:
1. B is supernormal.
2. Every triangulation of B that uses all vectors is unimodular.
3. Every regular triangulation of B that uses all vectors is unimodular.

Proof: We first prove (1) ⇒ (2). Let B be supernormal, � a triangulation that uses all
vectors, and σ = {bi1 , . . . , bim } a maximal cell of �. If σ is not a lattice basis of Z

m then σ

does not generate the monoid Z
m ∩ cone(σ ). Supernormality implies that cone(σ ) contains

at least one other vector b j ∈ B\σ , but then this vector b j cannot be used in the triangulation
�. This contradicts our hypothesis.

The implication (2) ⇒ (3) is trivial. It remains to show (3) ⇒ (1). Suppose (3) holds. Let
B ′ be any subset of B. We construct a regular subdivision of B which has σ = B ∩ cone(B ′)
as one of its faces, and which uses all vectors in B\σ as rays. To do this, we use a vector
c which has ci = 0 for i ∈ σ , and ci > 0 for i 
∈ σ , choosing the positive coordinates
inductively so as to ensure that all vectors of B\σ appear. This subdivision can be refined
to a regular triangulation � of B that uses all vectors. By hypothesis, � is unimodular, and
its restriction to σ is a unimodular triangulation of σ . This implies that σ generates the
monoid cone(B ′) ∩ Z

m . We conclude that B is supernormal.

Regular subdivisions are polar to the polyhedra with facet normals in B = {b1, . . . , bn}.
More precisely, for c ∈ Z

n we define the polyhedron

Pc = {
x ∈ R

m : bi · x ≤ ci for i = 1, . . . , n
}
.

Let N (Pc) denote the normal fan of the convex polyhedron Pc.

Lemma 3.2 The normal fanN (Pc) is a regular subdivision of B. Every regular subdivision
of B is the normal fan of Pc for some c ∈ Z

n.

Proof: These statements follow from the fact thatN (Pc) is the regular subdivision induced
by the vector c.

We recall the following definition from integer programming. A good reference for these
topics is Chapter 22 of Schrijver’s book [7].
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Definition 3.3 A system of rational inequalities Dx ≤ d is called totally dual integral
(TDI) if for each w ∈ Z

m such that the linear program max{w · x : Dx ≤ d} has a finite
optimal solution, the dual linear program min{y · d : y D = d, y ≥ 0} has an integral
solution.

The property of being TDI is a property of the given representation of a polyhedron in
terms of inequalities, and not of the polyhedron itself. In what follows, whenever we say “the
polyhedron Pc is TDI”, what we mean is that the inequality system bi · x ≤ ci , i = 1, . . . , n
is TDI. The following characterization of unimodular configurations is easily derived from
the basic properties of TDI systems [7, Section 22].

Proposition 3.4 The vector configuration B = {b1, . . . , bn} ⊆ Z
m is unimodular if and

only if the polyhedron Pc is TDI for every c ∈ Z
n.

We will prove an analogous result for supernormal configurations by considering only
those polyhedra Pc where c ranges over a certain subset of Z

n . First we give a name to these
special polyhedra.

Definition 3.5 The system of inequalities defining Pc is tight if Pc−ei ∩ Z
m is strictly

contained in Pc ∩ Z
m for every unit vector ei ∈ Z

n .

Tightness is a property not of the polyhedron Pc but of the inequality system bi · x ≤
ci , i = 1, . . . , n. However, as with TDI, we shall abuse language by simply saying “Pc is
tight”. With this convention, Pc is tight if and only if, for each i = 1, . . . , n, there exists a
lattice point x ∈ Pc with bi · x = ci .

Theorem 3.6 The vector configuration B = {b1, . . . , bn} ⊆ Z
m is supernormal if and

only if every tight polyhedron Pc is TDI.

Proof: We first prove the if direction using condition (3) in Proposition 3.1. Let � be a
regular triangulation of B which uses all vectors. We wish to show that � is a unimodular
triangulation. By Lemma 3.2 there is a simple polyhedron Pc whose normal fan equals �.
In particular, every vector bi defines a facet of Pc. Since Pc is a rational polyhedron, there
is some r > 0 such that Prc = r Pc is integral. The polyhedron Prc has normal fan �, and
is tight, and so is TDI by assumption. Theorem 22.5 in [7] implies that every set σ of m
vectors in B that define a vertex of Prc is a basis of Z

m . These cones σ are the maximal
cells of �. Hence � is unimodular and we conclude that B is supernormal.

For the only-if direction, suppose that B is supernormal and let c ∈ Z
n be such that Pc is

tight. Consider any face F of Pc, and let σ be the set of all vectors bi ∈ B such bi · x = ci

holds for all x ∈ F . In view of [7, Theorem 22.5], it suffices to prove that σ is a Hilbert
basis. Suppose this is not true. Supernormality implies that cone(σ ) contains at least one
other vector b j ∈ B\σ . Because b j lies in cone(σ ), we can write b j = ∑

bi ∈σ λi bi where
λi ≥ 0. Since Pc is tight there exists a lattice point z ∈ Pc with b j · z = c j . However
since j 
∈ σ , we know that there is some x ∈ F for which b j · x < c j . The first of these
two statements implies c j = b j · z = ∑

bi ∈σ λi (bi · z) ≤ ∑
bi ∈σ λi ci . The second implies
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c j > b j · x = ∑
bi ∈σ λi (bi · x) = ∑

bi ∈σ λi ci . But these two statements contradict each
other, and so we conclude that b j does not exist, and thus σ is a Hilbert basis. It follows
that Pc is TDI.

4. Chambers and initial ideals

The goal of this section is to prove Theorem 1.1 which states that the chamber complex
equals the Gröbner fan if B is supernormal. We start out by characterizing these two fans
by means of the polyhedra Pc. In the next two lemmas, B is an arbitrary configuration in
Z

m .

Lemma 4.1 The chamber complex of B = {b1, . . . , bn} ⊆ Z
m is the common refinement

of the normal fans N (Pc) as c runs over Z
n.

Proof: According to the definition given in the introduction, two vectors lie in the same
cell of the chamber complex if and only if they lie in exactly the same cones spanned by
linearly independent m-subsets of B. This holds if and only if, for every regular subdivision
� of B, they lie in the same cell of �. Lemma 3.2 completes the proof.

Lemma 4.1 coincides with the first statement in [6, Proposition 3.3.5]. The term secondary
fan is often used for the chamber complex. For c ∈ Z

n consider the lattice polyhedron

Qc = conv{x ∈ Z
m : bi · x ≤ ci for i = 1, . . . , n}.

This is the convex hull of all lattice points in the polyhedron Pc.

Lemma 4.2 The Gröbner fan of the binomial ideal JB ⊆ k[x1, . . . , xn] is the common
refinement of the normal fans N (Qc) as c runs over Z

n.

Proof: This is the second statement of [6, Proposition 3.3.5].

The recipe in the introduction (following Eq. (1)) shows how to derive the initial ideal
inw(JB) associated with a vector w ∈ cone(B). Note the following subtlety in our notation:
while w is a vector with m coordinates, it specifies a term order on monomials in n variables.

Since Pc is a rational polyhedron there is a positive integer r such that r Pc = Prc has
integer vertices. HenceN (Pc) = N (Prc) = N (Qrc). This proves the following well-known
result:

Corollary 4.3 For any configuration B = {b1, . . . , bn} ⊆ Z
m, the Gröbner fan of the

ideal JB refines the chamber complex of B.

This says that the cones in the chamber complex of B can split into smaller cones as
one passes to the Gröbner fan of JB . It is known that no splitting happens when B is a
unimodular configuration; see for example [8, Proposition 8.15(a)]. Theorem 1.1 says that
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no splitting happens even when B is only supernormal. To prove this we need one more
lemma:

Lemma 4.4 [7, Corollary 22.1c] If Pc is TDI then Pc = Qc.

Proof of Theorem 1.1: Let B be supernormal. In view of Lemmas 4.1 and 4.2, it suffices
to prove the following statement: for any c ∈ Z

n there exists c′ ∈ Z
n such that the normal

fan N (Qc) of the integral polyhedron Qc equals the normal fan N (Pc′ ) of the rational
polyhedron Pc′ . This is done by “pushing in” all facets of Pc that do not contain integral
points. More precisely, given c ∈ Z

n , let xu be the common divisor of all monomials xc−Bz

for z ∈ Qc. If xu = 1, then Pc is tight. Otherwise, Pc−u is tight and Qc = Qc−u . Set
c′ = c − u. Since Pc′ is tight, we have that Pc′ is TDI by Theorem 3.6. Using Lemma 4.4,
we conclude that Pc′ = Qc′ = Qc and hence N (Qc) = N (Pc′ ).

5. How to subdivide a polygon

Let P be a planar convex polygon with integral vertices. In this section we study convex
vector configurations of the following form:

B = {(1, u, v) ∈ Z
3 : (u, v) ∈ P ∩ Z

2}.

We first show that they are all supernormal.

Proposition 5.1 Every convex configuration in Z
3 is supernormal.

Proof: Let B be a convex configuration in Z
3 and consider any triangulation � of B that

uses all vectors. Now a lattice triangle in the plane which contains no other lattice point
has area one half (by Pick’s theorem, for example). This implies that the triangulation � is
unimodular, and so Proposition 3.1 implies that B is supernormal.

The chamber complex of the polygon P is the common refinement of all lattice triangu-
lations of P . Hence the chamber complex of the vector configuration B is simply the cone
over the chamber complex of P . We draw the chamber complex of P by connecting any
pair of lattice points in P by a straight line segment.

For example, if P is the quadrangle with vertices (1, 0), (0, 1), (2, 3), and (3, 1), then
B is the set of column vectors of the 3 × 8-matrix:




1 1 1 1 1 1 1 1

1 0 1 2 3 1 2 2

0 1 1 1 1 2 2 3


 . (3)

The chamber complex of P is the subdivision of P into 26 triangles, five quadrilaterals,
and one pentagon, which is depicted in figure 2.
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Figure 2. Chamber complex with a pentagonal chamber.

We write µ(P) for the maximum number of edges of any region in the chamber complex
of a lattice polygon P . For instance, in figure 2 we have µ(P) = 5. The main point of this
section is the open question of whether there exists a global upper bound for the numbers
µ(P).

Problem 5.2 (The Polygon Problem) Does there exist a constant N such that every convex
lattice polygon P satisfies µ(P) ≤ N?

We circulated this problem in October 2000, and in the meantime considerable progress
has been made by several people. However, the problem remains open for now. Later in this
section we will summarize what is known at the present time (April 2001).

The Polygon Problem is important to us because it is a special case of a conjecture in
the algebraic theory of integer programming. Sturmfels and Thomas [9, Conjecture 6.1]
asked whether there exists a finite bound φ(m) on the number of facets of any cone in the
Gröbner fan of an ideal JB having codimension m. Such a bound would have implications
for the sensitivity analysis of integer programming in fixed dimension m. It is obvious
that φ(2) = 2, and it was conjectured in [9, Conjecture 6.2] that φ(3) = 4. The latter
conjecture was much too optimistic. It is now easily seen to be false: Figure 2 together with
the following proposition implies φ(3) ≥ 5:

Proposition 5.3 Every lattice polygon P satisfies φ(3) ≥ µ(P).

Proof: The chamber complex of a supernormal configuration B is the Gröbner fan of
the associated binomial ideal JB . Hence φ(m) is greater or equal to the maximum number
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of facets of any cone in the chamber complex of a supernormal configuration in Z
m . For

m = 3 we can take the chamber complex of a polygon P to get a lower bound for φ(3).

The first counterexamples to [9, Conjecture 6.2] were given by Hoşten and Maclagan [5]
who showed that φ(3) ≥ 6. However, the question of whether φ(3) is finite remains open.
A negative answer to the Polygon Problem would show that φ(m) is infinite for m ≥ 3.

To illustrate our algebraic interpretation of planar chamber complexes, we translate the
marked pentagonal chamber in figure 2 into a specific reduced Gröbner basis of binomials.
Our ideal is generated by the three binomials corresponding to the rows of the matrix in (3):

JB = 〈
x1x2x3x4x5x6x7x8 − 1, x1x3x2

4 x3
5 x6x2

7 x2
8 − 1, x2x3x4x5x2

6 x2
7 x3

8 − 1
〉
.

We next fix a term order which refines any non-negative real weight vector (u1, . . . , u8)
with the property that w = ∑8

i=1 ui bi lies in the marked pentagonal chamber of B =
{b1, . . . , b8} ∈ Z

3. For instance, we can take u = (0, 0, 0, 0, 1, 4, 1, 0). The reduced
Gröbner basis of JB with respect to this term order equals:

{
x4

2 x3x2
6 − x2

4 x5
5 x7, x5x7x2

8 − x2
1 x2

2 x3, x2x6x8 − x1x4x2
5 , x7x3

8 − x4
1 x3

2 x2
3 x4,

x6x2
8 − x3

1 x3x2
4 x3

5 , x4x2
5 x7x8 − x2, x1x2

2 x3x6 − x5, x1x2
4 x4

5 x7 − x2
2 x6,

x2
1 x2x3x4x5 − x8, x2

1 x3x2
4 x3

5 x7 − 1
}

The five “flippable” Gröbner basis elements are underlined. They correspond to the five
edges of the pentagonal chamber in figure 2.

We shall now present what is known on the Polygon Problem. The following result is
an outgrowth of the combined efforts of Miguel Azaola, Jesús de Loera, Jörg Rambau,
Francisco Santos, Marc Pfetsch and Günter Ziegler. In November 2000, the first four of
these obtained the lower bound of 12. It is attained by the 8 × 84 lattice rectangle. In April
2001, the last two succeeded in improving the previous world record1 from 12 to 15. This
is the currently best known bound.

Proposition 5.4 If P is the 9 × 265 lattice rectangle then µ(P) = 15, and hence φ(3) ≥
15.

Pfetsch and Ziegler have made extensive calculations of the numbers µ(P) for various
lattice rectangles P . Their computational results are posted at the website

http://www.zib.de/pfetsch/chambers/

The data posted at this website seem to suggest that the answer to the question in Problem 5.2
is more likely to be negative.

The example referred to in the proposition above consists of all lattice points (i, j) where
0 ≤ i ≤ 9 and 0 ≤ j ≤ 265. Pfetsch and Ziegler identified two chambers which are 15-gons
in the unit square with vertices (0, 132), (0, 133), (1, 132), (1, 133). Note that one of the
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edges of this square lies on the boundary of the 9 × 265 lattice rectangle. It seems that this
is not a coincidence: Ernest Croot has shown that any chamber with many edges must be
located close to the boundary of P .

6. Virtual chambers and virtual initial ideals

In Section 4 we established the bijection between chambers of a supernormal configuration
B and initial monomial ideals of JB . In this section we will extend it to a bijection between
virtual chambers of B and virtual initial ideals of JB , proving Theorem 1.2. First we define
these objects and explain how the bijection works.

Throughout this section we assume that B = {b1, . . . , bn} generates the lattice Z
m .

This holds if B is supernormal by Proposition 3.1. Under this hypothesis we can find a
configuration A = {a1, . . . , an} ⊆ Z

n−m such that the integer kernel of the (n − m) × n
matrix (a1, . . . , an) is spanned by the rows of the matrix (b1, . . . , bn). We will also use the
notation A for the first matrix and B for the second one. The relationship between A and B
is called Gale duality [10, Chapter 6]. Note that the property of being supernormal is not
preserved under Gale duality. It is well-known [1, 2] that the poset of regular subdivisions
of A (ordered by refinement) is antiisomorphic to the face poset of the chamber complex
of B.

The minimal elements of the poset of regular subdivisions of A are the regular triangula-
tions of A and they correspond to the full-dimensional chambers of B. This correspondence
can be described explicitly. Let � = {σ1, . . . , σk} be the maximal cells of a regular trian-
gulation of A where σi = {ai1 , . . . , ain−m }. This defines the chamber

⋂k
t=1 cone(σ̄t ) where

σ̄i = {b j : j /∈ {i1, . . . , in−m}}. The bijection between the regular triangulations of A and
the maximal chambers of B was extended in [3] to all triangulations of A.

Definition 6.1 Let � = {σ1, . . . , σk} be any (not necessarily regular) triangulation of the
configuration A. Then the collection of complementary subsets {σ̄1, . . . , σ̄k} of B is called
a virtual chamber of B.

The configuration in figure 1 of the Introduction is given by the columns of the matrix


1 1 1 1 1 1

0 1 2 0 1 2

0 0 0 1 1 1


 . (4)

This configuration B has 18 virtual chambers. 16 of these are chambers and hence visible
in figure 1. The two additional virtual chambers are

{(1, 3, 4), (1, 3, 5), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5), (2, 4, 6), (2, 5, 6)},
{(1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 4, 5), (2, 4, 6), (3, 4, 5), (3, 4, 6)}.

We invite the reader to “locate” these virtual chambers in figure 1. Note that any choice of
matrix A must be a vector configuration in Z

3.
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We define an (n − m)-dimensional grading of the polynomial ring S = k[x1, . . . , xn] by
setting the degree of xi to be ai for i = 1, . . . , n. Thus S is graded by the monoid NA which
is spanned by the Gale dual configuration A. The ideal JB is homogeneous in this grading
since

xu − xv ∈ JB if and only if
n∑

i=1

ui ai =
n∑

i=1

vi ai .

The Hilbert function of the quotient ring S/JB is given by

dimk((S/JB)b) =
{

1 if b ∈ NA,

0 otherwise.
(5)

A homogeneous ideal in S with the same Hilbert function as JB was called an A-graded
ideal in [8, Section 10]. Monomial A-graded ideals include, but are not limited to, initial
ideals of inw(JB).

Definition 6.2 A monomial ideal M in S is a virtual initial ideal of JB if the Hilbert
function of S/M is equal to the Hilbert function (5). This means that for every degree
b ∈ NA there is exactly one monomial xu of degree b with the property that xu 
∈ M .

To illustrate this definition and Theorem 1.2 we compute a virtual initial ideal of JB for
(4). First consider w = (2, 2, 1). Then

inw(JB) = 〈
x1x2x3, x4x5x6, x3x5x2

6 , x2
1 x2 − x5x2

6 , x2
4 x5 − x2x2

3 , x3x6 − x1x4
〉

This A-graded ideal corresponds to the centroid in figure 1. By replacing each of the three
binomials by one of its terms, we get eight virtual initial ideals of JB , one for each virtual
chamber adjacent to the centroid in figure 1. For instance, taking the first term in each of
the three binomial generators of ine(JB) gives the virtual initial ideal

〈
x2

1 , x3, x4
〉 ∩ 〈

x2
1 , x3, x5

〉 ∩ 〈
x1, x2

4 , x6
〉 ∩ 〈x1, x5, x6〉

∩ 〈x2, x3, x4〉 ∩ 〈x2, x3, x5〉 ∩ 〈
x2, x2

4 , x6
〉 ∩ 〈x2, x5, x6〉 ∩ 〈

x2
1 , x3, x2

4 , x6
〉
.

We pass to the radical of this ideal by erasing all exponents, and deleting the embedded
component at the end. The eight remaining index sets are precisely the cells in the first
virtual chamber listed for example (4). This process of using primary decomposition to
read off the virtual chamber from a given virtual initial ideal works in general:

Remark 6.3 The map referred to in Theorem 1.2 is given by:

M �→ {σ̄ : 〈xi : i ∈ σ̄ 〉 is a minimal prime of M}. (6)
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This remark follows essentially from [8, Theorem 10.10]. We shall give an alternative
description of the map (6) after Lemma 6.6 below. That description will be self-contained,
with no reference to [8] needed, and better suited for the purpose of proving Theorem 1.2.

For arbitrary configurations B, the map (6) is neither injective nor surjective. Two virtual
initial ideals can give rise to the same virtual chamber and there might be virtual chambers
which do not correspond to virtual initial ideals [8, Theorem 10.13]. What we are claiming
in Theorem 1.2 is that for supernormal configurations B the map (6) is both injective and
surjective. In the special case when B is unimodular this was proved in [8, Lemma 10.14].

We next present a characterization of virtual monomial ideals in terms of the integral
polyhedra Qc introduced in Section 4.

Lemma 6.4 A monomial ideal M is a virtual initial ideal of JB if and only if, for every
c ∈ Z

n, the polyhedron Qc is either empty or Qc contains a unique lattice point z such that∏n
i=1 xci −bi ·z

i is not in M.

Proof: The map z �→ ∏n
i=1 xci −bi ·z

i is a bijection between the set of lattice points in Qc

and the set of monomials in S having degree
∑n

i=1 ci ai . Hence the condition in the lemma
states that every non-zero graded component of S contains exactly one monomial which is
not in M .

In [8, Proposition 10.8] it was shown that the lattice point z chosen as in Lemma 6.4 need
not be a vertex of the polyhedron Qc. This is not the case for initial ideals of JB , and the
following important lemma states that it is also not the case if Qc = Pc.

Lemma 6.5 If Pc is non-empty and equal to Qc = conv(Pc ∩ Z
m) then the lattice point

z selected in Lemma 6.4 is a vertex of Qc.

Proof: Let z1, . . . , zr be the vertices of Pc = Qc and let xu1 , . . . , xur be the corresponding
monomials in S of degree b = ∑n

i=1 ci ai .
We first show that every monomial in Srb lies in the monomial ideal 〈xu1 , . . . , xur 〉 ⊆ S.

In polyhedral terms, if z is any lattice point in Prc = Qrc, then z can be written as z =∑r
i=1 γi zi + w where w ∈ P0 and the γi are non-negative reals summing to r . This means

that for the corresponding monomial xu we have u = rc − Bz = rc −∑r
i=1 γi Bzi − Bw =∑r

i=1 γi ui − Bw, where Bw ∈ (Z≤0)n , since w ∈ P0. There exists an index j ∈ {1, . . . , r}
such that γ j ≥ 1 and this implies that u ≥ u j , and thus that xu j divides xu . This shows
that Srb lies in 〈xu1 , . . . , xur 〉.

Since our virtual initial ideal M must have a standard monomial of degree rb, it cannot
contain the ideal 〈xu1 , . . . , xur 〉, and we conclude that one of the monomials xu j is not in
M , as desired.

We next present an alternative characterization of triangulations of A, and hence of virtual
chambers of B. A subset U of the closed orthant R

n
+ is an order ideal if v ∈ U and u ≤ v

coordinatewise implies u ∈ U . Let π be the linear map (λ1, . . . , λn) �→ ∑n
i=1 λi ai from

R
n
+ onto cone(A). A section of π is a map s : cone(A) → R

n
+ such that the composition

π ◦ s is the identity on cone(A). Note that every triangulation � of A defines a section s�
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as follows: s�(b) is the unique vector u ∈ R
n
+ with Au = b and whose support is a cell of

�. The image im(s�) of such a section s� is an order ideal in R
n
+.

Lemma 6.6 The map � �→ s� is a bijection between triangulations of A and sections s
of π for which im(s) is an order ideal in R

n
+.

Proof: It is clear that the section s� associated to a triangulation � of A satisfies the
desired conditions, so we need only show that every section s satisfying the hypothesis
comes from a triangulation.

Fix such an s. We first observe that s(rb) = rs(b) for b ∈ cone(A) and r ∈ R+. If r < 1
then c = rs(b) ∈ im(s), and so π (c) = rπ (s(b)) = rb satisfies s(rb) = c = rs(b). The
case that r > 1 follows from this.

We claim that the set of all possible supports of vectors in im(s) is a triangulation of
A. We first show that the subsets of A indexed by these supports are linearly independent.
Suppose not, so for some b ∈ R

n
+ there is a vector u = (u1, . . . , un) such that Au = b

where supp(u) is a proper subset of supp(s(b)). There is some r > 0 for which ru < s(b),
and so ru ∈ im(s). Now π (ru) = rπ (u) = rb, so s(rb) = ru. This implies that s(b) = u,
a contradiction since supp(s(b)) properly contains supp(u).

This shows that the cones cone(ai : i ∈ supp(s(b))) as b ranges over cone(A) are
simplicial and that they cover cone(A). We also note that this argument actually shows
that for any b′ in the relative interior of cone(ai : i ∈ supp(s(b))) we have supp(s(b′)) =
supp(s(b)). Hence the relative interiors of two distinct cones do not intersect. The order
ideal hypothesis guarantees that these cones form a simplicial fan.

This bijection means we can express the map in Theorem 1.2 as taking a virtual initial
ideal M to a section s such that im(s) is an order ideal in R

n
+. Fix M . For Pc = Qc we set

s(Ac) = c − Bz where z is given by Lemma 6.5. Since s(rb) = rs(b) we can extend this
to all rational Pc, and hence to all b ∈ cone(A) by continuity.

Now we are ready to prove Theorem 1.2. Recall that a polyhedron Pc is tight if and only
if the greatest common divisor of all monomials of the form xc−Bz for z ∈ Pc is one. If Pc

is not tight, let xw be the greatest common divisor of all monomials of the corresponding
degree. Then if a monomial ideal I is generated in tight degrees, xu 
∈ I implies xu−w 
∈ I
where u = c − Bz for some z ∈ Pc. We first present the part of the proof that holds for a
general configuration.

Lemma 6.7 Let xu divide xv, and let xw and xw′
be the greatest common divisors of all

monomials of the same degree as xu and xv respectively. Then xu−w divides xv−w′
.

Proof: Suppose this is not the case, so there is some i with (u − w)i > (v − w′)i . Since
the greatest common divisor of all monomials of the same degree as xu−w is 1, we know
that Pu−w is tight, and so there is some lattice point z ∈ Pu−w such that bi · z = (u − w)i .
Because u − w < v, we also have z ∈ Pv . This means xv−Bz is a monomial of the same
degree as xv , and is thus divisible by xw′

, so v − w′ − Bz ≥ 0. But this implies that
bi · z = (u − w)i ≤ (v − w′)i , a contradiction.
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Proof of Theorem 1.2: For each virtual chamber of B we will construct a virtual ini-
tial ideal which maps to it. The construction will make it clear that this map is injec-
tive. Let s be the section of π corresponding to our virtual chamber, as described in
Lemma 6.6. It is straightforward to check that s(Ac) is a vertex of the polyhedron Pc for every
c ∈ R

n
+.

We define M to be the ideal generated by all monomials xc such that Pc is tight and
c is not in the image of s. We claim that M is a virtual initial ideal. By construction, M
has at most one standard monomial in every tight degree, and thus in every degree. Tight
polyhedra are integral by Theorem 3.6 and Lemma 4.4. If Pc is tight then s(Ac) is a vertex
of Pc = Qc and hence s(Ac) ∈ N

n . We claim xs(Ac) 
∈ M for all c such that Pc is tight.
If not, there is some generator xv of M with Pv tight dividing xs(Ac). But since im(s) is an
order ideal, we must have v ∈ im(s), contradicting xv ∈ M . Therefore xs(Ac) 
∈ M .

If Pc is not tight, let xw be the greatest common divisor of all monomials of degree Ac.
Then we claim that xu+w 
∈ M , where xu 
∈ M satisfies u = c − w − Bz for z ∈ Pc−w.
Otherwise there would be some generator xv of M with xv dividing xu+w. But since Pv

would then be a tight degree, Lemma 6.7 would imply that xv must divide xu , a contradiction.
This concludes the proof that M is a virtual initial ideal.

The virtual initial ideal M just constructed is clearly mapped back to s under the map
(described after Lemma 6.6) from virtual initial ideals to triangulations. Hence this map is
a bijection as desired.

Acknowledgment
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Note

1. After this manuscript was submitted for publication in May 2001, Tracy Hall from UC Berkeley announced a
negative solution to the Polygon Problem.
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